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On the existence of finite Galois stable groups
over integers

in unramified extensions of number fields

By D. A. MALININ (Minsk)

Abstract. Let E/F be a normal unramified number field extension with Galois
group Γ of degree d, and let OE be the ring of integers in E. It is proved that for given
integers n, t such that n > hφE(t)d, where h is the exponent of the class group of F
and φE(t) is the generalized Euler function, there is a finite abelian Γ-stable subgroup
G ⊂ GLn(OE) of exponent t such that the matrix entries of all g ∈ G generate E over
F . This result has certain arithmetic applications for totally real extensions, and a
construction of totally real extensions having a prescribed Galois group is given.

1. Introduction

In this paper we consider some unramified Galois extension E/F of
finite degree d with Galois group Γ for number fields E and F , and a finite
abelian subgroup G ⊂ GLn(E) of given exponent t, where we assume that
G is stable under the natural coefficientwise Γ-action.

Throughout this paper OK denotes the maximal order of a number
field K and F (G) denotes a field that is obtained via adjoining to F all
matrix coefficients of all matrices g ∈ G.

The main objective of this paper is to prove the existence of abelian
Γ-stable subgroups G ⊂ GLn(R) for a given n and a given exponent t of G

(R denotes certain Dedekind subrings of E, but the most interesting case
is R = OE) such that F (G) = E provided some reasonable restrictions
for the fixed normal extension E/F and integers n, t, d hold true. A
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lower bound for possible degrees n of representations of G is established:
n > C = C(E,F, d, t, h) such that φE(t)d 6 C 6 φE(t)dh, where h is the
exponent of the class group of F , φE(t) = [E(ζt) : E] is the generalized
Euler function for a field E (ζt denotes a primitive t-root of 1). It is also
proved that in some cases the upper bound is improvable (Theorem 1,
parts 1), 3), 4)) though the lower bound C = φE(t)d 6 n can not be
improved (Proposition 2).

These results have some applications to finite arithmetic groups, their
cohomologies and positive definite quadratic lattices over the rings of inte-
gers in totally real number fields (see [B], [M1], [M4]). Some results related
to Galois stability for orders in finite dimensional algebras can be found in
[RW]. An explicit construction of totally real unramified field extensions
is useful in this situation. Some interesting constructions of unramified
and totally real (and also imaginary) number fields are obtained in pa-
pers [MB], [Ma], [K], [Y], see also [P]; certain computer calculations using
KANT and PARI can be helpful for this purpose (see e.g. [Ma], [Y]). An-
other construction of totally real unramified extensions having a prescribed
Galois group is given in Theorem 3.

The paper is organized as follows. The statements of results are given
in Section 2; Sections 3, 4, 5 are devoted to their proofs.

Notation

Most of the symbols and notations that we use in this paper are
traditional. Q and Qp denote the field of rationals and p-adic rationals.
Z and N denote the ring of rational integers and natural numbers, R and
C denote the fields of real and complex numbers. GLn(R) denotes the
general linear group over R. We write [E : F ] for the degree of the field
extension E/F . The maximal order of a number field K is denoted by
OK . Throughout this paper we write Γ for Galois groups, σ, γ ∈ Γ for the
elements of Γ. We write ζt for a primitive t-root of 1; φK(t) = [K(ζt) : K]
denotes the generalized Euler function for a field K; Im stands for a unit
m × m-matrix. detM denotes the determinant of a matrix M , and tM
denotes a matrix transposed to M . If G is a finite linear group, F (G)
denotes a field obtained by adjoining to F all matrix coefficients of all
matrices g ∈ G. For Γ acting on G and any σ ∈ Γ and g ∈ G we write
gσ for the image of g under σ-action. KΓ denotes a subfield of Γ-stable
elements of a field K, dimK A denotes the dimension of K-algebra A over
a field K. The full matrix algebra over R is denoted by Mn(R).
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2. The results

Let E denote a finite extension of an algebraic number field F which
is different from F . Let O′E denote the intersection of valuation rings of
all ramified prime ideals in the ring OE , and let O′F = F ∩O′E . Since the
rings O′E and O′F are semilocal, it is known that they are principal ideal
domains.

