Common fixed point theorems for multi-valued non-self mappings

By LJ. B. ĆIRIĆ (Belgrade) and J. S. UME (Changwon)

Abstract

In this paper we prove three common fixed point theorems for a pair of multi-valued non-self mappings in metrically convex metric spaces. Our results generalize and extend the main theorem of ASSAD and KIRK [2] and the theorems of ASSAD [1], Ітон [4] and Khan [5].

1. Introduction

Markin [6] and Nadler [7] initiated the study of fixed point theorems for multi-valued mappings. There are many fixed point theorems for multi-valued mappings of a closed subset K of a complete metric space (X, d) into a class of subsets of K. However, in many applications the contractive mappings occur in convex setting and involved mapping is not a self-mapping of K. Recently some authors ([1], [2], [4], [5], [8]) gave sufficient conditions for some multi-valued mappings from K into a class of closed bounded subset of X to have a fixed point in K. In this paper we prove two main common fixed point theorems for a pair of multi-valued non-self mappings. We use a more effective method of a proof in both theorems and obtain theorems which generalize the main theorem of ASSAD and Kirk [2] and the theorems of Assad [1], Itoh [4] and Khan [5].

Mathematics Subject Classification: 54C60, 47H10, 54 H 25.
Key words and phrases: multi-valued non-self mapping, metrically convex metric space. The second author was supported by Korea Research Foundation Grant (KRF-2001-015-DP0025).

2. Main results

Let (X, d) be a metric space and let $C B(X)$ denote the family of all nonempty bounded and closed subsets of X. For $A, B \in C B(X)$, let $H(A, B)$ denote the distance of subsets A and B in the Hausdorff metric introduced by d on $C B(X)$, i.e.

$$
H(A, B)=\max (\sup \{D(a, B): a \in A\}, \sup \{D(A, b): b \in B\}),
$$

where

$$
D(x, A)=\inf \{d(x, a): a \in A\}
$$

It is known that $C B(X)$ is a metric space with the distance function H.

In the theorem below we assume X is a complete metric space which is convex in the sense of Menger, that is, X has the property that for each x, y in X with $x \neq y$ there exists z in $X, x \neq z, y \neq z$, such that

$$
d(x, z)+d(z, y)=d(x, y)
$$

Further (see [2], [3]), if K is a closed subset of X and if $x \in K$ and $y \notin K$, then there exists a point z in $\partial K, \partial K=$ the boundary of K, such that

$$
d(x, z)+d(z, y)=d(x, y)
$$

We prove the following simple lemma which enables to make more effective the proof of the theorems related to multi-valued mappings on metric spaces.

Lemma 1. If $A, B \in C B(X)$ and $a \in A$, then for any positive number $q<1$ there exists $b=b(a)$ in B such that

$$
\begin{equation*}
q d(a, b) \leq H(A, B) . \tag{2.1}
\end{equation*}
$$

Proof. If $H(A, B)=0$, then $A=B$ and (2.1) trivially holds for $b(a)=a$.

Suppose now that $H(A, B)>0$. By definition of $D(a, B)$ and $H(A, B)$, for any positive number ε there exists $b \in B$ such that

$$
\begin{equation*}
d(a, b) \leq D(a, B)+\varepsilon \leq H(A, B)+\varepsilon . \tag{2.2}
\end{equation*}
$$

Let $0<q<1$. Then $q^{-1}-1>0$. Since $H(A, B)>0$,

$$
\varepsilon=\left(q^{-1}-1\right) H(A, B)>0
$$

By inserting this ε in (2.2), we get (2.1).
Now, we prove the following:
Theorem 2.1. Let (X, d) be a complete metrically convex metric space and K a nonempty closed subset of X. Let S, T be mappings of K into $C B(X)$ such that

$$
\begin{gather*}
H(S x, T y) \leq \alpha d(x, y) \\
+\beta \max \{D(x, S x)+D(y, T y), D(x, T y)+D(y, S x)\} \tag{2.3}
\end{gather*}
$$

where α, β are nonnegative real numbers satisfying

$$
\begin{equation*}
\lambda=\alpha+3 \beta+\alpha \beta<1 . \tag{2.4}
\end{equation*}
$$

If $S x \subseteq K$ and $T \subseteq K$ for each $x \in K$ then there exists an $u \in K$ such that $u \in S u, u \in T u$ and $S u=T u$.

