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On functions additive with respect to algorithms

By TIBOR FARKAS (Debrecen)

Abstract. In this paper we prove that for an arbitrary interval filling sequence
there exist two algorithms such that the additivity of a function with respect to them
implies its linearity. In contrast to some known results cited in Section 2 of this paper,
we will prove the linearity of the function without requiring any special properties for
the interval filling sequence and any regularity properties for the function.

1. Introduction

Let Λ be the set of the strictly decreasing sequences λ = (λn) of
positive real numbers for which L(λ) :=

∑∞
n=1 λn < +∞. A sequence

(λn) ∈ Λ is called an interval filling sequence if, for any x ∈ [0, L(λ)], there
exists a sequence (δn) such that δn ∈ {0, 1} for all n ∈ N (the set of all
positive integers) and x =

∑∞
n=1 δnλn. This concept has been introduced

in [1]. The set of the interval filling sequences will be denoted by IF .
For a number x ∈ ]0, L(λ)[ there can be more than one sequences

δ = (δn) ∈ {0, 1}N such that x =
∑∞

n=1 δnλn. For example, if λn = q−n

where 1 < q < 1+
√

5
2 then for every x ∈ ]0, L(λ)[ the cardinality of the set

of such representations of x is continuum [9].
An algorithm (with respect to λ = (λn) ∈ IF ) is defined in [3] as a

sequence of functions αn : [0, L(λ)] → {0, 1} (n ∈ N) for which

x =
∞∑

n=1

αn(x)λn (x ∈ [0, L(λ)]).
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We denote the set of algorithms (with respect to λ = (λn) ∈ IF ) by A(λ).
Obviously, A(λ) 6= ∅ for all λ ∈ IF , namely it was proved in [1] and [2]
that, if λ = (λn) ∈ IF , x ∈ [0, L(λ)] and

εn(x) =





0 if x <
n−1∑
i=1

εi(x)λi + λn,

1 if x ≥
n−1∑
i=1

εi(x)λi + λn,

or

ε∗n(x) =





0 if x ≤
n−1∑
i=1

ε∗i (x)λi + λn,

1 if x >
n−1∑
i=1

ε∗i (x)λi + λn,

or

ε′n(x) =





1 if
n−1∑
i=1

ε′i(x)λi +
∞∑

i=n+1

λi < x,

0 if
n−1∑
i=1

ε′i(x)λi +
∞∑

i=n+1

λi ≥ x,

then ε = (εn), ε∗ = (ε∗n), ε′ = (ε′n) ∈ A(λ). The algorithms ε, ε∗ and
ε′ are called regular (or greedy), quasiregular and antiregular (or lazy)
algorithms, respectively.

If λ = (λn) ∈ IF , A0 ⊂ A(λ), A0 6= ∅, F : [0, L(λ)] → R and

F (x) =
∞∑

n=1

αn(x)F (λn) (x ∈ [0, L(λ)])

for all (αn) ∈ A0 then F will be called an A0-additive function (with
respect to λ) [3]. If

F

( ∞∑
n=1

δnλn

)
=

∞∑
n=1

δnF (λn)
(
δ = (δn) ∈ {0, 1}N)

i.e. F is additive with respect to any algorithm then f is called completely
additive [1].
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2. Known results

Theorem 2.1 ([4]). If λ = (λn) ∈ IF and F : [0, L(λ)] → R is a
completely additive function (with respect to λ) then there exists c ∈ R,
such that F (x) = c · x for any x ∈ [0, L(λ)] (i.e. briefly: F is linear).

Theorem 2.2 ([2]). If λ = (λn) ∈ IF and F : [0, L(λ)] → R is {ε}-
additive then F is right continuous.

Remark 2.3 ([2]). There exist λ = (λn) ∈ IF and F : [0, L(λ)] →
R such that F is ε-additive but F is non-continuous at the points of a
countably infinite dense set. (At the so-called finite points, i.e. the points
x for which {n ∈ N | εn(x) = 1} is a finite set.)

Theorem 2.4 ([2]). If λ = (λn) ∈ IF and F : [0, L(λ)] → R is {ε, ε∗}-
additive then F is continuous.