Theorem 1. Let d > 1, t > 1 be given rational integers, and let E/F

be a normal unramified extension of algebraic number fields of degree d

with Galois group Γ.

1) If n > φE(t)d, there is a finite abelian Γ-stable subgroup G⊂GLn(O′E)
of exponent t such that E = F (G).

2) If n > φE(t)dh, and h is the exponent of the class group of F , there is

a finite abelian Γ-stable subgroup G ⊂ GLn(OE) of exponent t such

that E = F (G).

3) If n > φE(t)d and h is relatively prime to n, then G given in 1) is

conjugate in GLn(F ) to a subgroup of GLn(OE).

4) If d is odd, then G given in 1) is conjugate in GLn(F ) to a subgroup

of GLn(OE).

In all cases above G can be constructed as a group generated by

matrices gγ , γ ∈ Γ for some g ∈ GLn(E).

The results related to Galois stability of finite groups in situations
similar to ours arise in the theory of definite quadratic lattices, arithmetic
groups and Galois cohomologies. More precisely, let E be a totally real
number field, H an algebraic subgroup of GLn(C) defined over a subfield
F of E. If H is definite in the following sense: the real Lie group H(R),
the subgroup of R-points, is compact, then the subgroup H(OE) of OE-
points of H is a finite Γ-stable subgroup, and the latter condition has some
interesting consequences ([B], [BK], [M1], see also [Ro]). These results are
also closely connected with some aspects of integral representations of
finite groups, see [M1], [M2], [M3]. In our context we study whether a
given field E normal over F can be realized as a field E = F (G) in both
cases G ⊂ GLn(O′E) and G ⊂ GLn(OE), and if this is so what are the
possible orders n of matrix realizations and the structure of G.

Theorem 1 gives a positive answer to the question: whether it is
possible to realize any normal unramified number field extension E/F as
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E = F (G) for some G ⊂ GLn(OE) provided n > φE(t)dh. We prove
that any finite normal field extension E/F can be obtained as F (G)/F
if n > φE(t)d for some G ⊂ GLn(E). In fact, we construct some Galois
algebras in the sense of [ILF], and we establish the lower bounds for their
possible dimensions n. In Proposition 2 it is proved that the restrictions
for the given integers n, t, and d in Theorem 1 can not be improved.

Proposition 2. Let E/F be a given normal extension of algebraic
number fields with Galois group Γ, [E : F ] = d, and let G ⊂ GLn(E) be
a finite abelian Γ-stable subgroup of exponent t such that E = F (G) and
n is the minimum possible. Then n = dφE(t) and G is irreducible under
conjugation in GLn(F ). Moreover, if G has the minimal possible order,
then G is a group of type (t, t, . . . , t) and order tm for some positive integer
m 6 d.

The conditions of the following theorem were considered by L. Mor-
et-Bailly [MB] in more general situation. In general, the existence of
global fields with a given Galois group and prescribed local properties for
ramification is a rather subtle question. L. Moret-Bailly proved the ex-
istence of relative extensions of number fields that have prescribed local
structure of ramification over a given set of prime divisors and unrami-
fied elsewhere. However, our construction in Theorem 3 gives totally real
unramified extensions in a more explicit and simple way.

Theorem 3. For a given finite group Γ there are infinitely many nor-
mal unramified extensions of totally real fields E/F having the Galois
group Γ.

