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The view-obstruction problem for polygons

By YONG-GAO CHEN (Nanjing) and ANIRBAN MUKHOPADHYAY (Allahabad)

Abstract. In this paper we solve the view-obstruction problem for regular poly-
gons inscribed in the unit circle with one vertex at (1, 0).

1. Introduction

Let C be a convex body in Rn. For α > 0, define

∆(α,C) =
{
αC +

(
m1 + 1

2 , . . . ,mn + 1
2

)
: m1, . . . , mn ∈ Z

}
,

where Z is the set of all non-negative integers.
For positive real numbers a1, . . . , an, let L(a1, . . . , an) be the line

xi = ait (i = 1, 2, . . . , n).

The view-obstruction problem for C is to determine the infimum K(C)
of positive real numbers α for which ∆(α,C) ∩ L(a1, . . . , an) 6= ∅ for all
n-tuples (a1, . . . , an) of positive real numbers. Here, and what follows, ∅
denotes the empty set.

The view-obstruction problem is given its name by T. W. Cusick [1]
in 1973 with restricted C. The problems for spheres and cubes have been
widely studied (see [2]–[18], [20]). In this paper, we consider the view-
obstruction problem for regular polygons.
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Let Cn be the regular n-gon inscribed in unit circle x2
1 + x2

2 = 1 with
one vertex at (1, 0). Then n vertices of Cn are

(
cos

2sπ

n
, sin

2sπ

n

)
, s = 0, 1, . . . , n− 1.

Define α(a1, a2) by

α(a1, a2)−1 = 2 max
0≤s≤n−1

∣∣∣∣a2 cos
2sπ

n
− a1 sin

2sπ

n

∣∣∣∣ .

We prove the following result.

Theorem. For n ≥ 3 we have

K(Cn) = max{α(1, 2), α(2, 1)}.

2. A proof

If a1 and a2 are positive real numbers and a1/a2 is irrational, then,
for any ε > 0, by Kronecker’s theorem, there is a half positive integer
point (m1 + 1

2 ,m2 + 1
2 ) with the distance from L(a1, a2) being less than ε.

Thus, we may assume that a1/a2 is rational. Further, we may assume that
a1 and a2 are positive integers with (a1, a2) = 1. If both a1 and a2 are
positive odd integers, then L(a1, a2) passes through (m1 + 1

2 ,m2 + 1
2 ) with

m1 = (a1− 1)/2 and m2 = (a2− 1)/2. Now we assume that 2 | a1a2 (thus
a1 6= a2). Let 0 ≤ s1 ≤ n− 1 and δ = −1 or 1 with

α(a1, a2)−1 = 2δ

(
a2 cos

2s1π

n
− a1 sin

2s1π

n

)
.

Since (a1, a2) = 1, we may take positive integers m1, m2 such that

a2m1 − a1m2 +
1
2
(a2 − a1) = −1

2
δ.

Thus

a2m1 − a1m2 +
1
2
(a2 − a1) + α(a1, a2)

(
a2 cos

2s1π

n
− a1 sin

2s1π

n

)
= 0.
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That is, L(a1, a2) goes through
(m1 + 1

2 ,m2 + 1
2 ) + α(a1, a2)(cos 2s1π

n , sin 2s1π
n ). Hence

(1) L(a1, a2) ∩∆(α(a1, a2), Cn) 6= ∅.

To complete the proof, we need a lemma.

Lemma. If a1, a2 are distinct positive integers with (a1, a2) = 1 and

2 | a1a2, then

α(a1, a2) ≤ α(2, 1), if a1 > a2;

α(a1, a2) ≤ α(1, 2), if a1 < a2.

Proof. We give only the proof for the case a1 > a2. A proof for the
case a1 < a2 can be given similarly.

For n = 3, we have

α(a1, a2)−1 = 2 max
0≤s≤2

∣∣∣∣a2 cos
2sπ

3
− a1 sin

2sπ

3

∣∣∣∣ = a2 +
√

3a1.

By a1 > a2 we have
√

3(a1 − 2) ≥ 0 ≥ 1− a2. Combining with the above
equality, we have α(a1, a2) ≤ α(2, 1). Now suppose that n ≥ 4.

Take 0 < θ(a1, a2) < π
2 with

a2 cos
2sπ

n
− a1 sin

2sπ

n
=

√
a2
1 + a2

2 sin
(

θ(a1, a2)− 2sπ

n

)
.

Noting that n ≥ 4 and θ(a1, a2) does not depend on s, we may take an
integer s′ such that 0 ≤ s′ ≤ n− 1 and

−π

2
− π

4
≤ θ(a1, a2)− 2s′π

n
< −π

2
+

π

4
.

Thus, if {a1, a2} 6= {2, 1}, then

max
0≤s≤n−1

∣∣∣∣a2 cos
2sπ

n
− a1 sin

2sπ

n

∣∣∣∣ ≥
√

a2
1 + a2

2 cos
π

4
≥
√

13 ·
√

2
2

>
√

5 ≥ max
0≤s≤n−1

∣∣∣∣cos
2sπ

n
− 2 sin

2sπ

n

∣∣∣∣.
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Hence α(a1, a2) ≤ α(2, 1). This completes the proof of the lemma. ¤

Now, we return to prove the theorem. By the lemma and (1) we have

L(a1, a2) ∩∆(α(2, 1), Cn) 6= ∅, if a1 > a2;

L(a1, a2) ∩∆(α(1, 2), Cn) 6= ∅, if a1 < a2.

If 0 < α < α(2, 1) then, for any β with 0 < β ≤ α and any integers
m1, m2, we have

β

∣∣∣∣cos
2sπ

n
− 2 sin

2sπ

n

∣∣∣∣ < α(2, 1)
∣∣∣∣cos

2sπ

n
− 2 sin

2sπ

n

∣∣∣∣

≤ 1
2
≤

∣∣∣∣m1 − 2m2 − 1
2

∣∣∣∣.

This means that L(2, 1) cannot pass through (m1 + 1
2 ,m2 + 1

2 ) +
β(cos 2sπ

n , sin 2sπ
n ) for any 0 < β ≤ α, 0 ≤ s ≤ n − 1 and any integers

m1,m2. Hence L(2, 1) ∩∆(α, Cn) = ∅. Similarly, L(1, 2) ∩∆(α,Cn) = ∅
for 0 < α < α(1, 2). The above arguments imply that

K(Cn) = max{α(1, 2), α(2, 1)}.
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