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Power integral bases in orders of families
of quartic fields
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Dedicated to Professor Lajos Tamássy on his 70th birthday

Abstract. We consider five infinite families of polynomials, namely

I f1(x) = x4 + k (k > 0, k 6= 4k4
0)

II f2(x) = x4 + k2x2 − 2kx + 1
III f3(x) = x4 + x3 + kx2 + εx + 1 (k > 0, ε = ±1, k 6= 2 if ε = 1)
IV f4(x) = x4 + 4kx3 + 4k2x2 + 8x + 4(k2 + 2k + 3)
V f5(x) = x4 + kx2 + 1 (k ≥ 3)

with an integer parameter k. We show, that all these polynomials are irreducible, a
root ξ of any of them generates a totally complex quartic field K = Q(ξ), we describe
the Galois group of K and compute all power integral bases in the order Z[ξ] of the ring
of integers of K.

1. Introduction

In a series of papers [2], [3], [4] (see also [5]) the author together with
Pethő and Pohst considered certain methods for the resolution of index
form equations in certain types of quartic number fields. These methods
depend on the Galois structure of the field. Recently they gave a method
[6] that makes it possible to find in feasible time the “small” solutions
of index form equations in any quartic field. (Under “small” solutions
we mean the solutions that do not exceed a prescribed bound e.g. 1020 in
absolute value.) In the totally complex case this method gives all solutions
of the index form equations.

The author is grateful to the Alexander von Humboldt Stiftung for supporting his work
and also to the Mathematisches Institut der Heinrich–Heine–Universität in Düsseldorf
for its hospitality during the author’s stay there as a Humboldt-fellow .
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In the present paper we consider five infinite families of totally com-
plex quartic fields K = Q(ξ), generated by a root ξ of one of the following
polynomials

I f1(x) = x4 + k (k > 0, k 6= 4k4
0)

II f2(x) = x4 + k2x2 − 2kx + 1
III f3(x) = x4+x3+kx2+εx+1 (k > 0, ε = ±1, k 6= 2 if ε = 1)
IV f4(x) = x4 + 4kx3 + 4k2x2 + 8x + 4(k2 + 2k + 3)
V f5(x) = x4 + kx2 + 1 (k ≥ 3)

where k is a parameter taking any integer value with the above restrictions
(in the family I k is not allowed to take a value of the form 4k4

0 where
k0 ∈ Z).

We prove that in the above five families all polynomials are irreducible,
the corresponding fields K are totally complex, we describe the Galois
group of K, and determine all solutions of the index form equation of
K corresponding to the basis (1, ξ, ξ2, ξ3) of the order Z[ξ] of the ring of
integers of K, that is we determine all α ∈ Z[ξ] which generate a power
integral basis (1, α, α2, α3) in Z[ξ] .

The main purpose of the paper is to demonstrate that the method
of [6] can be applied not only to single number fields, but also to infinite
families of number fields. Our method is probably applicable also to some
other families of totally complex quartic fields, however, the above families
of fields have the following interesting features: I is the simplest possible
family of fields (“pure quartic fields”), in families II–III the index form
equation admits several non-trivial solutions, family II was also considered
by Nagell [11], IV is a family of fields with Galois group A4 that occur
very seldom: there are only 90 fields of this type among the 81322 totally
complex quartic fields with discriminant < 106. Family V was considered
by several authors, cf. e.g. Cusick [1].

Finally, we remark that an analogous problem for the family fa(x) =
x4−ax3−x2+ax+1 (with some restrictions on a) was recently considered
with different methods by Mignotte, Pethő and Roth [10].

Notation. In the following we denote by a1, a2, a3, a4 the coefficients
of any of the above polynomials, that is we write f(x) = x4+a1x

3+a2x
2+

a3x + a4.

2. Irreducibility

First we show that the polynomials under consideration are irre-
ducible:

Lemma 1. All polynomials in the families I–V are irreducible.

Proof of Lemma 1. We have to show, that
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– f(x) has no integer roots
– f(x) cannot be factorized in the form (x2 + ax + b)(x2 + cx + d).