Theorem 3 combined with Theorem 1 can be used for construction-
ing finite arithmetic subgroups of algebraic groups of definite type that
have been mentioned above. For example, let G(OE) be a subgroup of
OE-points of the orthogonal group On(f) of a totally positive definite
quadratic form f (i.e. all conjugates fσ are positive definite) over a totally
real number field F ⊂ E. Then G(OE) is finite (see e.g. [R], Theorem A)
and stable under the action of Γ, the Galois group of E/F . Theorem 1 gives
a construction of a finite Γ-stable G ⊂ GLn(OE) such that G 6⊂ GLn(OF ).
By Theorem 3 there are infinitely many unramified extensions E/F such
that for a totally positive definite quadratic form f determined by a sym-
metric matrix

∑
g∈G

tgg we have G ⊂ G(OE) 6⊂ GLn(F ), which would be
impossible for a wide class of ramified extensions E/F , mainly for F = Q
(see [B], [BK], [M1] and [M4]). Moreover, the condition of Theorem 1 for
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G to be abelian is convenient to represent G as a finite commutative etale
group scheme using the equivalence between finite etale group schemes and
finite Galois modules (see e.g. [W], Sections 6.3 and 6.4).

3. Proof of Theorem 1

Proof of Theorem 1. For any number field extension L/L1 both of
the rings O′L and O′L1

are semilocal, so they are principal ideal rings, and
O′L has a basis over O′L1

. We start with the proof of 1). For a given
basis w1, w2, . . . , wn of O′E over O′F we intend to construct a matrix g =
[gij ]i,j =

∑d
i=1 Biwi and pairwise commuting matrices Bi in such a way

that the normal closure of the field F (g11, g12, . . . , gnn) over F coincides
with E, and so the group G generated by gσ, σ ∈ Γ is an abelian Γ-stable
group of exponent t. Firstly, we determine the eigenvalues that matrices
Bi should have if g has the prescribed set of eigenvalues. Collecting the
given eigenvalues of pairwise commuting semisimple matrices and using
the regular representation, we construct a Γ-stable abelian group G for
integral parameters given in proposition.

The proof of 1) is used in the proof of the rest of the theorem.
In fact, certain results from the theory of representations of orders in
semisimple algebras (see [CR], Section 75) are applied to the order D =
OF [B1, B2, . . . , Bd] ⊂ A inside the F -algebra A = F [B1, B2, . . . , Bd]. The
claim of 2), 3) and 4) is that the construction of the representation of G

given in 1) can be realalized over OE without using an integral basis of
O′E over O′F (in general, the ring OE need not have a basis over OF .)
This can be reached by using the Steinitz–Chevalley theorem for modules
over Dedekind rings which is applied to the order D or a direct sum of its
copies, and also one Schur’s result for 3) and a result proved by Fröhlich

[F] for 4).

Proof of 1). We consider two different cases in our proof.

Case 1. We suppose that F (ζt) and E are linearly disjoint over F and
[E : F ] = d. In this case φE(t) = φF (t). Let w1 = 1, w2, . . . , wd be a basis
of O′E over O′F , and let Γ be the Galois group of E(ζt) over F (ζt). Let
g be a semisimple d × d-matrix having eigenvalues ζt, 1, . . . , 1. Using the
expansion g = B1 + w2B2 + · · ·+ wdBd we can construct the matrices Bi,
i = 1, 2, . . . , d, and we can prove that the group G generated by gγ , γ ∈ Γ
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is an abelian Γ-stable group of exponent t. Let us consider a matrix W =
[wσj

i ]i,j for {σ1 = 1, σ2, . . . , σd} = Γ. Since E/F is unramified, det W is a
unit of O′E . Denote by Wi the matrix W whose i-th column is replaced by
d chosen eigenvalues ζt, 1, . . . , 1 of g. We can calculate

λi =
detWi

det W

and construct matrices Bi as the regular representation Bi = R(λi) of
λi ∈ O′E [ζt] in the basis w1, w2, . . . , wd of the ring extension O′E [ζt] ⊃
O′F [ζt] which is obtained via adjoining ζt to the ground ring. Let αij be
the coefficients of the inverse matrix W−1 = [αij ]i,j . Then α

