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Generalized circles in Weyl spaces
and their conformal mapping

By ABDÜLKADIR ÖZDEĞER (Istanbul) and ZELIHA ŞENTÜRK (Istanbul)

Abstract. In this paper, generalized circles in a Weyl space are defined and the
system of differential equations satisfied by them is obtained. Furthermore, after having
given the necessary and sufficient conditions for generalized circles to be preserved under
a conformal mapping we obtained a covariant tensor of type (0, 4) which is invariant
under such a conformal mapping.

1. Introduction

A differentiable manifold of dimension n having a conformal metric
tensor g and a symmetric connection ∇ satisfying the compatibility con-
dition

(1.1) ∇g = 2(T ⊗ g)

where T is a 1-form (complementary covector field) is called a Weyl space
which we denote it by Wn(g, T ). After the renormalisation

(1.2) ḡ = λ2g

of the metric tensor g, T is transformed by the law

(1.3) T̄ = T + d ln λ.

An object A defined on Wn(g, T ) is called a satellite of g of weight {p} if it
admits a transformation of the form Ā = λpA under the renormalization
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(1.2) of g ([1]–[3]). The prolonged derivative and the prolonged covariant
derivative in the direction of the vector X of the satellite A of weight {p}
are, respectively defined by

∂̇XA = ∂XA− pT (X)A(1.4)

and

∇̇XA = ∇XA− pT (X)A(1.5)

where ∂XA is the derivative of A in the direction of X. By (1.2) and
(1.5) it follows that for every X ∇̇Xg = 0. We note that prolonged
differentiation and prolonged covariant differentiation preserve the weights
of the satellites. Let x ∈ U ⊂ Wn(g, T ), X ∈ Tx(U), A ∈ χ(U), and let
X =

∑n
k=1 Xk( ∂

∂xk )x, A =
∑n

i=1 Ai ∂
∂xi , T =

∑n
k=1 Tkdxk. Then (1.5)

gives

(1.6) Xk∇̇kAi = Xk∇kAi − pTkAi, ∇k = ∇ ∂

∂xk

A scalar function f defined on Wn(g, T ) is called prolonged covariant con-
stant along a curve C, with tangent vector ξ

1
, if the condition

(1.7) ∇̇ξ
1
f = ∂̇ξ

1
f = 0

holds true. Circles in Riemannian spaces are extensively studied by K.

Yano [4] and K. Nomizu [5]. The definition of a circle given in a Rie-
mannian space is not applicable in a Weyl space, since the Weyl connection
does not preserve the weights of the satellites of the metric tensor g. In-
stead, we use the prolonged covariant differentiation due to the fact that
it preserves the weight. As far as we know, generalized circles in Weyl
spaces have not yet been studied. Let Wn(g, T ) be a subspace of the Weyl
space W̄m(ḡ, T̄ ) and let ∇ and ∇̄ be the corresponding connections. Let
pεWn(g, T ) and let U , Ū be the special coordinate neighborhoods of p.
Then, the Gauss equation and the Weingarten equation for Wn(g, T ) are
respectively

∇̄X̄ Ȳ |U = ∇̄XY = ∇XY + α(X,Y )(1.8)

∇̄X̄ξ|U = ∇̄Xξ = −AξX +∇⊥Xξ(1.9)
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where XεTp(U), Y εχ(U) and ξ is a vector field normal to Wn(g, T ) while
X̄, Ȳ are extensions of X and Y to Ū [6]. We now find the expressions
for Gauss and Weingarten equations in terms of prolonged covariant de-
rivative. The prolonged covariant derivative of the vector field Y εχ(U) of
weight {−1} in the direction of X is, according to (1.5)

(1.15) ˙̄∇XY = ∇̄XY + T̄ (X)Y.

By (1.8), (1.10) becomes ˙̄∇XY = ∇XY + α(X,Y ) + T̄ (X)Y from which
it follows that tan ˙̄∇XY = ∇XY + T̄ (X)Y = ∇̇XY , nor ˙̄∇XY = α(X,Y )
and consequently we have

(1.11) ˙̄∇XY = tan ˙̄∇XY + nor ˙̄∇XY = ∇̇XY + α(X, Y ).