Proof. We select two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in K and X, respectively, in the following way:

Let x_{0} in ∂K and $x_{1}=y_{1} \in S x_{0}$ be arbitrary. Let a be any fixed number such that $0<a<\frac{1}{2}$. Put $q=\lambda^{a}$.
Then from (2.4), $q<1$. By Lemma 1.1, we can choose $y_{2} \in T x_{1}$ such that

$$
q d\left(y_{1}, y_{2}\right) \leq H\left(S x_{0}, T x_{1}\right)
$$

If $y_{2} \in K$, put $x_{2}=y_{2}$. If $y_{2} \notin K$, then, as X is convex, we can choose $x_{2} \in \partial K$ such that

$$
d\left(x_{1}, x_{2}\right)+d\left(x_{2}, y_{2}\right)=d\left(x_{1}, y_{2}\right) .
$$

Let $y_{3} \in S x_{2}$ be such that

$$
q d\left(y_{2}, y_{3}\right) \leq H\left(T x_{1}, S x_{2}\right)
$$

By induction we may obtain sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ such that for $n=$ $1,2, \ldots$
(i) $y_{n} \in S x_{n-1}$, if n is odd and
$y_{n} \in T x_{n-1}$, if n is even;
(ii) $q d\left(y_{n}, y_{n+1}\right) \leq H\left(S x_{n-1}, T x_{n}\right)$, if n is odd and
$q d\left(y_{n}, y_{n+1}\right) \leq H\left(T x_{n-1}, S x_{n}\right)$, if n is even;
(iii) $y_{n+1}=x_{n+1}$, if $y_{n+1} \in K$ for all n, or
(iv) $d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, y_{n+1}\right)=d\left(x_{n}, y_{n+1}\right)$ and $x_{n+1} \in \partial K$,
if $y_{n+1} \notin K$ for all n.
Define

$$
P=\left\{x_{i} \in\left\{x_{n}\right\}: x_{i}=y_{i}\right\}, \quad Q=\left\{x_{i} \in\left\{x_{n}\right\}: x_{i} \neq y_{i}\right\} .
$$

Observe that if $x_{n} \in Q$ for some n, then x_{n-1} and x_{n+1} belong to P, as two consecutive terms of $\left\{x_{n}\right\}$ cannot be in Q.

We wish to estimate $d\left(x_{n}, x_{n+1}\right)$. Three cases need to be considered.
Case 1. $x_{n} \in P$ and $x_{n+1} \in P$. If n is odd, then from (ii) and (2.3) we have

$$
\begin{aligned}
& q d\left(x_{n}, x_{n+1}\right)=q d\left(y_{n}, y_{n+1}\right) \leq H\left(S x_{n-1}, T x_{n}\right) \leq \alpha d\left(x_{n-1}, x_{n}\right) \\
& \quad+\beta \max \left\{D\left(x_{n-1}, S x_{n-1}\right)+D\left(x_{n}, T x_{n}\right), D\left(x_{n-1}, T x_{n}\right)+D\left(x_{n}, S x_{n-1}\right)\right\} \\
& \leq \alpha d\left(x_{n-1}, x_{n}\right)+\beta \max \left\{d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right), d\left(x_{n-1}, x_{n+1}\right)\right\} .
\end{aligned}
$$

Hence, using the triangle inequality for $d\left(x_{n-1}, x_{n+1}\right)$,

$$
\begin{equation*}
q d\left(x_{n}, x_{n+1}\right) \leq \alpha d\left(x_{n-1}, x_{n}\right)+\beta\left(d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right) . \tag{2.5}
\end{equation*}
$$

