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Common fixed point theorems for multi-valued
non-self mappings

By LJ. B. CIRIC (Belgrade) and J. S. UME (Changwon)

Abstract. In this paper we prove three common fixed point theorems for a pair
of multi-valued non-self mappings in metrically convex metric spaces. Our results gen-
eralize and extend the main theorem of AssaD and KIRK [2] and the theorems of ASSAD
[1], IToH [4] and KHAN [5].

1. Introduction

MARKIN [6] and NADLER [7] initiated the study of fixed point theo-
rems for multi-valued mappings. There are many fixed point theorems for
multi-valued mappings of a closed subset K of a complete metric space
(X,d) into a class of subsets of K. However, in many applications the
contractive mappings occur in convex setting and involved mapping is not
a self-mapping of K. Recently some authors ([1], [2], [4], [5], [8]) gave
sufficient conditions for some multi-valued mappings from K into a class
of closed bounded subset of X to have a fixed point in K. In this paper we
prove two main common fixed point theorems for a pair of multi-valued
non-self mappings. We use a more effective method of a proof in both the-
orems and obtain theorems which generalize the main theorem of ASSAD
and KIRK [2] and the theorems of ASsAD [1], ITOH [4] and KHAN [5].
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2. Main results

Let (X,d) be a metric space and let CB(X) denote the family of
all nonempty bounded and closed subsets of X. For A, B € CB(X), let
H(A, B) denote the distance of subsets A and B in the Hausdorff metric
introduced by d on CB(X), i.e.

H(A, B) = max (sup{D(a, B) : a € A}, sup{D(A,b) : b € B}),

where

D(z,A) = inf{d(z,a) : a € A}.

It is known that CB(X) is a metric space with the distance func-
tion H.

In the theorem below we assume X is a complete metric space which
is convex in the sense of Menger, that is, X has the property that for each
x, y in X with x # y there exists z in X, x # z, y # z, such that

d(z,2) +d(z,y) = d(z,y).

Further (see [2], [3]), if K is a closed subset of X and if x € K and
y ¢ K, then there exists a point z in 0K, 0K = the boundary of K, such
that
d(z,z) +d(z,y) = d(z,y).

We prove the following simple lemma which enables to make more
effective the proof of the theorems related to multi-valued mappings on
metric spaces.

Lemma 1. If A, B € CB(X) and a € A, then for any positive number
q < 1 there exists b = b(a) in B such that

(2.1) qd(a,b) < H(A, B).

ProoFf. If H(A,B) = 0, then A = B and (2.1) trivially holds for
b(a) = a.

Suppose now that H(A, B) > 0. By definition of D(a, B) and H(A, B),
for any positive number ¢ there exists b € B such that

(2.2) d(a,b) < D(a,B) +¢ < H(A, B) +«.
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Let 0 < g < 1. Then ¢-! —1 > 0. Since H(A, B) > 0,
e= (¢ ' —=1)H(A,B) > 0.
By inserting this € in (2.2), we get (2.1). O
Now, we prove the following:

Theorem 2.1. Let (X,d) be a complete metrically convex metric
space and K a nonempty closed subset of X. Let S, T be mappings
of K into CB(X) such that

H(Sz,Ty) < ad(x,y)
(2.3)
+Bmax{D(x,Sz) + D(y,Ty), D(x,Ty) + D(y, Sz)},

where «, § are nonnegative real numbers satisfying
(2.4) A=a+38+ab <1.

If S C K and T C K for each x € K then there exists an u € K such
that u € Su, u € Tu and Su = Tu.

PROOF. We select two sequences {z,} and {y,} in K and X, respec-

tively, in the following way:
Let g in OK and x1 = y1 € Sxg be arbitrary. Let a be any fixed
number such that 0 < a < % Put ¢ = \*.

Then from (2.4), ¢ < 1. By Lemma 1.1, we can choose yo € T'zq such that
qd(yla 3/2) < H(S!L’U, Tl‘l)

If yo € K, put &2 = y. If yo ¢ K, then, as X is convex, we can choose
z9 € OK such that

d(z1,x2) + d(22,92) = d(1,92).
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Let y3 € Sxo be such that
qd(y2,y3) < H(Txy, Sxa).

By induction we may obtain sequences {z,} and {y,} such that for n =
1,2,...

(i) yn € Szp—_1, if n is odd and
Yn € Txp_q, if n is even;

(11) qd(yna yn+1) < H(S‘Tn—laTxn)a if n is odd and
qd(Yny Ynt1) < H(Txp—1,Sxy), if n is even;

(iil) Yn+1 = Tnt1, if Yne1 € K for all n, or

(iv) d(zn,Tnt1) + d(Tpi1,Ynt1) = d(Tn, Ynt1) and 41 € 0K,
if yp+1 ¢ K for all n.