Remark 2.5 ([5]). There exist λ = (λn) ∈ IF and F : [0, L(λ)] → R
such that F is {ε, ε∗}-additive (i.e. continuous) but is non-differentiable at
any point x ∈ [0, L(λ)].

Theorem 2.6 ([6]). Let F : [0, L(λ)] → R be a so-called smooth
interval filling sequence and let F be {ε, ε∗}-additive (i.e. continuous). If
F is differentiable on a set of positive measure or F (x) > 0 for x > 0 then
F is linear.

Theorem 2.7 ([7]). If λ = (λn) ∈ IF and F : [0, L(λ)] → R is {ε, ε∗}-
additive (i.e. continuous) and F is differentiable at a finite point then F is
linear.

Theorem 2.8 ([8]). Let λ = (λn) ∈ IF and λn ≥ λn+1 + λn+2 for
n ∈ N. If F : [0, L(λ)] → R is an {ε, ε∗, ε′}-additive function then F is
linear.

3. Sufficiency of two algorithms

Definition 3.1. Let λ = (λn) be an interval filling sequence. For
x ∈ [0, L(λ)] and n ∈ N let

εM
n (x) =

{
ε∗n(x) if x = λm for an m ∈ N,

εn(x) otherwise.

It is obvious that εM = (εM
n ) is an algorithm, it will be called the mixed

regular algorithm.
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Theorem 3.2. If λ = (λn) ∈ IF and F : [0, L(λ)] → R is additive
with respect to the mixed regular algorithm then F is continuous.

Proof. We will prove that F is {ε, ε∗}-additive and the continuity
will follow from Theorem 2.4. The {ε}-additivity of F is obvious. If
{n ∈ N | εn(x) = 1} is an infinite set then (ε∗n(x)) coincides with (εn(x)).
The case when x = λm for an m ∈ N is also trivial. Thus we have to deal
only with the quasiregular representations of those numbers x for which
{n ∈ N | εn(x) = 1} has finitely many, but at least two elements. Let us
denote the maximum of this set by k. Then

F (x) = F

( ∞∑
n=1

εM
n (x)λn

)
=

∞∑
n=1

εM
n (x)F (λn) =

∞∑
n=1

εn(x)F (λn)

=
k∑

n=1

εn(x)F (λn) =
k−1∑
n=1

εn(x)F (λn) + F (λk) =
k−1∑
n=1

εn(x)F (λn)

+ F

( ∞∑
n=1

εM
n (λk)λn

)
=

k−1∑
n=1

εn(x)F (λn) +
∞∑

n=1

εM
n (λk)F (λn)

=
k−1∑
n=1

ε∗n(x)F (λn) +
∞∑

n=k+1

ε∗n(λk)F (λn) =
∞∑

n=1

ε∗n(x)F (λn),

so F is {ε∗}-additive and this completes our proof. ¤
To prove our main result we will need the following two lemmas.

Lemma 3.3. Let λ = (λn) ∈ IF and let F : [0, L(λ)] → R be a
continuous function. If

F

( ∞∑
n=1

αnλn

)
=

∞∑
n=1

αnF (λn)

whenever (αn) ∈ {0, 1}N and {n ∈ N | αn = 1} is finite then F is linear.

Proof. We will prove the complete additivity of F and the linearity
will follow from Theorem 2.1. Let (δn) ∈ {0, 1}N. Then

F

( ∞∑
n=1

δnλn

)
= F

(
lim

k→∞

k∑
n=1

δnλn

)
= lim

k→∞
F

( k∑
n=1

δnλn

)

= lim
k→∞

( k∑
n=1

δnF (λn)
)

=
∞∑

n=1

δnF (λn),
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so F is completely additive. ¤
Lemma 3.4. If B(i) is a countably infinite set for each i ∈ N then

there exist pairwise disjoint countably infinite sets C(i) (i ∈ N) such that

C(i) ⊂ B(i) (i ∈ N).

Proof. Let σ = (σ1, σ2) : N → N2 be a bijection. We define
a sequence (ck) by recursion. Let c1 ∈ Bσ1(1) and if k > 1 then let
ck ∈ Bσ1(k) \ {cn | n ∈ N, n < k}. Now

C(i) := {ck | k ∈ N, σ1(k) = i} (i ∈ N).

