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A rigidity theorem for hypersurfaces in a sphere

By LIU XIMIN (Dalian)

Abstract. Let M™ be a closed hypersurface in the unit sphere S™*1. Denote
by |h|? and H the square of the length of its second fundamental form and the mean
curvature, respectively, suppose that |Vh|? > n2|VH|2. If |h|? < 2¢/n — 1, M" is a
small hypersphere in S™t!. We also characterize all M™ with |h|? = 2y/n — 1. When
M™ has constant mean curvature, it is just the result of Hou [3].

1. Introduction

Let S"*! be an (n+1)-dimensional unit sphere with constant sectional
curvature 1, let M™ be an n-dimensional closed hypersurface in S™*1,
and eq,...,e, a local orthonormal frame field on M"™, wq,...,w, its dual
coframe field. Then the second fundamental form of M™ is

h = Zhijwi Q wj.

(Y]

Denote by H the mean curvature and |h|? the square of the length of the
second fundamental form. As it is well known, there are many rigidity
results for minimal hypersurfaces or hypersurfaces with constant mean
curvature H in S"*! by use of J. SIMONS’ method, for example, see [1],
[4], [6], [8] etc. In [3], HOU proved the following theorem:
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Theorem A. Let M"™ be a closed hypersurface of constant mean cur-
vature in S"*1. Then

(1) If |h|*> < 2¢/n—1, M"™ is a small hypersphere S™(r) of radius r =

D
(2) If |h|?> =2y/n — 1, M™ is either a small hypersphere S™(rq) or H(r)-
torus S'(r) x S"~1(s), where 13 = P el r? = ﬁ and s? =
n—1
n—T11"

In the present paper, we would like to use Cheng—Yau’s self-adjoint
operator [ to prove the following general rigidity theorem.

Theorem B. Let M"™ be an n-dimensional closed hypersurface in
S™ 1 with [Vh|> > n?|VH|?. Then
(1) If |h|?> < 2¢/n—1, M™ is a small hypersphere S™(r) of radius r =
(2) If |h|?> = 2v/n — 1, M™ is either a small hypersphere Sn(To) or H( )
torus St(r) x S"~1(s), where 13 = = " \/—H and s>

n—1

Vn—1+1"

Obviously, when M™ has constant mean curvature, Theorem B be-
comes Theorem A, so Theorem B is an extension of Theorem A.

2. Preliminaries

Let M™ be an n-dimensional closed hypersurface in S"*!. We choose
a local orthonormal frame ey, ..., e, 1 in S™! such that at each point of
M™ eq,...,e, span the tangent space of M™ and form an orthonormal
frame there. Let wq,...,wn41 be its dual coframe. In this paper, we use
the following convention on the range of indices:

1 S-ArB7CL"‘S7l+_1; 1 S;%j7kf"§;n-
Then the structure equations of S”*! are given by

(1) dwa = ZWAB ANwp, wap+wpa =0,
B
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1
(2) dwap = ZWAC Awes = 5 Z Kapcpwe ANwp,
C C.D
(3) Kapep = (04c0Bp — 04DIBC)-

Restrict these forms to M™, we have

(4) Wn+1 = 0.

From Cartan’s lemma we can write

(5) Wntti = ) higwy,  hij = hyi.
J

From these formulas, we obtain the structure equations of M™:

(6) dw; = Zwij ANwj, wij +wj; =0,
J
1
(7) dw;j = Zwik ANwgj — 5 Z Rijriwr A wi,
k k,l
(8) Rijri = (0irdj1 — 6udjn) + (hinhji — hahji),

where R;j;; are the components of the curvature tensor of M™ and

9) h=7 hijw; ®w;

(2]

is the second fundamental form of M™. We also have

(10) Rij = (n — 1)(513 + thz] — Z hikhkjy
k

(11) n(n —1)(R—1) =n?*H? — |n|?,

where R is the normalized scalar curvature, and H the mean curvature.
Define the first and the second covariant derivatives of h;;, say hijx
and h;jr by

(12) Z hijrwr = dh; + Z hijwri + Z hikwi;,
k k k

(13) Z hijriwr = dhjg, +Z hmjrwmi +Z Rimkwm, +Z hijmwmp-
l m m m
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Then we have the Codazzi equation
(14) hijk = hikj,
and the Ricci’s identity

(15) hijri — hijie = Z L A Z R Rk -

For a C2-function f defined on M™, we define its gradient and Hessian
fi; by the following formulas

(16) df:Zfiwu Zfijwj :dfi+ijwji-

The Laplacian of f is defined by Af =" fi.
Let o =), ; ¢ijw; @ w; be a symmetric tensor defined on M", where

(17) ¢ij = nHéZ] — h”

Following CHENG-YAU [2], we introduce an opertator [J associated
to ¢ acting on any C?-function f by

(18) Of =Y ¢ijfis = Y_(nHbij — hij) fij.
1,J ,J

Since ¢;; is divergence-free, it follows [2] that the operator O is self-adjoint
relative to the L? inner product of M™, i.e.,

(19) /M fOg = /M gaf.