Define
P={z;e{zn} i =y}, Q={wi €{zn}:zi#yi}.

Observe that if x,, € @ for some n, then x,_1 and x,+1 belong to P, as
two consecutive terms of {x,,} cannot be in Q.

We wish to estimate d(z,,z,+1). Three cases need to be considered.

Case 1. x, € P and z,,41 € P. If n is odd, then from (ii) and (2.3)
we have

qd(Tn; Tpt1) = qd(Yn, Ynt1) < H(Szp—1,Tpn) < ad(Tn-1, 2n)
+ Bmax{D(xp—1,5Cn_1)+D(xn, Txy), D(xp—1,Txn)+D(xpn, Stpn_1)}
< ad(zp-1,2,) + fmax{d(zy—1,2n) + d(Tn, Tnt1), d(Tn-1,Tn+1)}
Hence, using the triangle inequality for d(z,—1,Zp+1),
(2.5)  qd(zn, zpi1) < ad(@p—1,20) + B(d(@n-1,20) + d(Zp, Tns1))-
From (2.5) we get

a+pf
q—p

(2.6) A(Xp, Tpy1) < < ) d(Tp—1,%n)-
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We obtain a similar inequality for n even.
Case 2. x, € P and z,41 € Q. Then by (iv)

d(xnyxn—f—l) < d(xnyyn—&-l) = d(ynayn+1)-
By the same method, as in Case 1, we have for odd and even n

a+ 0
q—p

Case 3. x, € Q and x,41 € P. By the triangle inequality we have

(2.7) d(xp, Tpy1) < < ) d(Tp—1,%n)-

d(xnv .Z‘n+1) < d(xna yn) + d(yna xn+1) = d(xnv yn) + d(yna yn—i-l)'

Let n be odd. Then from (ii) and (2.3) we have

qd(xn, Tny1) < qd(@n, yYn) + qd(Yn, Ynt1) < qd(@n, yn) + H(S2n_1, Ty)
< qd(xp, Yn) + ad(p—1,2,) + fmax{D(x,_1,STn_1)
(2.8) + D(zp, Txy), D(xp—1,Txy) + D(2p, Sp_1)}
< qd(xp,Yn) + ad(xp—1,2,) + fmax{d(z,—1,Yn)
+ d(xn, Yns1), d(Tn-1, Tni1) + d(@n, yn) }-

Since two consecutive terms of {z,} cannot be in @, x,,—1 € P. Then
by (iv), d(zn, Yn)+d(Xpn_1,Tn) =d(xn_1,yn) and hence, as « < A < \* =g,
we have

qd(Tn, yn) + ad(Tn_1,2n) < qd(Tn—1,Yn)-

Also, by the triangle inequality,
d(@n—1,Zni1) + d(@n, yn) < d(@n-1,2n) + d(Tn, Tni1) + d(@n, Yn)
=d(p—1,Yn) + d(Tpn, Tni1).
Thus from (2.8) we get
qd(xn, Tni1) < qd(Zn—1,yn) + Bd(zn—1,yn) + Bd(zn, Tny1)

and hence

(2.9) ATy, Tpg1) < (q) d(Trn—1,Yn)-
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We obtain a similar inequality for an even n.
Since by the above observation z,_; € P, we have d(z,—1,yn) =
d(Yn—1,yn) and so by the same method as in Case 1 we get

(2.10) d(@n_1,yn) < <Zf§> A(n_, 20 1),
By (2.9) and (2.10) we obtain
(2.11) A, 1) < <Zf§) (ng) A9, Tn1).

Since ¢ = A* < 1, we have

=

(a+B)(q+B) +2¢6 — 5% — ¢

= q? — 298 + 2
(a+B)(1+8)+26—p5°—¢

=it q? —2qB + 3?