These sets C(i) (i ∈ N) are obviously disjoint and it follows from the
definition that C(i) ⊂ B(i). Since Hi = {(i, n) | n ∈ N} ⊂ N2 is an infinite
set for every i ∈ N, σ−1(Hi) ⊂ N is also infinite. And if k ∈ σ−1(Hi) then
ck ∈ C(i), so C(i) is infinite. ¤

Now we are ready to prove our main result:

Theorem 3.5. Let λ = (λn) be an arbitrary interval filling sequence.

There exist two algorithms µ, ν such that if a function F : [0, L(λ)] → R
is {µ, ν}-additive then F is linear.

Proof. Let µ = εM . By Theorem 3.2, the µ-additivity of F implies
its continuity, so, by Lemma 3.3, the proof of the theorem will be complete
if we show that there exists an algorithm ν such that if F is {µ, ν}- additive
then

F

( ∞∑
n=1

αnλn

)
=

∞∑
n=1

αnF (λn)

whenever (αn) ∈ {0, 1}N and {n ∈ N | αn = 1} is finite.
There exist countably many 0, 1-sequences α = (αn) for which {n ∈

N | αn = 1} is finite. Hence there exists a sequence (α(i)) of all these
sequences (i.e. (α(i)

n ) ∈ {0, 1}N for every i ∈ N). Let us denote max{n ∈
N | α(i)

n = 1} by m(i). We define another sequence (β(i)) of 0, 1-sequences
by the following formula:

β(i)
n =





α
(i)
n if n < m(i),

0 if n = m(i),

ε∗n(λm(i)) if n > m(i).
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Then
∑m(i)

n=1 α
(i)
n λn =

∑∞
n=1 β

(i)
n λn, denote this sum by x(i). Let

B(i) =
{

x ∈ R
∣∣∣ x =

N∑
n=1

β(i)
n λn, N ∈ N

}
.

If x ∈ B(i) then let us denote by N(x, i) the minimal integer N for which

x =
N∑

n=1
β

(i)
n λn. The sets B(i) satisfy the conditions of Lemma 3.4, so there

exist pairwise disjoint infinite subsets C(i) ⊂ B(i) (i ∈ N). At this point
we are able to define our second algorithm:

νn(x) :=





β
(i)
n if there is an i∈N such that x∈C(i) and n≤N(x, i),

0 if there is an i∈N such that x∈C(i) and n> N(x, i),

µn(x) if x /∈ ⋃∞
k=1 C(k).

The definition of ν is correct because of the disjoint property of sets C(i).
Now let i be an arbitrary positive integer and let F be {µ, ν}-additive.
Then

F

( m(i)∑
n=1

α(i)
n λn

)
= F

( ∞∑
n=1

β(i)
n λn

)
= F (x(i)) = lim

x→x(i)

x∈C(i)

F (x)

= lim
x→x(i)

x∈C(i)

F

( ∞∑
n=1

νn(x)λn

)
= lim

x→x(i)

x∈C(i)

( ∞∑
n=1

νn(x)F (λn)
)

= lim
x→x(i)

x∈C(i)

(N(x,i)∑
n=1

β(i)
n F (λn)

)
=

∞∑
n=1

β(i)
n F (λn)

=
m(i)−1∑

n=1

α(i)
n F (λn) +

∞∑

n=m(i)+1

ε∗n(λm(i))F (λn)

=
m(i)−1∑

n=1

α(i)
n F (λn) + F (λm(i)) =

m(i)∑
n=1

α(i)
n F (λn),

which was to be proved. ¤

Remark 3.6. Note that µ(x) = ν(x) for all but countably many points
x ∈ [0, L(λ)], so these two algorithms “almost coincide”. Moreover, it is
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easy to prove that for (λn) = ( 1
2n ) the additivity of F with respect to the

mixed regular algorithm implies the linearity. It is an open problem to
characterize those interval filling sequences λ ∈ IF for which there exists
one algorithm α such that if a function F : [0, L(λ)] → R is {α}- additive
then F is linear.
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