Similarly, the normal vector field ξ of weight {−1} has the prolonged co-
variant derivative

(1.12) ˙̄∇Xξ = ∇̄Xξ + T̄ (X)ξ

in the direction of X. By the Weingarten equation (1.9), (1.12) takes the
form ˙̄∇Xξ = −AξX +∇⊥Xξ + T̄ (X)ξ. Since tan ˙̄∇Xξ = −AξX, nor ˙̄∇Xξ =
∇⊥Xξ + T̄ (X)ξ, (1.12) reduces to ˙̄∇Xξ = tan ˙̄∇Xξ + nor ˙̄∇Xξ = −AξX +
∇⊥Xξ + T̄ (X)ξ, or

(1.13) ˙̄∇Xξ = −AξX + ∇̇⊥Xξ.

We call ∇̇⊥X the generalized normal connection.

2. Generalized circles in weyl spaces

Let C be a smooth curve belonging to the Weyl space Wn(g, T ) and
let ξ

1
be the tangent vector to C at the point P normalized by the condition

g(ξ
1
, ξ
1
) = 1.

Definition 1. A curve in Wn(g, T ) is called a generalized circle if there
exist a vector field ξ

2
, normalized by the condition g(ξ

2
, ξ
2
) = 1, along C and
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a positive prolonged covariant constant scalar function κ of weight {−1}
such that

∇̇ξ
1
ξ
1

= κξ
2

(2.1)

∇̇ξ
1
ξ
2

= −κξ
1
.(2.2)

We note that the equations (2.1) and (2.2) are invariant under a gauge
transformation. Concerning generalized circles in Wn(g, T ) we have the
following two theorems.

Theorem 1. A generalized circle C satisfies the third order differential

equation

(2.3) ∇̇2
ξ
1

ξ
1
+ g(∇̇ξ

1
ξ
1
, ∇̇ξ

1
ξ
1
)ξ
1

= 0, ξ
1

i =
dxi

ds

where xi are the coordinates of a current point belonging to C and s is the

parameter of C. Conversely, if the curve C satisfies the above differential

equation, then it is either a generalized circle or a geodesic.

Proof. Suppose that C is a generalized circle. Then we have

(2.4) ∇̇ξ
1
κ = 0.

Taking the prolonged covariant derivative of (2.1) in the direction of ξ
1

and
using (2.2) and (2.4) we find that

(2.5) ∇̇2
ξ
1

ξ
1

= (∇̇ξ
1
κ)ξ

2
+ κ(∇̇ξ

1
ξ
2
) = κ(−κξ

1
) = −(κ2)ξ

1
.

On the other hand,

(2.6) g(∇̇ξ
1
ξ
1
, ∇̇ξ

1
ξ
1
) = g(κξ

2
, κξ

2
) = κ2g(ξ

2
, ξ
2
) = κ2

so that the equation (2.5) becomes

(2.7) ∇̇2
ξ
1

ξ
1
+ g(∇̇ξ

1
ξ
1
, ∇̇ξ

1
ξ
1
)ξ
1

= 0.
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Conversely, suppose that a smooth curve C satisfies the equation (2.3).
If ξ

1
is the tangent vector to C, normalized by the condition g(ξ

1
, ξ
1
) = 1,

then

(2.8) g(ξ
1
, ∇̇ξ

1
ξ
1
) = 0.

The derivative of (2.8) in the direction of ξ
1

is, by (2.3),

(2.9)
ξ
1
g(∇̇ξ

1
ξ
1
, ∇̇ξ

1
ξ
1
) = 2g(∇̇2

ξ
1

ξ
1
, ∇̇ξ

1
ξ
1
) = −2g(g(∇̇ξ

1
ξ
1
, ∇̇ξ

1
ξ
1
)ξ
1
, ∇̇ξ

1
ξ
1
)

= −2g(∇̇ξ
1
ξ
1
, ∇̇ξ

1
ξ
1
).g(ξ

1
, ∇̇ξ

1
ξ
1
) = 0.