The first assertion follows from Lemma 4 of Section 3 where we prove
that f(x) has only complex (non–real) roots. Hence we only have to
demonstrate, that the equation system

a + c = a1(1)

d + ac + b = a2(2)

ad + bc = a3(3)

db = a4(4)

has no integer solutions a, b, c, d.

I. If we had a = 0, then by (1) c = 0, by (2) b = −d and by (4)
−d2 = k > 0 which is a contradiction. Assume that a 6= 0. Then by (1)
c = −a, by (2) and (3) d + b = a2, d− b = 0 whence d = b = a2/2 and by
(4) k = bd = a4/4. It follows that f1 can be reducible only if a = 2k0 in
which case k = 4k4

0 and f1(x) = (x2 + 2k0x + 2k2
0)(x

2 − 2k0x + 2k2
0), but

k = 4k4
0 is excluded.

II. By (1) c = −a, (4) implies bd = 1 that is either b = d = 1 or
b = d = −1, and by (3) −2k = ad + bc whence −2k = (d− b)a = 0. Hence
the equation system implies k = 0 but x4 + 1 is irreducible.

III. By (4) bd = 1 that is b = d = ±1. Put η = b = d. By (1) we get
c = 1−a and substituting b, d, c into (3) we get b = ε that is ε = η. Finally,
(2) gives a2 − a + k − 2ε = 0. This equation has negative discriminant
for k > 2. Checking the four polynomials corresponding to k = 1, 2 and
ε = ±1 we find that they are irreducible except when k = 2, ε = 1.

IV. We express c from the first equation, and substitute it into (2),
(3), (4); then we express d from the second equation and substitute it
again into (3),(4) to get

a3 − 4ka2 + 4k2a + b(4k − 2a) = 8(3′)

(4k2 + a2 − 4ka− b)b = 4(k2 + 2k + 3) .(4′)

If in (3′) we had a = 2k then by (4′) we would obtain −b2 = 4(k2+2k+3) >
0 which is impossible. Hence we can express b from (3′) and substitute
into (4′) to conclude

a6 − 12ka5 + 56k2a4 − 128k3a3 + 16(9k4 − k2 − 3)a2+

64(−k5 + k3 + 3k)a− 64(k4 + 3k2 + 1) = 0 .
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It follows that we must have a = 2ā. After dividing by 64 the above
equation gives

ā6 − 6kā5 + 14k2ā4 − 16k3ā3 + (9k4 − k2 − 3)ā2+

2(−k5 + k3 + 3k)ā− (k4 + 3k2 + 1) = 0 .

Here the constant term is always odd, hence the equation can only hold
if ā = 2â + 1. Substituting it into the former equation and considering it
modulo 2 we conclude

1 + 9k4 − k2 − 3− k4 − 3k2 − 1 = 8k4 − 4k2 − 3 ≡ 1 (mod 2)

which is a contradiction.
V. (1) implies c = −a whence by (3) we have a(d − b) = 0. If a = 0

then by (2) and (4) d + b = k, db = 1 which cannot hold because of k ≥ 3.
If b = d then by (4) d = ±1 whence by (2) k = ±2 − a2 which is again
impossible.

3. Signature

First we formulate the following assertion concerning the discrimi-
nants of the polynomials:

Lemma 2. The polynomials in families I–V have the following dis-
criminants:

I D(f1) = 256k3

II D(f2) = 16(k4 + 16)
III D(f3) = k(k + 4)(−9 + 4k)2 if ε = 1

D(f3) = (k2 − 4k + 8)(7 + 4k)2 if ε = −1
IV D(f4) = 212(9 + 3k2 + k4)2

V D(f5) = 16(k2 − 4)2.

The proof of the lemma is direct calculation.
Remark. It is important to remark, that for any value of k, according

to the original conditions, in families I–V all discriminants are positive. It
follows, that the corresponding discriminants of the number fields K are
also positive.

In the sequel we need certain polynomials related to f(x). Although
some of them we apply only in the following sections, we take here the
opportunity to introduce all of them and point out the relation between
them. Let

(5) F (x, y) = x3 − a2x
2y + (a1a3 − 4a4)xy2 + (4a2a4 − a2

3 − a2
1a4)y3.