From (2.5) we get

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq\left(\frac{\alpha+\beta}{q-\beta}\right) d\left(x_{n-1}, x_{n}\right) \tag{2.6}
\end{equation*}
$$

We obtain a similar inequality for n even.
Case 2. $x_{n} \in P$ and $x_{n+1} \in Q$. Then by (iv)

$$
d\left(x_{n}, x_{n+1}\right) \leq d\left(x_{n}, y_{n+1}\right)=d\left(y_{n}, y_{n+1}\right) .
$$

By the same method, as in Case 1, we have for odd and even n

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq\left(\frac{\alpha+\beta}{q-\beta}\right) d\left(x_{n-1}, x_{n}\right) . \tag{2.7}
\end{equation*}
$$

Case 3. $x_{n} \in Q$ and $x_{n+1} \in P$. By the triangle inequality we have

$$
d\left(x_{n}, x_{n+1}\right) \leq d\left(x_{n}, y_{n}\right)+d\left(y_{n}, x_{n+1}\right)=d\left(x_{n}, y_{n}\right)+d\left(y_{n}, y_{n+1}\right) .
$$

Let n be odd. Then from (ii) and (2.3) we have

$$
\begin{aligned}
q d\left(x_{n}, x_{n+1}\right) \leq & q d\left(x_{n}, y_{n}\right)+q d\left(y_{n}, y_{n+1}\right) \leq q d\left(x_{n}, y_{n}\right)+H\left(S x_{n-1}, T x_{n}\right) \\
\leq & q d\left(x_{n}, y_{n}\right)+\alpha d\left(x_{n-1}, x_{n}\right)+\beta \max \left\{D\left(x_{n-1}, S x_{n-1}\right)\right. \\
& \left.+D\left(x_{n}, T x_{n}\right), D\left(x_{n-1}, T x_{n}\right)+D\left(x_{n}, S x_{n-1}\right)\right\} \\
\leq & q d\left(x_{n}, y_{n}\right)+\alpha d\left(x_{n-1}, x_{n}\right)+\beta \max \left\{d\left(x_{n-1}, y_{n}\right)\right. \\
& \left.+d\left(x_{n}, y_{n+1}\right), d\left(x_{n-1}, x_{n+1}\right)+d\left(x_{n}, y_{n}\right)\right\} .
\end{aligned}
$$

Since two consecutive terms of $\left\{x_{n}\right\}$ cannot be in $Q, x_{n-1} \in P$. Then by (iv), $d\left(x_{n}, y_{n}\right)+d\left(x_{n-1}, x_{n}\right)=d\left(x_{n-1}, y_{n}\right)$ and hence, as $\alpha \leq \lambda<\lambda^{a}=q$, we have

$$
q d\left(x_{n}, y_{n}\right)+\alpha d\left(x_{n-1}, x_{n}\right) \leq q d\left(x_{n-1}, y_{n}\right)
$$

Also, by the triangle inequality,

$$
\begin{aligned}
d\left(x_{n-1}, x_{n+1}\right)+d\left(x_{n}, y_{n}\right) & \leq d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+d\left(x_{n}, y_{n}\right) \\
& =d\left(x_{n-1}, y_{n}\right)+d\left(x_{n}, x_{n+1}\right) .
\end{aligned}
$$

Thus from (2.8) we get

$$
q d\left(x_{n}, x_{n+1}\right) \leq q d\left(x_{n-1}, y_{n}\right)+\beta d\left(x_{n-1}, y_{n}\right)+\beta d\left(x_{n}, x_{n+1}\right)
$$

and hence

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq\left(\frac{q+\beta}{q-\beta}\right) d\left(x_{n-1}, y_{n}\right) . \tag{2.9}
\end{equation*}
$$