_1_/\2a—(a+3ﬁ+aﬁ) L A2a— )

B (A® — )2 (A =Py

Since A%% > \, we conclude that h < 1.
By (2.6), (2.7) and (2.11), we conclude that in all cases

(2.13) d(zy, Tpy1) < hmax{d(xp—2,2n-1),d(Tn_1,Tn)}

for all n > 2, where h is given by (2.12).
Now it is easily shown by induction that from (2.13) we have

d(xna xn—i—l) S h(n_l)/2 maX{d(ZEn—% xn—l)v d(CEn—ly xn)}

Form>n> N,

d(@p, Tm) < ) d(wi, Tit1)

s

i
2

IA

hN/2
<h1/2_h> max {d($n—27 xn—l), d(mn—la xn)}
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Hence we conclude that {z,,} is a Cauchy sequence, hence convergent. Call
the limit u. From the way in which the {z, } were chosen, there exists an
infinite subsequence {z,,} of {x,} such that z,, € P. Then for an odd
nE = m, we have

D(zp,,Tu) < H(Sxp—1,Tu)
< ad(Tm—1,u)
+ Bmax {D(p—1, STm—-1) + D(u, Tu), D(Tp—1,Tu) + D(u, Szp_1)}
< ad(zpm—1,u)

+ Bmax {d(Tp—1,Tm) + D(u, Tu), D(zm—1,Tu) + d(u, zm)}.
Taking the limit as k — oo yields
D(u,Tu) < BD(u, Tu),

which implies, as § < 1, that D(u,Tu) = 0. Since T'u is closed, u € Tu.
Similarly, we can show that v € Su. Thus u is a common fixed point of S
and 7.

From (2.3)

H(Su,Tu) < ad(u,u)
+Bmax {D(u, Su) + D(u, Tu), D(u,Tu) + D(u, Su)} = 0,

which implies Su = Tu. O
From Theorem 2.1 we have the main result of KHAN [5] as corollary.

Corollary 2.1 ([5, Theorem 3.1]). Let (X, d) be a complete metrically
convex metric space and K a nonempty closed subset of X. Let S, T be

mappings of K into CB(X) such that
2.14) H(Sz,Ty) < ad(x,y) + ﬂ(D(x, Sz) + D(y, Ty))
2.14

+7(D(z,Ty) + D(y, Sz)),

where «, 3, v are nonnegative real numbers satisfying

(a+B8+7)A+B+7)
(1—-08—n7)?

(2.15) <1.
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If S(x) C K and T'(z) C K for any x € 0K, then there exists u € K such
that v € Su and u € Tu.

PROOF. It is clear that (2.14) implies

H(Sz,Ty) < ad(z,y)
+(8+v) max{D(z,Sx) + D(y, Ty), D(x,Ty) + D(y, Sx)}.

Since

(a+B8+7)A+B+7)
(1—03—7)?
_at+3(B+y)+aB+y)—208+7)+(B+9)°

1=2(847) + (B+7)? ’

we see that (2.15) implies (2.4):

A=a+3B+7)+a(f+7v) <1

Thus all assumptions of Theorem 2.1 are fulfiled, where now (3 + ) has
the same significance as 3 in Theorem 2.1.

As a slightly generalization of Theorem 2.1 we have the following
result.

Theorem 2.2. Let (X,d) be a complete metrically convex metric
space, KX a nonempty closed subset of X and let F' = {1} };c; be a family
of multi-valued mappings of K into CB(X). Suppose that there exists
some T; € F' such that for each T; € F

H(Tyx, Tyy) < ajd(z,y)

2.16
(219 +B3j max{D(x, Tiz) + D(y, T;y), D(x, Tjy) + D(y, Tix)},

where o, 3; are nonnegative real numbers satisfying
)\j = Qj +3ﬁj +Oéjﬁj < 1.

If T;(0K) C K for each T € F then a family F' has a common fixed point
in K, i.e. there exists some v € K such that v € Tju for all T; € F'.

Proor. Let T}, be an arbitrary but fixed member of F'. Then from

Theorem 2.1 with S = T; and T' = Tj,, there exists a point in K, say wu,
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which is a common fixed point of T; and Tj,. Let T; € F, T; # Tj,, be
arbitrary. Then from (2.16) we have

D(u, Tju) < H(Tyu, Tju) < B max{0 + D(u, Tju), D(u, Tju) + 0},
and hence
(1= B;)D(u, Tyu) < 0.

Since B; < A; < 1, we have D(u,Tju) = 0. Hence u € Tju, which
completes the proof. O

Now we shall give a common fixed point theorem for a pair of con-
tinuous multi-valued mappings weaking the condition (2.3), not requiring
that the constant A be less than 1. We need the following.

Definition 1. Let K be a nonempty subset of a metric space (X, d).
A mapping T : K — CB(X) is said to be continuous at xo € K if for
any € > 0, there exists a § > 0 such that H(Tz,Tzy) < €, whenever
d(xz,zo) < 6. If T is continuous at each point of K, then T is said to be
continuous on K.