Suppose that g is positive definite and define the function k by

(2.10) k =
√

g(∇̇ξ
1
ξ
1
, ∇̇ξ

1
ξ
1
) .

If k = 0, then ∇̇ξ
1
ξ
1

= 0 so that C becomes a geodesic [7]. Suppose

that k 6= 0 and define the vector field ξ
2

along C by

(2.11) ξ
2

=
∇̇ξ

1
ξ
1

k

which is normalized by the condition g(ξ
2
, ξ
2
) = 1. Then we have

(2.12) ∇̇ξ
1
ξ
1

= kξ
2
.

Taking the prolonged covariant derivative of (2.11) in the direction of ξ
1and using (2.3) and (2.11) we obtain

∇̇ξ
1
ξ
2

= −
∇̇ξ

1
k

k2
∇̇ξ

1
ξ
1
+

1
k
∇̇2

ξ
1

ξ
1

= −
∇̇ξ

1
k

k
ξ
2
− 1

k
g(∇̇ξ

1
ξ
1
, ∇̇ξ

1
ξ
1
)ξ
1

(2.13)

= −(∇̇ξ
1
ln k)ξ

2
− kξ

1
.
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Since, by (2.9),

(2.14) ∇̇ξ
1
ln k =

1
2
∇̇ξ

1
ln g(∇̇ξ

1
ξ
1
, ∇̇ξ

1
ξ
1
) =

1
2

∇̇ξ
1
g(∇̇ξ

1
ξ
1
, ∇̇ξ

1
ξ
1
)

g(∇̇ξ
1
ξ
1
, ∇̇ξ

1
ξ
1
)

= 0,

k is a prolonged covariant constant along C. From (2.13) it follows that
∇̇ξ

1
ξ
2

= −kξ
1

showing that C is a generalized circle. ¤

Theorem 2. A smooth curve C considered as a 1-dimensional sub-

space of the Weyl space Wn(g, T ) will be a generalized circle if and only if

it has a non-zero parallel mean curvature vector.

Proof. Let C be a generalized circle in Wn(g, T ) and α be the second
fundamental form of C. Then, from equations (1.11) and (2.1) we find

(2.15) α(ξ
1
, ξ
1
) = κξ

2

from which it follows that Trα = η = α(ξ
1
, ξ
1
) = κξ

2
. Then, by using the

Weingarten equation (1.13) we get ˙̄∇⊥ξ
1

η = ˙̄∇⊥ξ
1

(κξ
2
) = ˙̄∇ξ

1
(κξ

2
) + Aκξ

2
ξ
1

=

κ ˙̄∇ξ
1
ξ
2
+κAξ

2
ξ
1

= 0 showing that η is parallel with respect to the generalized

normal connection ∇̇⊥. Conversely, suppose that a smooth curve C has a
non-zero parallel mean curvature vector, say η. Then

(2.16) η = α(ξ
1
, ξ
1
).

Define the vector field ξ
2

by

(2.17) ξ
2

=
η

κ

where κ is a positive prolonged covariant constant of weight {−1}. From
(1.11) and (2.17) we have

(2.18) ˙̄∇ξ
1
ξ
1

= κξ
2
.
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On the other hand, by using the Weingarten equation we obtain

(2.19)

˙̄∇⊥ξ
1

η = ˙̄∇⊥ξ
1

(κξ
2
) = ˙̄∇ξ

1
(κξ

2
) + Aκξ

2
ξ
1

= κ( ˙̄∇ξ
1
ξ
2
) + κAξ

2
ξ
1

= κ( ˙̄∇ξ
1
ξ
2
+ Aξ

2
ξ
1
) = κ ˙̄∇⊥ξ

1

ξ
2

= 0

so that the vector field ξ
2

is parallel with respect to the generalized normal

connection. Since η and ξ
2

are parallel vector fields, the vector ˙̄∇ξ
1
ξ
2

is

tangent to C. Taking the prolonged covariant derivative of g(ξ
1
, ξ
2
) = 0 in

the direction of ξ
1

and using (2.18) we find that g( ˙̄∇ξ
1
ξ
2
, ξ
1
) = −g(ξ

2
, ˙̄∇ξ

1
ξ
1
) =

−κ from which it follows that ˙̄∇ξ
1
ξ
2

= −κξ
1
. Consequently, C is a generalized

circle. ¤

3. Conformal mapping of Weyl spaces preserving
generalized circles

Let τ be a conformal mapping of Wn(g, T ) onto W̄n(ḡ, T̄ ). Then, at
the corresponding points of these spaces we can make [2]

(3.1) g = ḡ.