We obtain a similar inequality for an even n.
Since by the above observation $x_{n-1} \in P$, we have $d\left(x_{n-1}, y_{n}\right)=$ $d\left(y_{n-1}, y_{n}\right)$ and so by the same method as in Case 1 we get

$$
\begin{equation*}
d\left(x_{n-1}, y_{n}\right) \leq\left(\frac{\alpha+\beta}{q-\beta}\right) d\left(x_{n-2}, x_{n-1}\right) \tag{2.10}
\end{equation*}
$$

By (2.9) and (2.10) we obtain

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq\left(\frac{\alpha+\beta}{q-\beta}\right)\left(\frac{q+\beta}{q-\beta}\right) d\left(x_{n-2}, x_{n-1}\right) . \tag{2.11}
\end{equation*}
$$

Since $q=\lambda^{a}<1$, we have

$$
\begin{align*}
h & =\left(\frac{\alpha+\beta}{q-\beta}\right)\left(\frac{q+\beta}{q-\beta}\right) \tag{2.12}\\
& =1+\frac{(\alpha+\beta)(q+\beta)+2 q \beta-\beta^{2}-q^{2}}{q^{2}-2 q \beta+\beta^{2}} \\
& \leq 1+\frac{(\alpha+\beta)(1+\beta)+2 \beta-\beta^{2}-q^{2}}{q^{2}-2 q \beta+\beta^{2}} \\
& =1-\frac{\lambda^{2 a}-(\alpha+3 \beta+\alpha \beta)}{\left(\lambda^{a}-\beta\right)^{2}}=1-\frac{\lambda^{2 a}-\lambda}{\left(\lambda^{a}-\beta\right)^{2}} .
\end{align*}
$$

Since $\lambda^{2 a}>\lambda$, we conclude that $h<1$.
By (2.6), (2.7) and (2.11), we conclude that in all cases

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq h \max \left\{d\left(x_{n-2}, x_{n-1}\right), d\left(x_{n-1}, x_{n}\right)\right\} \tag{2.13}
\end{equation*}
$$

for all $n \geq 2$, where h is given by (2.12).
Now it is easily shown by induction that from (2.13) we have

$$
d\left(x_{n}, x_{n+1}\right) \leq h^{(n-1) / 2} \max \left\{d\left(x_{n-2}, x_{n-1}\right), d\left(x_{n-1}, x_{n}\right)\right\} .
$$

For $m>n>N$,

$$
\begin{aligned}
d\left(x_{n}, x_{m}\right) & \leq \sum_{i=N}^{\infty} d\left(x_{i}, x_{i+1}\right) \\
& \leq\left(\frac{h^{N / 2}}{h^{1 / 2}-h}\right) \max \left\{d\left(x_{n-2}, x_{n-1}\right), d\left(x_{n-1}, x_{n}\right)\right\}
\end{aligned}
$$

Hence we conclude that $\left\{x_{n}\right\}$ is a Cauchy sequence, hence convergent. Call the limit u. From the way in which the $\left\{x_{n}\right\}$ were chosen, there exists an infinite subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n_{k}} \in P$. Then for an odd $n_{k}=m$, we have

$$
\begin{aligned}
& D\left(x_{n_{k}}, T u\right) \leq H\left(S x_{m-1}, T u\right) \\
& \leq \alpha d\left(x_{m-1}, u\right) \\
& \quad+\beta \max \left\{D\left(x_{m-1}, S x_{m-1}\right)+D(u, T u), D\left(x_{m-1}, T u\right)+D\left(u, S x_{m-1}\right)\right\} \\
& \leq \alpha d\left(x_{m-1}, u\right) \\
& \quad+\beta \max \left\{d\left(x_{m-1}, x_{m}\right)+D(u, T u), D\left(x_{m-1}, T u\right)+d\left(u, x_{m}\right)\right\} .
\end{aligned}
$$

Taking the limit as $k \rightarrow \infty$ yields

$$
D(u, T u) \leq \beta D(u, T u),
$$

which implies, as $\beta<1$, that $D(u, T u)=0$. Since $T u$ is closed, $u \in T u$. Similarly, we can show that $u \in S u$. Thus u is a common fixed point of S and T.