σj

i1 = αij and
λi = (ζt−1)αi1 for i 6= 1, and λ1 = 1+(ζt−1)α11. So λ

σj

i = (ζt−1)ασj

i1 =
(ζt − 1)αij for i 6= 1, and λ

σj

1 = (ζt − 1)ασj

11 + 1 = (ζt − 1)α1j + 1. Since
any linear relation

k1(λ1 − 1) +
d∑

i=2

kiλi = 0, ki ∈ F (ζt), i = 1, 2, . . . , d

implies the linear relation

k1(λ
σj

1 − 1) +
d∑

i=2

kiλ
σj

i = 0, ki ∈ F (ζt), i = 1, 2, . . . , d

for all σj ∈ Γ, this would also imply det W−1 = 0, which is impossible.
Therefore, λ1 − 1, λ2, . . . , λd generate the field E(ζt) overF (ζt), and so
B1 − Id, B2, . . . , Bd generate the F (ζt)-span F (ζt)[B1, . . . , Bd] over F (ζt).
Note that Bi can be expressed as a linear combination of gσi , i = 1, 2, . . . , d

with coefficients in E : Bi =
∑d

j=1 αijg
σj . This can be obtained from the

system of matrix equations

gσj =
d∑

i=1

w
σj

i Bi, j = 1, 2, . . . , d

if we consider Bi as indeterminates. Since G has exponent t, F (ζt) is a
splitting field for G, the group generated by all gσ, σ ∈ Γ. Therefore, the
dimension of E(ζt)-span E(ζt)G = E(ζt) ⊗F (ζt) F (ζt)G over E(ζt) is d,
and so the F (ζt)-dimension of the F (ζt)-span F (ζt)G is also d.
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Let us denote by E′ the image of E(ζt) under the regular representa-
tion of E(ζt) over F (ζt) in the basis w1, . . . , wd. Then A = E(ζt)G =
E(ζt) ⊗F (ζt) F (ζt)G, the E(ζt)-span of G, is the Galois E′-algebra in the
sense of [ILF], that is, it is an associative and commutative separable E′-
algebra having a normal basis. We can choose idempotents

εi =
1

ζt − 1
(gσj − Id), j = 1, 2, . . . , d

as a normal basis of A over E′ so that εj = ε
σj

1 .
We have F (ζt)G = F (ζt)[<gσ1 , . . . , gσd >] = F (ζt)[(g−Id)σ1 , . . . , (g−

Id)σd ], and dimF (ζt) F (ζt)G = d. As the length of the orbit of M =
[mij ] = (g− Id) under Γ-action is d, we can use the coefficients of matrices
Mσi , i = 1, 2, . . . , d to construct an element θ =

∑
i,j kijmij , kij ∈ F (ζt),

which generates a normal basis of E(ζt)/F (ζt). Therefore, for any given
α ∈ E(ζt) we have α =

∑
i kiθ

σi for some ki ∈ F (ζt).
Therefore, our choice of eigenvalues implies that F (ζt)(G) = E(ζt).
Now, we can apply the regular representation RF of O′F [ζt] over O′F

to matrices M = [mij ]i,j ,mij ∈ O′F [ζt] in the following way: RF (M) =
[RF (mij)]i,j . So, using RF for all components of matrices Bi ∈ Mn(F (ζt))
we can obtain an abelian subgroup G ⊂ GLn1(E), n1 = [F (ζt) : F ]d of ex-
ponent t which is Γ-stable if we identify the isomorphic Galois groups of the
extensions E/F and E(ζt)/F (ζt). We have again dimF FG = dimE EG,
E is again a Galois algebra, and F (G) = E. Now, using the natural em-
bedding of G to GLn(E), n > n1, we complete the proof of Theorem 1 in
the Case 1).

