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Single-valued and multi-valued Caristi type operators

By ADRIAN PETRUSEL (Cluj-Napoca)
and ALINA SINTAMARIAN (Cluj-Napoca)

Abstract. New results in connection with some single-valued and multi-valued
Caristi type operators are established.

1. Introduction

Caristi’s fixed point theorem states that each operator f from a com-
plete metric space (X, d) into itself satisfying the condition: there exists a
proper lower semi-continuous function ¢ : X — R4 U {400} such that:

(1.1) d(z, f(z)) + ¢(f(z)) < p(z), foreachze X

has at least a fixed point z* € X, i.e. #* = f(z*) (see [5]). There are
several extensions and generalizations of this important principle of the
nonlinear analysis (see for example [4], [6], etc.). One of the latest, asserts
that if (X, d) is a complete metric space, g € X, ¢ : X — Ry U {+o0} is
a proper lower semi-continuous function and h : Ry — Ry is a continuous

function such that fooo 1+de(5) = 400, then each single-valued operator f
from X to itself satisfying the condition:

d
(1.2) for each z € X, (z, /() + o(f(z)) < p(z),

1+ h(d(zg, x))

has at least a fixed point (see [15]). For the multi-valued case, if F' is an
operator of the complete metric space X into the space of all nonempty

Mathematics Subject Classification: 47TH10, 54H25.
Key words and phrases: fixed point, Reich type operator, entropy.



168 A. Petrusgel and A. Sintamarian

subsets of X and there exists a proper lower semi-continuous function
¢ : X — Ry U{+o0} such that

(1.3) for each z € X, there is y € F(z) so that d(z,y) + ¢(y) < ¢(x),

then the multi-valued map F' has at least a fixed point z* € X, i.e. z* €
F(x*) (see for example [1]). Moreover, if F' satisfies the stronger condition:

(1.4) for each z € X and each y € F(x) we have d(z,y) + ¢(y) < o(z),

then the multi-valued map F has at least a strict fixed point z* € X, i.e.
{z*} = F(z*) (see [1]). On the other hand, if F' is a multi-valued operator
with nonempty closed values and ¢ : X — Ry U {+o0} is a proper lower
semi-continuous function such that the following condition holds:

(1.5) for each x € X, inf{d(z,y)+ ¢(y):y € F(z)} < ¢(x),

then F' has at least a fixed point (see [9]). In this framework, let us
remark that if we replace (1.5) by a weaker condition (see (1.6) below),
then the conjecture stated by J.-P. PENOT in [11] as follows: Let (X, d) be
a complete metric space, ¢ : X — Ry be a lower semicontinuous function
and F be a multivalued operator of X into the family of all nonempty
closed subsets of X satisfying the following condition:

(1.6)  nf{d(z,y) :y € F(2)} +inf{p(y) : y € F(a)} < p(2),

for each x € X. Then F has at least a fized point. is false (see [9] for a
counterexample). It is easy to see that (1.4) = (1.3) = (1.5) and (1.5) =
(1.3) provided that F' has nonempty compact values.

The purpose of this paper is to present several new results in connec-
tion with the above mentioned single-valued and multi-valued Caristi type
operators in complete metric spaces.

2. Main results

Let (X,d) be a metric space and P(X) the space of all subsets of
X. We denote by P(X) the space of all nonempty subsets of X and

by P,(X) the set of all nonempty subsets of X having the property “p”,
where “p” could be: ¢l = closed, b = bounded, cp = compact, cv =
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convex (for normed spaces X ), etc. We consider the following (generalized)
functionals:

D:P(X)x P(X) =Ry, D(A,B) = inf{d(a,b) |a € A, be B}
§:P(X)x P(X)— Ry U{+o0}, 6(A, B) =sup{d(a,b) |a € A, be B}
p:P(X)x P(X)— RyU{+o00}, p(A,B) =sup{D(a,B) | a € A}
H:P(X)xP(X)—RyU{+oo}, H(A,B) =max{p(4,B),p(B,A)}

It is well-known that if (X, d) is a complete metric space, then

(Py,e1(X), H) is also a complete metric space. We denote by Fix(F') the

fixed points set of F' and by S Fix(F') the strict fixed points set of F. Let
(X,d) be a metric space and F': X — P(X) be a multi-valued map.

Definition 2.1. A proper function ¢ : X — Ry U {400} is called:
(i) a weak entropy of F' if the condition (1.3) holds;
(ii) an entropy of F' if the condition (1.4) holds.
The map F' : X — P(X) is said to be weakly dissipative iff there

exists a weak entropy of F' and F is said to be dissipative iff there is an
entropy of it.