We can choose a local frame field eq, ..., e, at any point p € M, such
that h;j = X\;d;;, by use of (18) and (11), we have

O(nH) =nHAH) = > \(nH);;

(20) = %A(”H)Q - Z(WH)? - Z)\z(nH)u

%

1 1 2 2 2
ZEMn—DAR+§MM-ﬂlNH\—E:&@HM'
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On the other hand, through a standard calculation by use of (14) and (15),
we get

(21) %A|h|2 D BG4 Xi(nH)i ZRW

7]7 i

Putting (21) into (20), we have

1 1
(22) O(nH) = n(n—1)AR+|Vh> —n?|VH[* + 5 > Rijij(A

Because M™ is closed, we obtain the following formula by integrating
(22) and by noting [,,, AR=0and [,,, O(nH) =0

1
(23) / ) [Wh\Q —nf[VHP + 23 Rijij(hi = 4))*] =0.
t,J

From (8), we have R;;;; = 1 — A\;Aj, i # j, and by putting this into
(23), we obtain

(24) / (IR = 2 ol = 22— g YN =0
Let u; = \; — H and |Z|? = Y, u?, we have

(25) Zui =0, |Z] = |h[> —nH?,

(26) Z AP = ZM, +3H|Z|* + nH5.

From (24)—(26), we get

(27) / [IVRP =2V HP + 2P0+ 0B -1 ZP) 40l Y ] =

We need the following algebraic lemma due to M. OKUMURU [7] (see
also [1]).
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Lemma 2.1. Let y1;,% = 1,...,n, be real numbers such that ) j1; = 0
and ), u? = 32, where 3 = constant > 0. then

n—2 n—2
28 L 3,
(28) e e Zuz_ N e

and the equality holds in (28) if and only if at least (n — 1) of the u; are
equal.

By use of Lemma 2.1, we have

02 \mz)] <o,

(29)/ (VA2 02|V H 4| 222~ 2~ =2
n n(n—1)

3. Proof of Thoerem B

Now consider the quadratic form Q(u,t) = u? — \;‘%ut — t2. By the

orthogonal transformation

u_\/17{(1+\/n—1)u+(1—\/n—1)t}
W{ Vn—=1-=1Du+ (vVn—1+1)t}.
Q(u,t) turns into Q(u,t) = 2\/%(122 —t2), where u? +t2 =

u? + 12 = |h|%
Take u = \/n|H|, t =|Z|, then

n(n —2) 9 n(u? —t2)
+nH? — ———=—|H||Z| - |Z* = n+ Q(u,t) = nc +
_a? 72 —2
(30) TP Sk 0 PR R )3

2v/n—1 \/n— o 2vn —1
From (29) and (30) we have

31) 0> /Mn{(\vm? — 2| VH[?) + |22 [n - N%]hﬂ }

By the assumption of theorem |Vh|? > n?|VH|?, we know if |h|? <
2y/n — 1, we have |Z|? = 0, which means that M™ is totally umbilical and

hence is a small hypersphere S™(r), where r = | /#IhIQ'
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If |h|? = 2v/n — 1, then equality holds in Lemma 2.1, and it follows
that at least (n — 1) of \;’s are equal to one another. When \; = A\ =
- = Ap, M" is totally umbilical and hence a small hypersphere S™(r¢)
where rg = #\/ﬁ When M™ is not totally umbilical, there are exactly
(n—1) of A\;’s that are equal to one another. Then from [3] we know that
M™ is H(r)-torus St(r) x S"~1(s), where r? =
This completes the proof of Theorem B.
From Theorem B, we have the following corollary immediately.

1 _ n—1
vVn—1+1 and S Vn—1+1"

Corollary 1 [3]. Let M™ be an n-dimensional closed hypersurface
with constant mean curvature in S"T1. Then

(1) If |h|* < 2¢/n—1, M™ is a small hypersphere S™(r) of radius r =

AT
(2) If |h|> =2y/n — 1, M™ is either a small hypersphere S™(rg) or H( )
torus S*(r) x S” 1( ), where 3 = P r? = ﬁ and s*
Vn—1
Vn—1+1"

Corollary 2. Let M™ be an n-dimensional closed hypersurface with
constant normalized scalar curvature R in S"*'. Suppose R > 1, then

(1) If |h|?> < 2¢/n—1, M™ is a small hypersphere S™(r) of radius r =

AT
(2) If |h|?> = 2v/n — 1, M™ is either a small hypersphere S™(ro) or H(r)-
torus S*(r )XS’" 1( ), Wherer(%—nHﬁ, :ﬁands =
Vn—1
Vn—1+1"

Proor. From (11),
=) b} =n(n—1)(R-1).
irj

Taking the covariant derivative of the above expression, and using the fact
R = constant, we get

n2HHk = Z hijhijk'
0,9

By Cauchy—Schwarz inequality, we have

(32) Zn4H2 Hy)? = Z(Z hwh”k) < (Zh )th]kv

W7,k
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that is

(33) n*H?|VH|?> < |h|?|Vh]2.

On the other hand, from R > 1, we have n?H? — |h|?> > 0. Thus
IVh|* > n?|VH|?,

so Corollary 2 follows from Theorem B. O
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