The polynomial R(x) = F (x, 1) is sometimes used as a resolvent polyno-
mial of f(x) . However, to determine the roots of f(x) it can be more
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helpful to substitute x = y − a1/4 in f(x) in order to eliminate the term
of degree 3 to get a polynomial f0(y) = y4 + b2y

2 + b3y + b4 and then to
define

r(z) = z3 − 2b2z
2 + (b2

2 − 4b4)z + b2
3 .

The correspondence of F (x, y), R(x) and r(z) and the way of determining
the roots of f(x) by using the roots of r(z) is shown in the following lemma.

Lemma 3. Denote by ξi, i = 1, . . . , 4 the roots of f(x).
(a) The roots of R(x) are ξiξj + ξkξl for (i, j, k, l) = (1, 2, 3, 4),

(1, 3, 2, 4), (1, 4, 2, 3).
(b) The roots of r(z) are (yi + yj)(yk + yl) (for the same indices as

before) where yi = ξi + a1/4, i = 1, . . . , 4.

(c) r(z) = −R(−z + a2 − a2
1/4).

(d) For the roots yi = ξi + a1/4 of f0(y) we have

2y1 =
√
−θ1 +

√
−θ2 +

√
−θ3

2y2 =
√
−θ1 −

√
−θ2 −

√
−θ3

2y3 =−
√
−θ1 +

√
−θ2 −

√
−θ3

2y4 =−
√
−θ1 −

√
−θ2 +

√
−θ3 .

where θ1, θ2, θ3 are the roots of r(z).

Proof of Lemma 3. (a) and (b) can be checked directly, for (b)
see also [8]. (c) follows from Lemma 2 of [6]. For (d) see again [8].

The main purpose of this Section is to prove:

Lemma 4. The polynomials in the families I–V have only complex
(=non-real) roots.

Proof of Lemma 4.. By the remark after Lemma 2 D(f) is always
positive, which implies that either all the roots are real or all of them are
complex (=non-real). Obviously ξi is non-real if and only if yi is non-real,
hence we only have to show that there exists a non-real yi. Further, by (d)
of Lemma 3 we can express all the

√−θi by the yi-s, hence if all the yi-s
were real, then we would obtain, that also all the

√−θi-s are real. This
means, that it is sufficient to demonstrate that there exists a θi which is
positive. Finally, by (c) of Lemma 2 this is equivalent with the fact, that
there exists a root µi = −θi +a2−a2

1/4 of R(x) with −µi +a2−a2
1/4 > 0.

I. R(x) = x(x2 − 4k) a1 = a2 = 0, and for the root µ1 = −2
√

k we
have −µ1 > 0.
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II. R(x) = x(x2 − xk2 − 4) a1 = 0, a2 = k2 for the root µ1 = 0 we
have −µ1 + k2 > 0 if k 6= 0, but for k = 0 the polynomial x4 + 1 is totally
complex.

III. ε = 1. R(x) = (x− 2)(x2 − xk + 2x + 1− 2k) a1 = 1, a2 = k, for
the root µ1 = 2 we have −µ1 + k − 1/4 > 0, if k > 2, the case k = 1 can
be checked directly, k = 2 is excluded.

III. ε = −1. R(x) = (x + 2)(x2 − xk − 2x− 1 + 2k) a1 = 1, a2 = k,
for the root µ1 = −2 we have −µ1 + k − 1/4 > 0.

IV. R(x) = x3 − 4k2x2 − 16k2x − 48x − 64, a1 = 4k, a2 = 4k2 that
means a2 − a2

1/4 = 0. It is sufficient to show that R(x) has at least one
negative root. We have R(−7) = −71− 84k2, R(−4) = 64, R(0) = −64
which implies that R(x) has exactly two negative and one positive roots.