Definition 2.2. Let (X, d) be a metric space and F': X — P(X) be a
multi-valued operator. Then F is said to be:

(i) a-contraction iff there exists a € [0, 1] such that
H(F(z),F(y)) <ad(z,y), foreach z,y € X;

(ii) Reich type operator iff there exist a,b,c € R, with a4+ b+ ¢ < 1 such
that

H(F(z),F(y)) < ad(z,y) + bD(z, F(z)) + cD(y, F(y)),

for each =,y € X;

(iii) J-Reich type operator iff there exist a,b,c € Ry, with a+b+c¢ < 1
such that

6(F(x), F(y)) < ad(z,y) + bd(x, F(z)) + cd(y, F(y)),

for each z,y € X.
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Let us remark now, that if f is a (single-valued) a-contraction in
a complete metric space X, then f satisfies condition (1.1) with p(x) =
(1—a)~t d(z, f(z)), for each z € X, so that part of the Banach contraction
principle which says about the existence of a fixed point can be obtained by
Caristi’s theorem. For the multi-valued case we have the following result:

Theorem 2.1. Let (X,d) be a metric space and F : X — P, (X) be
an a-contraction. Then:
a) F satisfies the condition (1.5) with p(z) = (1 —a)™! D(z, F(x)), for
each z € X.
b) If, in addition F(z) € P.y(X), for each x € X, then F is weakly
dissipative with a weak entropy given by the formula
o(z) = (1 —a)"'D(z, F(x)), for each x € X.

PROOF. a) is Corrolary 1 in [9] and b) follows immediately from a)
and the conditions (1.3) <= (1.5). O

Remark 2.1. It is an open question if a multi-valued a-contraction is
dissipative.

First main result of this paper is

Theorem 2.2. Let (X,d) be a metric space and F' : X — P, (X) be
a Reich type multi-valued map. Then there exists f : X — X a selection
of F satisfying the Caristi type condition (1.1).

PROOF. Let € > 0 such that a < € < 1 —b — c. We denote by
U, ={y € F(z) | ed(z,y) < (1 —b—c¢)D(x,F(x))}, for each z € X.
Obviously, for each z € X, the set U, is nonempty (otherwise, if z € X
is not a fixed point of F' and we suppose that for each y € F(z) we
have ed(z,y) > (1 — b — ¢)D(x, F(x)), then we reach the contradiction
eD(z,F(z)) > (1 —b—c¢)D(x,F(z)); if z € X is a fixed point of F, then
clearly U, # ). We can choose a single-valued mapping f: X — X such
that f(z)€U,, i.e. f(z) € F(x) and ed(x, f(z)) < (1 —b— ¢)D(z, F(x)),
for each z € X. Then we have successively:

D(f(z), F(f(z))) < H(F(z), F(f(x)))
< ad(z, f(x)) + bD(z, F(x)) + cD(f (x), F(f(x)))

and hence

(1 =) D(f(2), F(f(2))) = bD(x, F(x)) < ad(z, f(x)).
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In view of this we obtain:

d(z, f(z ) (e —a)" ed(z, f(2)) — ad(z, f(z))]
(e—a) 1[(1—b—cD(a: F(z))
— (1= ¢)D(f(2), F(f(2))) + bD(z, F(z))]
= (1 —¢)/(e — a)[D(x, F(x)) — D(f(z), F(f(2)))].

If we define ¢ : X — R4 by p(z) = (1 —¢)/(e —a)D(z, F(x)), for each
x € X, then it is easy to see that

d(z, f(x)) < @(x) —o(f(x)), foreach z € X.

Moreover, for each x € X and each y € F(z) we have:

lo(z) —¢(y) = (1 = ¢)/(e — a)| D(z, F(x)) = D(y, F(y))|
<(1-¢)/(e —a)|d(z,y) + H(F(z), F(y))|
< (1-0¢)/(e = a)[d(z,y) + ad(z,y) + bD(z, F(z)) + c¢D(y, F(y))]
=1 -0c)(1+a)/(ce —a)d(z,y) + b(1 —c)/(e —a)D(z, F(z))
+c(1=¢)/(e —a)D(y, F(y)),

proving the fact that the selection f is a kind of single-valued Reich type
operator. O

Remark 2.2. If the multi-valued operator F': X — P, (X) is an upper
semicontinuous Reich type operator, then ¢ is a lower semicontinuous
entropy of f (because the map x — D(x, F(x)) is lower semicontinuous).