From (2.3)

$$
\begin{gathered}
H(S u, T u) \leq \alpha d(u, u) \\
+\beta \max \{D(u, S u)+D(u, T u), D(u, T u)+D(u, S u)\}=0,
\end{gathered}
$$

which implies $S u=T u$.
From Theorem 2.1 we have the main result of Khan [5] as corollary.
Corollary 2.1 ([5, Theorem 3.1]). Let (X, d) be a complete metrically convex metric space and K a nonempty closed subset of X. Let S, T be mappings of K into $C B(X)$ such that

$$
\begin{align*}
H(S x, T y) \leq & \alpha d(x, y)+\beta(D(x, S x)+D(y, T y)) \\
& +\gamma(D(x, T y)+D(y, S x)) \tag{2.14}
\end{align*}
$$

where α, β, γ are nonnegative real numbers satisfying

$$
\begin{equation*}
\frac{(\alpha+\beta+\gamma)(1+\beta+\gamma)}{(1-\beta-\gamma)^{2}}<1 \tag{2.15}
\end{equation*}
$$

If $S(x) \subseteq K$ and $T(x) \subseteq K$ for any $x \in \partial K$, then there exists $u \in K$ such that $u \in S u$ and $u \in T u$.

Proof. It is clear that (2.14) implies

$$
\begin{gathered}
H(S x, T y) \leq \alpha d(x, y) \\
+(\beta+\gamma) \max \{D(x, S x)+D(y, T y), D(x, T y)+D(y, S x)\}
\end{gathered}
$$

Since

$$
\begin{gathered}
\frac{(\alpha+\beta+\gamma)(1+\beta+\gamma)}{(1-\beta-\gamma)^{2}} \\
=\frac{\alpha+3(\beta+\gamma)+\alpha(\beta+\gamma)-2(\beta+\gamma)+(\beta+\gamma)^{2}}{1-2(\beta+\gamma)+(\beta+\gamma)^{2}}
\end{gathered}
$$

we see that (2.15) implies (2.4):

$$
\lambda=\alpha+3(\beta+\gamma)+\alpha(\beta+\gamma)<1
$$

Thus all assumptions of Theorem 2.1 are fulfiled, where now $(\beta+\gamma)$ has the same significance as β in Theorem 2.1.

As a slightly generalization of Theorem 2.1 we have the following result.

Theorem 2.2. Let (X, d) be a complete metrically convex metric space, K a nonempty closed subset of X and let $F=\left\{T_{j}\right\}_{j \in J}$ be a family of multi-valued mappings of K into $C B(X)$. Suppose that there exists some $T_{i} \in F$ such that for each $T_{j} \in F$

$$
\begin{gather*}
H\left(T_{i} x, T_{j} y\right) \leq \alpha_{j} d(x, y) \\
+\beta_{j} \max \left\{D\left(x, T_{i} x\right)+D\left(y, T_{j} y\right), D\left(x, T_{j} y\right)+D\left(y, T_{i} x\right)\right\} \tag{2.16}
\end{gather*}
$$

where α_{j}, β_{j} are nonnegative real numbers satisfying

$$
\lambda_{j}=\alpha_{j}+3 \beta_{j}+\alpha_{j} \beta_{j}<1
$$

If $T_{j}(\partial K) \subseteq K$ for each $T_{j} \in F$ then a family F has a common fixed point in K, i.e. there exists some $u \in K$ such that $u \in T_{j} u$ for all $T_{j} \in F$.