Case 2. By virtue of Case 1 we can consider the case when the in-
tersection F0 = E ∩ F (ζt) 6= F . We can use the regular representation R

of O′E over O′F . Let Γ0 = {σ′1, σ′2, . . . , σ′d} be the set of some extensions
of elements Γ = {σ1, σ2, . . . , σd} to E(ζt)/F , and let w1 = 1, w2, . . . wd

be a basis of O′E over O′F . So we can use our previous notation and ap-
ply a similar argument as in the Case 1 of the proof for the construction
of g =

∑d
i=1 Biwi and matrices Bi as the regular representations R0 of

eigenvalues

λi =
det Wi

detW
=

φE(t)∑

j=1

λijζ
j , i = 1, 2, . . . , d,
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in the following way: we consider

Bi = R0(λi) =
φE(t)∑

j=1

R(λij)ζj ,

where R is the regular representation of O′E over O′F . We also have

λ
σ′j
1 = α1j + 1, λ

σ′j
i = αij for j = 2, . . . , d. Now, if we have any linear

relation between the rows of the matrix [αij(ζ
σ′j
t − 1)]i,j , this would imply

a linear relation between its columns, and so the columns of W−1 = [αij ]
are linearly dependent, and det W−1 = 0 which is a contradiction. So,
again we obtain that λ1− 1, λ2, . . . , λd are linearly independent over F , so
dimF FG′ = dimF F [B1 − Id, B2, . . . , Bd] = dimE EG′ = d for G′ gen-
erated by gσ′i , i = 1, 2, . . . , d. As earlier we can consider the regular
representation RE(Bi) for the coefficients of matrices Bi in the ring ex-
tension O′E [ζt] ⊃ O′E . So we obtain g0 =

∑d
i=1 RE(Bi)wi, and we can

take a group G generated by all gσi
0 , i = 1, 2, . . . , d. Since [E(ζt) : F ] =

[E(ζt) : E][E : F ] = φE(t)d, the order n = φE(t)d coincides with the inte-
ger required in the formulation of Theorem 1. In this way we can construct
a Γ-stable group G that satisfies the conditions of 1) in Theorem 1.

Proof of 2). Let us consider an OF -order D=OF [B1, B2, . . . , Bd]⊂A

in a semisimple F -algebra A = F [B1, B2, . . . , Bd] where Bi are n′ × n′-
matrices taken from 1). Using our construction of Bi we can assume
n′ = φE(t)d. Let M be the corresponding representation module in n′-
dimensional F -vector space V . We claim that the matrices Bi from 1) can
be realalized over OF via taking a direct sum of h copies of OF -module M .
We can use the Steinitz–Chevalley theorem (see e.g. [CR]) for M to obtain
a decomposition: M = v1OF + v2OF + · · ·+ vn′−1OF + vn′aOF for some
elements v1, v2, . . . , vn′ ∈ V and some fractional ideal a of OF . Taking
a direct sum M1 = ⊕M of h copies of M we conclude that the Steinitz
class of M1 is ah, so it is trivial, and M1 becomes a free OF -module:
M1 = c1OF + c2OF + · · · + chn′OF for some elements c1, c2, . . . , chn′ ∈
FM1. Therefore, the matrices B′

1 = ⊕h
1B1, B

′
2 = ⊕h

1B2, . . . , B
′
d = ⊕h

1Bd

(h copies of Bi) are GLn(F )-conjugate to matrices contained in GLhn′(OF )
(we can consider n = hdφE(t) for a moment, and later extend the result
to any n > hdφE(t) via taking direct sums). We can conclude that all
matrices gσ, σ ∈ Γ are also conjugate in GLn(F ) to matrices contained in
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GLn(OE). Since G is generated by these matrices, we obtain the claim
of 3) for matrices of order hdφE(t). For extending this result to arbitrary
n > hdφE(t) we can fix positive integers k and r with n = khdφE(t)+r, r <

hdφE(t) and take a direct sum of k copies of the constructed realization
G and r copies of unit representations. This completes the proof of 2).