Remark 2.3. If in Theorem 2.2 we take b = ¢ = 0, then we obtain
Theorem 5 in [10]. Moreover, we get that a multivalued a-contraction
(0 < a < 1) is weakly dissipative.

Theorem 2.3. Let (X,d) be a metric space and F' : X — P(X) be a
0-Reich type operator. Then the multi-valued operator F' is dissipative.

PROOF. Let ¢ > O such that a < e <1 —-b—c. Let x € X and
y € F(z). It is not difficult to see that

ed(z,y) < (1 —=b—c)i(z, F(x)).
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Using the fact that y € F'(z) and the condition from hypothesis we have
8(y, F(y)) < 0(F(z), F(y)) < ad(z,y) + bé(x, F(x)) + cd(y, F(y)).
It follows that
—ad(z,y) < bé(x, F(z)) — (1= c)d(y, F(y))-

So, we have
d(z,y) = (¢ — a)'[ed(z, y) — ad(z,y)]

< (e—a) A -b—)d(z, F()) +bd(x, F(x)) — (1 - )d(y, F(y))]
(1=¢)/(e = a)[d(z, F(z)) — 6y, F(y))]-

We define p(z) : X — Ry U {400} as follows: ¢(z) = (1 — ¢)/
(e —a)d(z, F(z)), for each € X and we get

d(z,y) + ¢(y) < p(z), foreach xz € X and for all y € F(x),

i.e. the multi-valued operator F' is dissipative. U
An extension of Proposition 1 in [9] is as follows:

Theorem 2.4. Let (X,d) be a complete metric space, zo € X be
arbitrarily, ¢ : X — Ry U {400} a proper lower semi-continuous func-
tion and h : Ry — R4 a continuous non-decreasing function such that
I 1+h(s) = +o00. Let F: X — P,(X) be a multi-valued operator such

that:

: d(z, y) .
mf{ﬂ—h(d(xo,x)) +oy):ye F(m)} < p(x),

for each x € X. Then F' has at least a fixed point.
PROOF. We shall prove that for each z € X there exists f(z) € F(x)

such that: d(z, f(z))
s+ 20(f(2) < 26(a)

If D(z, F(x)) = 0 then x € F(z) and we put = f(x). If D(z, F(x)) > 0
then we get successively:
D)t
1+ h(d(zo,x)) 1+ h(d(zo, x))

) d(x,y) _
< 2mf{1+h(d(xo,x)) +oy):ye F(fﬁ)} < 2¢(),

+20(y) 1y € F(m)}
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for each z € X. It follows that:

: d(z,y) :
inf {Hh(d(:c[),x)) +2p(y) :y € F(:U)} < 2¢(x)

and hence there exists f(z) € F'(x) such that:

d(z, f(x))

T+ h(d(wo, 7)) + 2¢(f(2)) < 2¢(x).

If we define 1(t) = 2¢(t) we get that f satisfies the hypothesis of Lem-
ma 1.2 in [15] and hence there exists * € X such that z* = f(z*) € F(z*).
O

In what follows we shall study the data dependence of the fixed points
set of multi-valued operators which satisfy the Caristi type condition (1.3)
and the data dependence of the strict fixed points set of multi-valued
operators which satisfy the Caristi type condition (1.4), by giving some
results.

Theorem 2.5. Let (X,d) be a complete metric space and Fy, Fy :
X — P(X) be two multi-valued operators. We suppose that:

(i) there exist two lower semi-continuous functions ¢1, o : X — R, such
that for all x € X, there exists y € F;(x) so that

d(z,y) < ¢i(x) —i(y), i€{1,2}
(ii) there exists ¢; € |0, +oo[ such that
vi(z) < c¢id(z,y), for each x € X and for all y € F;(x), i € {1,2};
(iii) there exists n > 0 such that
H(F\(x), Fy(x)) <mn, forallze X.

Then
H(Fix(Fy),Fix(Fy)) < pmax{cy,ca}.

PROOF. From the condition (i) we have that Fix(F;) # 0, i € {1,2}.
Let ¢ € ]0,1] and zp € Fix(F1). It follows, from Ekeland variational
principle (see for example [8]), that there exists z* € X such that

ed(wg, 2") < @a(z0) — pa2(z™)
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and
w2 (z") — pa(z) < ed(x,x*), foreach z € X \ {z*}.

For x* € X, there exists y € F(z*) so that
d(z”,y) < @2(a”) — @2(y)-
If we suppose that y # x*, then we reach the contradiction
d(z",y) < a(x") — pa(y) <ed(y,z").