Proof. Let $T_{j_{0}}$ be an arbitrary but fixed member of F. Then from Theorem 2.1 with $S=T_{i}$ and $T=T_{j_{0}}$, there exists a point in K, say u,
which is a common fixed point of T_{i} and $T_{j_{0}}$. Let $T_{j} \in F, T_{j} \neq T_{j_{0}}$, be arbitrary. Then from (2.16) we have

$$
D\left(u, T_{j} u\right) \leq H\left(T_{i} u, T_{j} u\right) \leq \beta_{j} \max \left\{0+D\left(u, T_{j} u\right), D\left(u, T_{j} u\right)+0\right\},
$$

and hence

$$
\left(1-\beta_{j}\right) D\left(u, T_{j} u\right) \leq 0
$$

Since $\beta_{j} \leq \lambda_{j}<1$, we have $D\left(u, T_{j} u\right)=0$. Hence $u \in T_{j} u$, which completes the proof.

Now we shall give a common fixed point theorem for a pair of continuous multi-valued mappings weaking the condition (2.3), not requiring that the constant λ be less than 1 . We need the following.

Definition 1. Let K be a nonempty subset of a metric space (X, d). A mapping $T: K \rightarrow C B(X)$ is said to be continuous at $x_{0} \in K$ if for any $\varepsilon>0$, there exists a $\delta>0$ such that $H\left(T x, T x_{0}\right)<\varepsilon$, whenever $d\left(x, x_{0}\right)<\delta$. If T is continuous at each point of K, then T is said to be continuous on K.

Theorem 2.3. Let (X, d) be a complete and metrically convex metric space, K a nonempty compact subset of X. Let S, T be continuous mappings of K into $C B(X)$ such that for all $x, y \in K$ with $x \neq y$,

$$
\begin{gather*}
H(S x, T y)<\alpha d(x, y) \\
+\beta \max \{D(x, S x)+D(y, T y), D(x, T y)+D(y, S x)\} \tag{2.17}
\end{gather*}
$$

where $\alpha, \beta \geq 0$ and such that

$$
\begin{equation*}
\alpha+3 \beta+\alpha \beta \leq 1 \tag{2.18}
\end{equation*}
$$

If $S x \subset K$ and $T x \subset K$ for each $x \in \partial K$, then there exists an $u \in K$ such that $u \in S u, u \in T u$ and $S u=T u$.

Proof. Let $f(x)=D(x, S x)$ for each $x \in K$. Since for each $x, y \in K$

$$
D(x, S x) \leq d(x, y)+D(y, S x) ; \quad D(y, S x) \leq D(y, S y)+H(S y, S x)
$$

we have

$$
\begin{aligned}
\mid f(x)-f(y) & \leq|D(x, S x)-D(y, S x)|+|D(y, S x)-D(y, S y)| \\
& \leq d(x, y)+H(S x, S y) .
\end{aligned}
$$

Hence, as S is continuous, $f(x)$ is continuous. Similarly, the function $g(x)=D(x, T x)$ is continuous. Thus, the function

$$
h(x)=\min \{D(x, S x), D(x, T x)\}
$$

is continuous, and since K is compact, there exists a $z \in K$ such that $h(z)=\min \{h(x): x \in K\}$. Without loss of generality we may suppose that $h(z)=D(z, S z)$, i.e. that

$$
D(z, S z) \leq \min \{D(x, S x), D(x, T x)\}
$$

for each $x \in K$. We shall show that $D(z, S z)=0$. Assume the contrary that $h(x)>0$ for all $x \in K$. Let $\left\{x_{n}\right\}$ be a sequence in $S z$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(z, x_{n}\right)=D(z, S z) . \tag{2.19}
\end{equation*}
$$