The covariant vector P defined by

(3.2) P = T − T̄

is called the vector of the conformal mapping. Clearly P has zero weight.
Let ∇ and ∇̄ be the Weyl connections of Wn(g, T ) and W̄n(ḡ, T̄ ) and let
the connection coefficients be denoted by Γi

jk and Γ̄i
jk respectively, then

by (3.1) and (3.2) we have

Γ̄i
jk = Γi

jk − ḡim(ḡmj T̄k + ḡmkT̄j − ḡjkT̄m)

=
{

i

jk

}
− [δi

j(Tk −Pk) + δi
k(Tj −Pj)− gimgjk(Tm−Pm)](3.3)

Γ̄i
jk = Γi

jk + δi
jPk + δi

kPj − gimgjkPm.
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Let C be a smooth curve in Wn(g, T ) and let C̄ be its image under the
conformal mapping τ . Denote the parameters of C and C̄ by s and s̄

respectively. Denote the coordinates of a current point p on C by xi and
those of the corresponding point p̄ by x̄i. Then, for the tangent vectors ξ

1

i

and ξ̄
1

i at corresponding points we have

(3.4) ξ̄
1

i = ξ
1

i,

(
ξ
1

i =
dxi

ds

)

We assume ξ
1

to be normalized by the condition g(ξ
1
, ξ
1
) = 1.

If generalized circles in Wn(g, T ) are transformed into generalized cir-
cles in W̄n(ḡ, T̄ ) under the conformal mapping τ , then τ is called a gener-
alized concircular mapping. Concerning generalized concircular mappings
we have the

Theorem 3. The conformal mapping τ : Wn(g, T ) → W̄n(ḡ, T̄ ) will

be generalized concircular if and only if

Pkl = φgkl, Pkl = ∇lPk − PkPl +
1
2
gklg

rsPrPs

where φ is a scalar smooth function of weight {−2} defined on Wn(g, T ).

Proof. Connections of Wn(g, T ) and W̄n(ḡ, T̄ ) are related to each
other by the equation

(3.5) ∇̄iξ
1

k = ∇iξ
1

k + γk
ijξ

1

j , γk
ij = Piδ

k
j + Pjδ

k
i − gijg

klPl.

Remembering that the weight of ξ
1

is {−1} and using (3.2), (3.4) and (3.5)
we find that

˙̄∇iξ̄
1

k = ˙̄∇iξ
1

k = ∇̄iξ
1

k + T̄iξ
1

k = ∇̄iξ
1

k + (Ti − Pi)ξ
1

k(3.6)

= ∇iξ
1

k + γk
ijξ

1

j + (Ti − Pi)ξ
1

k

= ∇̇iξ
1

k + (Pjδ
k
i − gijg

klPl)ξ
1

j .
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The prolonged covariant derivative of ξ̄
1

in its direction is found to be

(3.7)

ξ̄
1

i ˙̄∇iξ̄
1

k = ξ
1

i∇̇iξ
1

k + (Pjξ
1

j)(δk
i ξ

1

i)− (gklPl)gijξ
1

iξ
1

j , gijξ
1

iξ
1

j = 1

ξ̄
1

i ˙̄∇iξ̄
1

k = ξ
1

i∇̇iξ
1

k + (Pjξ
1

j)ξ
1

k − gklPl.