V. R(x) = (x− 2)(x+ 2)(x− k), a1 = 0, a2 = k, for the root µ1 = −2
we have −µ1 + k = 2 + k > 0.

4. Galois groups

In order to describe the Galois group of f(x) we apply the following
lemma:

Lemma 5 (Kappe and Warren [7], Theorem 1). Suppose that f(x)=
x4+a1x

3+a2x
2+a3x+a4 is irreducible over Q, has discriminant D, and its

resolvent polynomial R(x) = x3−a2x
2+(a1a3−4a4)x+(4a2a4−a2

3−a2
1a4)

has splitting field E.
(i) Gal(f) = S4 if and only if R(x) is irreducible over Q and D is not

a square.
(ii) Gal(f) = A4 if and only if R(x) is irreducible over Q and D is a

square.
(iii) Gal(f) = V4 if and only if R(x) splits into linear factors over Q
(iv) Gal(f) = C4 if and only if R(x) has exactly one root t in Q and

g(x) = (x2 − tx + a4)(x2 + a1x + a2 − t) splits over E
(v) Gal(f) = D8 if and only if R(x) has exactly one root t in Q and

g(x) does not split over E.

By using the above lemma we show, that
Lemma 6.

I. The polynomial f1 has Galois group D8 if k is not a square, and V4
if k is a square.

II. The polynomial f2 has Galois group D8 if k 6= 0 and V4 if k = 0.
III. The polynomial f3 has Galois group D8 with the exception of the

following cases: C4 if k = 1, ε = 1, V4 if k = 2, ε = −1.
IV. The polynomial f4 has Galois group A4.
V. The polynomial f5 has Galois group V4.
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Proof of Lemma 6.
I. We have R(x) = x(x2 − 4k). If k is a square, then R(x) factorizes

into linear factors and the Galois group is V4. If k is not a square, then R(x)
has the only root t = 0 in Q, it splits over E = Q(

√
k) but g(x) = (x2+k)x2

does not split over E.
II. We have R(x) = x(x2−k2x−4) and the discriminant of the second

degree factor of R(x) is k4 + 16 which can only be a square for k = 0, in
which case R(x) splits over Q and the Galois group is V4. For k 6= 0 R(x)
splits over E = Q(

√
k4 + 16) but g(x) = (x2 + 1)(x2 + k2) has non–real

roots.
III. ε = 1. We have R(x) = (x − 2)(x2 − kx + 2x + 1 − 2k). The

discriminant of the second factor is k2 + 4k which is never a square, it
splits over E = Q(

√
k2 + 4k). Further, g(x) = (x − 1)2(x2 + x + k − 2)

where the discriminant of the second factor is 9− 4k which is negative for
k > 2, that is g splits over a complex quadratic field. In these cases the
Galois group is D8 because E is real. For k = 1 we have E = Q(

√
5) over

which g also splits, that means the Galois group is C4. k = 2 is excuded.
III. ε = −1. We have R(x) = (x + 2)(x2 − kx − 2x − 1 + 2k) where

the discriminant of the second factor is (k − 2)2 + 4 being square only for
k = 2 when the Galois group is V4. For any other k R splits over the real
quadratic field E = Q(

√
(k − 2)2 + 4) but g(x) = (x + 1)2(x2 + x + k + 2)

splits over the complex quadratic field Q(
√−4k − 7).

IV. We have R(x) = x3 − 4k2x2 − 16k2x− 48x− 64. If we substitute
x = 4y and divide by 64 we obtain R̄(y) = y3 − k2y2 − y(k2 + 3) − 1.
This polynomial is irreducible (cf. also [12]). Further, by Lemma 2 the
discriminant is a full square, hence the Galois group is A4.

V. In this case we have R(x) = (x − 2)(x + 2)(x − k) which implies
the assertion.

5. The index form equations

After having made the above preparations we arrive at the most im-
portant part of our discussion, namely we want to describe all power integ-
ral bases (1, α, α2, α3) in the order Z[ξ] of the field K = Q(ξ) generated
by a root ξ of f(x).

Our main tool is the following assertion:

Lemma 7 (Gaál, Pethő and Pohst [6]). According to the above
notation let f(x) = x4+a1x

3+a2x
2+a3x+a4 be the defining polynomial of

ξ and let F (u, v) = u3 − a2u
2v + (a1a3 − 4a4)uv2 + (4a2a4 − a2

3 − a2
1a4)v3.