If there exists an infinite subsequence of $\left\{x_{n}\right\}$ which is contained in a compact subset K, then there exists a subsequence $\left\{x_{n_{i}}\right\}$ which converges to some x_{0}. Since $S z$ is closed, $x_{0} \in S z$. Thus $d\left(z, x_{0}\right)=D(z, S z)$. From (2.17) we obtain

$$
\begin{gathered}
D\left(x_{0}, T x_{0}\right) \leq H\left(S z, T x_{0}\right) \\
<\alpha d\left(z, x_{0}\right)+\beta \max \left\{D(z, S z)+D\left(x_{0}, T x_{0}\right), D\left(z, T x_{0}\right)\right\}
\end{gathered}
$$

and hence, as $D\left(z, T x_{0}\right) \leq d\left(z, x_{0}\right)+D\left(x_{0}, T x_{0}\right)=D(z, S z)+D\left(x_{0}, T x_{0}\right)$, we have

$$
D\left(x_{0}, T x_{0}\right)<\alpha D(z, S z)+\beta\left(D(z, S z)+D\left(x_{0}, T x_{0}\right)\right) .
$$

Now, using that $D(z, S z) \leq D\left(x_{0}, T x_{0}\right)$ and $\alpha+2 \beta \leq 1$, we have

$$
D\left(x_{0}, T x_{0}\right)<(\alpha+2 \beta) D\left(x_{0}, T x_{0}\right) \leq D\left(x_{0}, T x_{0}\right),
$$

a contradiction.
Suppose now that $x_{n} \notin K$ for all sufficiently large n. Since X is convex and $z \in K$, for each such x_{n} there exists $y_{n} \in \partial K$ such that

$$
\begin{equation*}
d\left(z, y_{n}\right)+d\left(y_{n}, x_{n}\right)=d\left(z, x_{n}\right) . \tag{2.20}
\end{equation*}
$$

Since ∂X is compact, we may suppose, for the sake of convenience, that $\left\{y_{n}\right\}$ converges to some $y_{0} \in \partial K$. Since g is continuous,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} D\left(y_{n}, T y_{n}\right)=D\left(y_{0}, T y_{0}\right) \tag{2.21}
\end{equation*}
$$

By the triangle inequality, (2.20) and (2.17) we have

$$
\begin{aligned}
& D\left(y_{n}, T y_{n}\right) \leq d\left(y_{n}, x_{n}\right)+D\left(x_{n}, T y_{n}\right) \\
& \quad \leq d\left(z, x_{n}\right)-d\left(z, y_{n}\right)+H\left(S z, T y_{n}\right)<d\left(z, x_{n}\right)-d\left(z, y_{n}\right) \\
& \quad+\alpha d\left(z, y_{n}\right)+\beta \max \left\{D(z, S z)+D\left(y_{n}, T y_{n}\right), D\left(z, T y_{n}\right)+D\left(y_{n}, S z\right)\right\} \\
& \leq d\left(z, x_{n}\right) \\
& \quad+\beta \max \left\{D(z, S z)+D\left(y_{n}, T y_{n}\right), d\left(z, y_{n}\right)+D\left(y_{n}, T y_{n}\right)+d\left(y_{n}, x_{n}\right)\right\} \\
& =d\left(z, x_{n}\right)+\beta \max \left\{D(z, S z)+D\left(y_{n}, T y_{n}\right), d\left(z, x_{n}\right)+D\left(y_{n}, T y_{n}\right)\right\} .
\end{aligned}
$$

Taking the limit when n tends to infinity and considering (2.19) and (2.21) we get

$$
D\left(y_{0}, T y_{0}\right) \leq D(z, S z)+\beta\left(D(z, S z)+D\left(y_{0}, T y_{0}\right)\right)
$$

Hence

$$
\begin{equation*}
D\left(y_{0}, T y_{0}\right) \leq \frac{1+\beta}{1-\beta} D(z, S z) . \tag{2.22}
\end{equation*}
$$

Since $y_{0} \in \partial K, T y_{0} \subset K$. Thus $T y_{0}$ is compact and so there exists $u \in T y_{0}$ such that $d\left(y_{0}, u\right)=D\left(y_{0}, T y_{0}\right)$.