By setting ξ̄
1

i ˙̄∇iξ̄
1

k =
δ̇ξ̄
1

k

δs̄ , ξ
1

i∇̇iξ
1

k =
δ̇ξ
1

k

δs the equation (3.7) becomes

(3.8)
δ̇ξ̄
1

k

δs̄
=

δ̇ξ
1

k

δs
+ (Pjξ

1

j)ξ
1

k − gklPl.

The equation (3.7) may be written in the form

(3.9) ξ̄
1

i∇̄iξ̄
1

k = ξ
1

i∇iξ
1

k + 2(Pjξ
1

j)ξ
1

k − gklPl.

Remembering that the weight of ξ̄
1

i ˙̄∇iξ̄
1

k =
δ̇ξ̄
1

k

δs̄ is {−2} we find that

(3.10)

δ̇2ξ̄
1

k

δs̄2
=

δ̇

δs̄
(
δ̇ξ̄
1

k

δs̄
) = ξ

1

m ˙̄∇m(ξ̄
1

i ˙̄∇iξ̄
1

k)

δ̇2ξ̄
1

k

δs̄2
= ξ̄

1

m[∇̄m(ξ̄
1

i ˙̄∇iξ̄
1

k) + 2T̄m(ξ̄
1

i ˙̄∇iξ̄
1

k)]

δ̇2ξ̄
1

k

δs̄2
= ξ̄

1

m[∇̄muk + 2(Tm − Pm)uk], uk = ξ̄
1

i ˙̄∇iξ̄
1

k

δ̇2ξ̄
1

k

δs̄2
= ξ̄

1

m∇̄muk + 2Tmξ̄
1

m
uk − 2Pmξ̄

1

m
uk.

Since, by (3.9) ξ̄
1

m∇̄muk = ξ
1

m∇muk + 2(Pjξ
1

j)uk − gklPl the equation
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(3.10) takes the form

δ̇2ξ̄
1

k

δs̄2
= ξ

1

m∇m(ξ̄
1

i ˙̄∇iξ̄
1

k) + 2ξ
1

jPj(ξ̄
1

i ˙̄∇iξ
1

k)− gklPl(3.11)

+ 2(Tm − Pm)ξ̄
1

m(ξ̄
1

i ˙̄∇iξ̄
1

k).

Taking the equation (3.7) into account, (3.11) can be written as

δ̇2ξ̄
1

k

δs̄2
= ξ

1

m∇m[(ξ
1

i∇̇iξ
1

k) + (Phξ
1

h)ξ
1

k − gklPl](3.12)

+ 2(ξ
1

jPj)(ξ
1

i∇̇iξ
1

k + Phξ
1

hξ
1

k − gklPl)

+ 2(Tm − Pm)ξ
1

m(ξ
1

i∇̇iξ
1

k + Phξ
1

hξ
1

k − gklPl)− gklPl

δ̇2ξ̄
1

k

δs̄2
= ξ

1

m∇̇m(ξ
1

i∇̇iξ
1

k) + ξ
1

m∇m(Phξ
1

hξ
1

k − gklPl)

+ 2Tmξ
1

m(Phξ
1

hξ
1

k − gklPl)− gklPl

δ̇2ξ̄
1

k

δs̄2
=

δ̇2ξ
1

k

δs2
+ ξ

1

m∇̇m(Phξ
1

hξ
1

k − gklPl)− gklPl

where we have used the property that Phξ
1

hξ
1

k − gklPl is of weight {−2}.
With the help of (3.4), (3.8) and (3.12) we get

δ̇2ξ̄
1

i

δs̄2
+ ḡkj

δ̇ξ̄
1

k

δs̄

δ̇ξ̄
1

j

δs̄
ξ
1

i =
δ̇2ξ

1

i

δs2
+ ξ

1

m∇̇m(Phξ
1

hξ
1

i− gilPl)− gilPl(3.13)

+ gkj




δ̇ξ
1

k

δs
+ Phξ

1

hξ
1

k− gklPl







δ̇ξ
1

j

δs
+ Pmξ

1

mξ
1

j− gjmPm


 ξ

1

i

=




δ̇2ξ
1

i

δs2
+ gkj

δ̇ξ
1

k

δs

δ̇ξ
1

j

δs
ξ
1

i


 + ξ

1

m∇̇m(Phξ
1

hξ
1

i−gihPh)−gihPh
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−

2Ph




δ̇ξ
1

k

δs


 + (Phξ

1

h)2 − gjmPjPm


 ξ

1

i.