An element α = a + xξ + yξ2 + zξ3 (a, x, y, z ∈ Z) generates a power
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integral basis in the order Z[ξ] of the field K = Q(ξ) if and only if there
exists a solution (u, v) ∈ Z2 of the equation

(6) F (u, v) = ±1

such that u, v can be represented as

Q1(x, y, z) = x2 − xya1 + y2a2 + xz(a2
1 − 2a2) + yz(a3 − a1a2)+(7)

+z2(−a1a3 + a2
2 + a4) = u

Q2(x, y, z) = y2 − xz − a1yz + z2a2 = v(8)

with the coefficients x, y, z of α.
Further, if K is totally complex, then the quadratic form

Tλ(x, y, z) = Q1(x, y, z) + λQ2(x, y, z)

is positive definite if and only if λ ∈ (λ1, λ2) where λ1 < λ2 < λ3 denote
the three distinct real roots of R(x) = F (x, 1).

Proof of Lemma 7. In order to prove the first part of the assertion
apply the proof of Theorem 1 of [6] with d = m = n = im = 1 (according
to the notation of [6]). The second part follows from Theorem 2 of [6].

Remark. The essence of the method of [6] for determining the suitable
triples (x, y, z) (a is arbitrary) in totally complex quartic fields is first to
find all solutions (u, v) of (6), then to build a positive definite quadratic
form Tλ(x, y, z) = Q1(x, y, z) + λQ2(x, y, z), for each solution (u, v) (with
u+λv ≥ 0) to enumerate the solutions of Tλ(x, y, z) = u+λv and to check
(7), (8).

Our main result is the following

Theorem 1. Let ξ be a root of one of the polynomials in the families
I–V. The element α = a+xα+yα2 +zα3 (a, x, y, z ∈ Z) generates a power
integral basis (1, α, α2, α3) of the order Z[ξ] of the field K = Q(ξ), if and
only if a ∈ Z and (x, y, z) is equal to one of the following triples or their
negatives:

I. (1, 0, 0), (0, 0, 1) if k = 1, (1, 0, 0) if k ≥ 2
II. (1, 0, 0), (k2, 0, 1), (k4 + 1, k, k2), further, if k = 2l (l ∈ Z), then

also (8l4 + 1, l, 2l2).
III.

(1, 0, 0), (1, 1, 1), (1, 1, 0), (0, 1, 0), (0, 0, 1) (1, 0, 1) if k = 1, ε = 1,
(1, 0, 0), (3, 1, 1), (2, 0, 1), (1, 1, 0), (0, 1, 0) if k = 3, ε = 1,
(1, 0, 0), (k, 1, 1) for any other allowed pair k, ε.

IV. (1, 0, 0) for any k ∈ Z
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V. (1, 0, 0), (k, 0, 1) for any allowed k.

Proof of Theorem 1.
I. The solutions of F (u, v) = u(u2 − 4kv2) = ±1 are u = ±1, v = 0.

It follows from

Q1 + Q2 =
(
x− z

2

)2

+ y2 +
(

k − 1
4

)
z2 = 1

that only u = 1 is possible and z = 0 if k ≥ 2. In this case the possible
solutions are (1, 0, 0) and (0, 1, 0) but the second one does not satisfy (8).
If k = 1, the possibilities are (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1) but the
second and the fourth one fail in testing (7) and (8).

II. We have F (u, v) = u(u2 − k2uv − 4v2) = ±1, whence u = ±1 and
v = 0 or v = ∓k2/4, the second being possible only if k is even. In order to
avoid complicated formulas, in both cases we use the positive semidefinite
quadratic form

(9) Q1 = (x− zk2)2 + (yk − z)2 = 1 .

It follows that only u = 1 is possible and either (i) x − zk2 = ±1 and
yk = z, or (ii) x = zk2 and yk − z = ±1.

Consider first the solution (u, v) = (1, 0). Combining Q2 = y2 − xz +
z2k2 = 0 with (i) we obtain (1, 0, 0) and (k4 + 1, k, k2), and for (ii) we get
(k2, 0, 1).