From (2.17),

$$
\begin{gathered}
D(u, S u) \leq H\left(T y_{0}, S u\right) \\
<\alpha d\left(u, y_{0}\right)+\beta \max \left\{D(u, S u)+D\left(y_{0}, T y_{0}\right), D\left(y_{0}, S u\right)\right\} .
\end{gathered}
$$

Since $D\left(y_{0}, S u\right) \leq d\left(y_{0}, u\right)+D(u, S u)=D\left(y_{0}, T y_{0}\right)+D(u, S u)$, we have

$$
D(u, S u)<\alpha D\left(y_{0}, T y_{0}\right)+\beta\left(D(u, S u)+D\left(y_{0}, T y_{0}\right)\right)
$$

and hence

$$
D(u, S u)<\frac{\alpha+\beta}{1-\beta} D\left(y_{0}, T y_{0}\right) .
$$

So by (2.22) we have

$$
\begin{equation*}
D(u, S u)<\frac{\alpha+\beta}{1-\beta} \cdot \frac{1+\beta}{1-\beta} D(z, S z) . \tag{2.23}
\end{equation*}
$$

Since

$$
\frac{(\alpha+\beta)(1+\beta)}{(1-\beta)^{2}}=\frac{\alpha+3 \beta+\alpha \beta-2 \beta+\beta^{2}}{1-2 \beta+\beta^{2}},
$$

by (2.18) we get $(\alpha+\beta)(1+\beta) /(1-\beta)^{2} \leq 1$. Thus by (2.23) we have

$$
D(u, S u)<D(z, S z)
$$

a contradiction with definition of $D(z, S z)$. Therefore, $D(z, S z)=0$. Hence, as $S z$ is closed, $z \in S z$. Further, if we suppose that $z \notin T z$, then by (2.17) we have

$$
D(z, T z) \leq H(S z, T z)<\beta D(z, T z) \leq D(z, T z),
$$

a contradiction. Therefore, z is a common fixed point of S and T. This completes the proof.

Remark. Theorem 2.3 is a generalization of Theorem 3.4 of Kahn [5] and a generalization and an extension of Theorem 2 of Ітон [4] and Theorem of ASSAD [1]. The presented method of proof gives a simplification of the corresponding proofs given by Itoh and Khan.

References

[1] N. A. Assad, Fixed point theorems for set valued transformations on compact set, Boll. Un. Mat. Ital. 4 (1973), 1-7.
[2] A. AsSAD and W. A. Kirk, Fixed point theorems for set valued mappings of contractive type, Pacific J. Math. 43 (1972), 535-562.
[3] L. M. Blumenthal, Theory and applications of distance geometry, Press Oxford, 1953.
[4] S. Itон, Multi-valued generalized contractions and fixed point theorems, Comment. Math. Univ. Caroline 18 (1977), 247-258.
[5] M. S. Khan, Common fixed point theorems for multi-valued mappings, Pacific J. Math. 95 (1981), 337-347.
[6] J. T. Markin, A fixed point theorem for set valued mappings, Bull. Amer. Math. Soc. 74 (1968), 639-640.
[7] S. B. Nadler, Multivalued contraction mappings, Pacific J. Math. 30 (1969), 475-488.
[8] B. E. Rhoades, A fixed point theorem for a multi-valued non-self mapping, Comment. Math. Univ. Caroline 37 (1996), 401-404.

LJUBOMIR ĆIRIĆ
FACULTY OF MECHANICAL ENGINEERING
ALEKSINAČKIH RUDARA 12-35
11080 BELGRADE
YUGOSLAVIA
E-mail: edule@alfa.mas.bg.ac.yu
JEONG SHEOK UME
DEPARTMENT OF APPLIED MATHEMATICS
CHANGWON NATIONAL UNIVERSITY
CHANGWON 641-773
korea
E-mail: jsume@sarim.changwon.ac.kr
(Received April 17, 2001; revised June 15, 2001)