Therefore, generalized circles in Wn(g, T ) will be transformed into gener-
alized circles in W̄n(ḡ, T̄ ) under τ , if and only if the condition

ξ
1

m∇̇m[Ph(ξ
1

iξ
1

h−gih)]−gihPh−

2Ph




δ̇ξ
1

h

δs


+ (Phξ

1

h)2− gjmPjPm


 ξ

1

i = 0

or, after simplification

(3.14) (ξ
1

k∇kPh)(ξ
1

iξ
1

h − gih) + (ξ
1

hPh)Plg
il − (Phξ

1

h)2ξ
1

i = 0

is satisfied. Introducing the notation Phk = ∇kPh − PhPk + 1
2ghkgrsPrPs

we can transform (3.14) into the form

(3.15) φξ
1

i − Phkgihξ
1

k = 0, φ = Phkξ
1

hξ
1

k.

Transvecting (3.15) by gil and remembering that gilg
ih = δh

l , by a suitable
change of indices, (3.15) can be reduced to the form

(16) (Phk − φghk)ξ
1

k = 0.

In order that the system of homogeneous linear equations (3.16) be satisfied
for any vector ξ

1

k (i.e. for any generalized circle) it is necessary that Phk −
φghk = 0. Conversely, it is clear that if Phk = φghk then the condition
(3.14) is identically satisfied. This completes the proof of the theorem.

¤

4. Generalized concircular curvature tensor
of a Weyl space

Let τ be the generalized concircular mapping of Wn(g, T ) onto
W̄n(ḡ, T̄ ).
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Theorem 4. Let Rpjkl and R be respectively the components of the

covariant curvature tensor and the scalar curvature of Wn(g, T ). Then

the covariant tensor Z with components

(4.1) Zpjkl = Rpjkl − R

n(n− 1)
(gjkgpl − gpkgjl)

is invariant under τ .

Proof. Let the components of the mixed tensor of Wn(g, T ) be Rp
jkl

and let R̄p
jkl be their images under τ . Then we have

(4.2) R̄p
jkl = Rp

jkl + δp
l Pjk − δp

kPjl + gjkgpmPml − gjlg
pmPmk + 2δp

j∇[kPl]

where Pjk = ∇kPj−PjPk+ 1
2gjkgrsPrPs. Since τ is generalized concircular

we have Pjk = φgjk so that (4.2) transforms into

(4.3) R̄p
jkl = Rp

jkl + 2φ(gjkδp
l − gjlδ

p
k).

If contraction on the indices p and l in (4.3) is performed (4.3) becomes

(4.4) R̄jk = Rjk + 2φ(n− 1)gjk

where R̄jk = R̄p
jkp and Rjk = Rp

jkp are, respectively, the Ricci tensors of
W̄n(ḡ, T̄ ) and Wn(g, T ). Since we can make ḡ = g at corresponding points
of Wn(g, T ) and W̄n(ḡ, T̄ ), transvecting (4.4) by ḡjk = gjk we find that
R̄ = R + 2φn(n− 1) from which we obtain

(4.5) 2φ =
R̄−R

n(n− 1)
, (n 6= 1)

where R ve R̄ are respectively the scalar curvatures of Wn(g, T ) and
W̄n(ḡ, T̄ ). Substitution of φ in (4.3) gives R̄p

jkl = Rp
jkl + R̄−R

n(n−1) (δ
p
l gjk −

δp
kgjl) or

(4.6) R̄p
jkl −

R̄

n(n− 1)
(δp

l ḡjk − δp
k ḡjl) = Rp

jkl −
R

n(n− 1)
(δp

l gjk − δp
kgjl).
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Multiplying (4.6) by ḡrp = grp and summing for p we get Z̄rjkl = Zrjkl so
that the proof of the theorem is completed. ¤
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