Proof of 3). This follows from the assertion (75.5) in [CR] applied to
the order D=OF [B1, B2, . . . ,Bd]⊂A in the F -algebra A=F [B1, B2, . . . ,Bd].
Since all matrices Bi, i = 1, 2, . . . , d are conjugate in GLn(F ) to matrices
contained in GLn(OF ) (here we can consider n = dφE(t)) we conclude
that all matrices gσ, σ ∈ Γ are also conjugate in GLn(F ) to matrices from
GLn(OE). Since G is generated by these matrices, we obtain the claim
of 3).

Proof of 4). By [F], Theorem 4.3, in any normal unramified number
fields extension of odd degree the ring of integers has a free basis. In our
case OE = w1OF +w2OF +· · ·+wdOF for some w1, w2, . . . , wd. Therefore,
the matrices Bi, i = 1, 2, . . . , d are conjugate in GLn(F ) to matrices from
GLn(OF ) (and our argument of 1) can be directly applied to the rings
OE and OF instead of O′E and O′F ). This implies that G is conjugate in
GLn(F ) to a subgroup of GLn(OE) as it was claimed.

This completes the proof of Theorem 1. ¤

4. Proof of Proposition 2

Proof of Proposition 2. We can use the proof of Theorem 1.
Let G ⊂ GLn(E) be a group given in the formulation of Proposi-

tion 2, and let n be the minimum possible. Then we have the following
decomposition of the E-span A = EG:

A = ε1A + ε2A + · · ·+ εkA

for some primitive idempotents ε1, . . . , εk of A.εi are conjugate under the
action of the Galois group Γ = {σ1, . . . , σd}. For if the sum of ε

σj

i , j =
1, 2, . . . , d is not In, then In = e1 + e2 for e1 = εσ1

1 + · · · + εσd
1 and e2 =

In − e1, and e1, e2 are fixed by Γ, so e1, e2 are conjugate in GLn(F ) to
a diagonal form. Since either of 2 components eiG has rank smaller than
n, there is a matrix group satisfying the conditions of Proposition 2 of
smaller than n degree.
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Therefore, εi = εσi
1 , k = d and the idempotents ε1, . . . , εd form a

normal basis of A. But the rank of a matrix εi is not smaller than φE(t).
Indeed, εiG contains an element εig, for some g ∈ G of order t such that
(εig)t = εi, but (εig)k 6= εi for k < t. We can find g ∈ G in the following
way. Since In = ε1 + · · ·+ εk for any h ∈ G of order t there is εj such that
(εjh)t = εj , but (εjh)k 6= εj for k < t, and the same property holds for
εjh with any σ ∈ Γ. Then using the property of normal basis εk = εσk

1 we
can take g = hσ−1

j σi .
So, the irreducible component εiG determines a faithful irreducible

representation of a cyclic group generated by g. But if T : C → GLr(E)
is a faithful irreducible representation of a cyclic group C generated by an
element g of order t, its degree r is equal to φE(t). It follows that the rank
of matrices εi is φE(t). So the dimension of A over E is φE(t)d.

If G is generated by gγ , γ ∈ Γ and its order is minimal, Γ-stability
implies that g has d conjugates under Γ-action, and so G is an abelian
group of type (t, . . . , t) and order tm for some positive integer m 6 d. This
completes the proof of Proposition 2. ¤

5. Proof of Theorem 3

Proof of Theorem 3. Firstly, a totally real normal extension L/Q of
degree n = l! will be constructed. For this purpose we can fix primes q1, q2,
q3 such that q1 and a are relatively prime, and choose a polynomial H(x) =
(x − a1q1)(x − a2q2) . . . (x − alql) + aq1 whose group has a transposition
and one or 2 factors of odd degree modulo q2, a (l−1)-cycle modulo q3 for
integers ai large enough compared to |q1a| and small compared to |ai−aj |,
i 6= j such that all roots of H(x) are real. The splitting field L of H(x) is
totally real, and its Galois group is the symmetric group Sl.