Consider now the even values of k, that is k = 2l and the solution
(u, v) = (1,−k2/4) = (1,−l2). The above equation pairs (i) and (ii)
we combine now with Q2 = y2 − xz + 4l2z2 = −l2 and we obtain the
additional solution (8l4 +1, l, 2l2) for (i). For (ii) our equation system can
be reduced to y2 = −l2 whence l = 0, v = 0 and we have already found
the corresponding solution for k = 0.

III. In this case

F (u, v) = (u− 2εv)(u2 + (2ε− k)uv + ε(1− 2k)v2) = ±1

has solutions (u, v) = (±1, 0) for any allowed k and ε. Further, for k =
1, ε = 1 the pair (u, v) = (±1,±1), and for k = 3, ε = 1 the pair
(u, v) = (±3,±1) is also a solution.

First consider (u, v) = (±1, 0). We have

Q1 =
(

x− y

2
+

(
1
2
− k

)
z

)2

+

4
4k − 1

((
k − 1

4

)
y +

(
ε

2
− k +

1
4

)
z

)2

+
4k − 2
4k − 1

z2 = 1

which implies that only u = 1 is possible and |z| ≤ 1.
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If z = 0 then by (8) we have 0 = v = y2 whence y = 0 and x = 1.
For |z| = 1, we assume that z = 1, then we can rewrite the above

equation Q1 = 1 as

(4k − 1)(2x− y + (1− 2k))2 + ((4k − 1)y + (2ε− 4k + 1))2 = 4 .

In case k ≥ 2 this equation can only hold if the first term is 0 and the
second one is 4, whence x = k, y = 1, z = 1. In case k = 1 we obtain
(1, 1, 1) in the same way. For k = 1 it is also possible, that the first term
above is 3 and the second one is 1 which gives the solution (1, 0, 1) for
k = 1, ε = 1.

In case k = 1, ε = 1 for (u, v) = (±1,±1) we obtain the further
solutions (0, 0, 1), (1, 1, 0), (0, 1, 0).

In case k = 3, ε = 1 for (u, v) = (±3,±1) we obtain the further
solutions (2, 0, 1), (1, 1, 0), (0, 1, 0).

IV. In this case the equation to be solved is

F (u, v) = u3 − 4k2u2v − 16(k2 + 3)uv2 − 64v3 = ±1.

Substituting v1 = 4v we rewrite the above equation as

F1(u, v1) = u3 − k2u2v1 − (k2 + 3)uv2
1 − v3

1 = ±1.

This family of cubic Thue equations (corresponding to the “simplest cubic
fields” of Shanks [12]) was considered by Thomas [13] whose results were
completed by Mignotte [9]. Their works imply, that the only solution
(u, v1) of this equation, for which v1 is divisible by 4 is (±1, 0), that yields
(u, v) = (±1, 0). We build

Q1 + Q2 =
(

x− 2ky +
(

4k2 − 1
2

)
z

)2

+

+ (y + (4− 3k)z)2 +
(

3k2 − 17
4

)
z2 = 1

whence only u = 1 is possible. For |k| ≥ 2 the above form is positive
definite and z can only be 0. The two candidates we obtain are (1, 0, 0)
and (2k, 1, 0) but the last one fails to satisfy (8).

For k = 0,±1 we consider Q1 + 2Q2 = 1, yielding (x − z)2 + 2(y +
2z)2 + 3z2 = 1 for k = 0, (x − 2y + 3z)2 + 2(y − z)2 + 5z2 = 1 for k = 1
and (x + 2y + 3z)2 + 2(y + 5z)2 + 5z2 = 1 for k = −1, all of them having
only the trivial solution (1, 0, 0).

V. In this case we have

F (u, v) = (u− 2v)(u + 2v)(u− kv) = ±1 .
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It can be easily seen, that the only solutions are (u, v) = (±1, 0). Further,
the form Q1 is positive definite,

Q1 = (x− kz)2 + ky2 + z2 = 1

which implies y = 0 because of k ≥ 3. If x − kz = 1, z = 0 then we get
the trivial solution (1, 0, 0), if x − kz = 0, z = 1, we obtain the solution
(k, 0, 1) which satisfies also the other equation Q2 = 0.
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