So y = z* and therefore z* € Fy(x*), i.e. * € Fix(Fy). Let ¢ € R, ¢ > 1.
Then, there exists 1 € Fy(z) such that

d(wo, 1) < qH (F1(0), Fa(0)).
Taking into account the conditions (ii) and (iii) we are able to write
ed(wo,z") < p2(wo) — p2(2”) = p2(w0) < cad(wo, 1)
< coqH (Fi(20), F2(20)) < c2qn.

Hence
d(zo,x") < negqle.

Analogously, for all yy € Fix(F), there exists y* € Fix(F}) such that
d(yo,y™) < meig/e.
Using the last two inequalities, we obtain
H(Fix(F), Fix(Fy)) < nge " max{ecy, c2}.

From this, letting ¢ \, 1 and € 1, the conclusion follows. 0

Remark 2.4. In the condition (ii) of the Theorem 2.5 it is sufficient to
ask that ¢;(x) = 0, for all z € Fix(F;) and the existence of ¢; € |0, 40|
such that

(pl(l') < Cid($v y)v

for each = € Fix(F}) and for all y € Fi(x), i,j € {1,2}, i # j.
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Theorem 2.6. Let (X,d) be a complete metric space and F : X —
P(X) be a multi-valued operator. We suppose that:

(i) there exists ¢ : X — R, a lower semicontinuous function such that
d(z,y) < p(z) —¢(y), foreachx € X and for all y € F(z);
(ii) there exists ¢ € ]0,+oo [, such that
o(zr) <cd(x,y), foreachz € X and for all y € F(z).

Then
Fix(F) = SFix(F) # 0.

PROOF. From the condition (i) we have that SFix(F) # (0. Let
xz* € Fix(F) and y € F(z*). It follows that

d(z*,y) < p(z™) —o(y) = —p(y) < 0.

Hence d(z*,y) = 0 and therefore y = z*. So F(z*) = {z*}, ie. a* €
S Fix(F) and thus we are able to write that Fix(F') C S Fix(F). O

Remark 2.5. In the condition (ii) of the Theorem 2.6 it is sufficient to
ask that ¢(x) =0, for all z € Fix(F).

Ezample 2.1. Let F' : [0,1] — P([0,1]), F(x) = [z/3,z/2], for each
xz €1]0,1] and ¢ : X — Ry, p(z) = kz, for each = € [0,1], where k € R,
kE > 1. It is not difficult to see that |z —y| < p(z) —¢(y), for each x € [0, 1]
and for all y € F(z) and there exists ¢ = 2k > 0 such that p(z) < c|z — y|
for each x € [0,1] and for all y € F(x). From Theorem 2.6 we have
Fix(F) = SFix(F) # 0.

Theorem 2.7. Let (X,d) be a complete metric space and Fy, Fy :
X — P(X) be two multi-valued operators. We suppose that:

(i) there exist two lower semicontinuous functions ¢1,p2 : X — Ry such
that

d(z,y) < @i(z) — @i(y),

for each x € X and for all y € F;(x), i € {1,2};
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(ii) there exists ¢; € |0, 4o00[ such that
vi(z) < ¢id(z,y), for each x € X and for all y € F;(x), i € {1,2};
(iii) there exists n > 0 such that
H(Fy(z), Fy(x)) <mn, forallze X.
Then

H(Fix(F),Fix(F3)) = H(S Fix(Fy), SFix(F,)) < nmax{cy, ca}.

PrOOF. From the Theorem 2.6 we have Fix(F;) = SFix(F;) # 0,
i € {1,2} and applying Theorem 2.5 the conclusion follows. 0

We mention that the Remark 2.4 can be made for this theorem, too.

Ezample 2.2. Let Fy, Fy : [0,1] — P([0,1]), Fi(z) = [x/3,2/2], for
each x € [0,1] and Fy(z) = [(x + 1)/2, (x + 2)/3], for each x € [0,1]. Let
01,92 :[0,1] = R4, ¢1(z) = z, for each z € [0,1] and pa(x) = 1 — z, for
each x € [0,1]. By an easy calculation we get that |z —y| < p;(x) — ¢i(y),
for each z € [0, 1] and for all y € F;(z), i € {1,2} and there exist ¢; = 2 and
¢o = 2 such that ¢;(z) < ¢;|x —y|, for each x € [0,1] and for all y € F;(x),
i € {1,2}. Also, there exists n = 2/3 > 0 so that H(Fi(x), Fa(z)) < n,
for all z € [0,1]. Then, from Theorem 2.7 we have H (Fix(F}), Fix(Fy)) =
H(STFix(F)), SFix(Fy)) < 4/3.
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