Fix the set R of all primes ramified in L/Q.
Let us consider the following conditions:

1) F (x) = (x− b1p1)(x− b2p1) . . . (x− bnp1) + p1b

2) b1, b2, . . . , bn ∈ Z are different, and p1 does not divide b. 2bn <

(
∏n

j=1(j 6=i) |bi − bj |)pn−2
1 for i = 1, . . . , n.

3) F (x) has a transposition and 1 or 2 factors of odd degree modulo p2.

4) F (x) has an (n− 1)-cycle modulo p3.
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5) p1, p2, p3 are primes not contained in R ∪ q, and q /∈ R is a prime
congruent to 1 modulo n.

The conditions 1) and 2) guarantee irreducibility of F (x) since
F (x) is an Eisensteinian polynomial, and also all roots of F (x) are
real. Indeed, the coefficient of xn−1 in xnF (1/x + bip1) is equal to∏n

j=1(j 6=i)(bip1− bjp1). Hence for the roots x1, x2, . . . , xn of F (x) the
following equality holds:

∣∣∣∣∣
1

x1 − bip1
+

1
x2 − bip1

+ . . .
1

xn − bip1

∣∣∣∣∣ =

∣∣∣∣∣

n∏
j=1(j 6=i)

|bip1 − bjp1|

bp1

∣∣∣∣∣,

and so

|xki − bip1| 6 nbp1
n∏

j=1(j 6=i)

|bip1 − bjp1|

provided |xki − bip1| 6 |xj − bip1| for all j 6= ki. Now, if 2nbp1 <∏n
j=1(j 6=i) |bip1 − bjp1|, then |xki − bjp1| 6 1

2 , and all roots xki are
contained in the circles of radius 1

2 with different centres bjp1, so there
are no complex conjugates among xki .

The conditions 3) and 4) imply coincidence of the Galois group
of F (x) and the symmetric group Sn.

It follows from the Frobenius density theorem ([Fr], see also [Ch],
Theorem 42) that a given polynomial has the same factorization corre-
sponding to the permutation of the given cycle type modulo infinitely
many primes. Hence there is an integer M not divisible by p1, p2, p3,
q and the primes from R such that the congruence

6) f(x) ≡ F (x) (mod M)
implies that the Galois group of f(x) is Sn.

Let K be the splitting field of f(x). Then the q-cyclotomic field
Q(ζq) has a subfield of degree n over Q which can be determined as a
splitting field of an integral polynomial k(x). Let h(x) be a polynomial
of degree n whose splitting field is L. By Krasner’s lemma there is
t1 ∈ N such that the congruences

7) f(x) ≡ h(x) (mod pt1) for all p ∈ R

imply coincidence of the localizations: LQp = KQp for p ∈ R. If the
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maximal abelian subfield Kab of K is not Q then Kab = Q(
√

r) for
some r ∈ Z, and for a large enough integer t2 the congruence

8) f(x) ≡ k(x) (mod qt2)
implies K ∩L = Q by considering the ramification at q. But the com-
posite KL is unramified over K because LQp = KQp for all primes p

ramified in L.
We can find a polynomial f(x) satisfying the conditions 1)–8) so

that its roots are real, according to 2). Indeed, using the weak approx-
imation theorem (or the Chinese reminder theorem), we can satisfy
1) and 3)–8), and in the factorization f(x) = (x− c1)(x− c2) . . . (x−
cn) + c0 the numbers ci can be increased via adding some multiples
of the moduli of congruences 3)–8) in order to make ci, i = 1, . . . , n

big enough compared to c0 and small compared to |ci − cj |, i 6= j

(i, j 6= 0). Therefore, the fields E = LK and K are totally real and
the extension E/K is unramified, normal, and its Galois group is Sl.
By Galois theory, for a prescribed finite group Γ ⊂ Sl (we can take
l = |Γ|) there is a normal subextension E/F , where F = EΓ is a
subfield of Γ-fixed elements of E, which is also unramified and has Γ
as the Galois group. This remark completes the proof of Theorem 3.

¤
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