Theorem 2.3. Let (X, d) be a complete and metrically convex met-
ric space, K a nonempty compact subset of X. Let S, T be continuous

mappings of K into C B(X) such that for all x,y € K with x # vy,
H(Sz,Ty) < ad(x,y)
(2.17)
+Bmax{D(x, Sx) + D(y, Ty), D(x,Ty) + D(y, Sz)},

where «, 6 > 0 and such that
(2.18) a+38+af<1.

If Sx C K and Tx C K for each x € OK, then there exists an u € K such
that u € Su, u € Tu and Su = Tu.

PrOOF. Let f(z) = D(z, Sz) for each x € K. Since for each z,y € K
D(z,Sz) <d(z,y)+ D(y,Sz); D(y,Sx) < D(y,Sy) + H(Sy, Sz),
we have

|f(x) = f(y) < |D(x, Sz) — D(y, Sz)| + |D(y, Sx) — D(y, Sy)|
<d(z,y) + H(Sz, Sy).
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Hence, as S is continuous, f(x) is continuous. Similarly, the function
g(z) = D(z,Tz) is continuous. Thus, the function

h(z) = min{D(z, Sz), D(z,Tx)}

is continuous, and since K is compact, there exists a z € K such that
h(z) = min{h(x) : = € K}. Without loss of generality we may suppose
that h(z) = D(z,Sz), i.e. that

D(z,Sz) < min{D(z, Sz), D(z,Tx)}

for each x € K. We shall show that D(z,Sz) = 0. Assume the contrary
that h(z) > 0 for all z € K. Let {z,} be a sequence in Sz such that

(2.19) lim d(z,z,) = D(z,Sz).

n—o0o

If there exists an infinite subsequence of {z,,} which is contained in a
compact subset K, then there exists a subsequence {z,,, } which converges
to some xo. Since Sz is closed, zg € Sz. Thus d(z,x¢) = D(z,S5z). From
(2.17) we obtain

D(mg,Txo) < H(SZ,T&'O)
< ad(z,x0) + fmax{D(z,Sz) + D(xg, Txo), D(z,Tx0)}

and hence, as D(z,Txo) < d(z,z0)+ D(zo, Txo) = D(2,5%)+ D(x0,Tx0),
we have

D(zo,Txo) < aD(z,8z) + 3(D(z,Sz) + D(zg, Tzo)).
Now, using that D(z,Sz) < D(xg,Txo) and a4+ 23 < 1, we have
D(xo, Txo) < (o +28)D(2o, Txo) < D(wo, To),

a contradiction.
Suppose now that x,, ¢ K for all sufficiently large n. Since X is
convex and z € K, for each such z,, there exists y,, € K such that

(2.20) d(z,Yn) + d(Yn, xn) = d(z, x,).
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Since 0X is compact, we may suppose, for the sake of convenience, that
{yn} converges to some yo € K. Since g is continuous,

(2.21) Jim D (yn, Tyn) = D(yo, To)-
By the triangle inequality, (2.20) and (2.17) we have
D(yn, Tyn) < d(yn, n) + D(zn, Tyn)
<d(z,x,) —d(z,yn) + H(Sz,Ty,) < d(z,z,) — d(z,yn)
+ ad(z,yn) + fmax{D(z,5z) + D(Yn, Tyn), D(z, Tyn) + D(yn, S2)}
< d(z,zy)
+ Bmax{D(z,5z) + D(yn, Tyn), d(2,yn) + D(yn, Tyn) + d(yn, 24)}
=d(z,x,) + fmax{D(z,52) + D(yn, Tyn),d(z,xn) + D(Yn, Tyn)}

Taking the limit when n tends to infinity and considering (2.19) and (2.21)
we get

D(yo, Tyo) < D(z,Sz) + B(D(z,52) + D(yo, Tyo))-
Hence

(2.22) Dlun. To) < 5D 52).

Since yg € 0K, Tyg C K. Thus Tyq is compact and so there exists u € Tyq
such that d(yo,u) = D(yo, Tyo)-
From (2.17),

D(u, Su) < H(Tyo, Su)

< Oéd(u, yO) + BmaX{D(ua Su) + D(yOa TyO)v D(yOa Su)}
Since D(yo, Su) < d(yo,w) + D(u, Su) = D(yo, Tyo) + D(u, Su), we have

D(“? Su) < aD(yOaTyO) + ﬁ(D(’W Su) + D(yo,Tyo))
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and hence

gD(yo,Tyo)-

D(u, Su) < clyi—

So by (2.22) we have

a+p
1-4

(2.23) D(u, Su) < . igD(z, Sz).

Since

(a+B)(1+B) a+38+aB—28+43°

(1-75)? 1—26+ 3 ’
by (2.18) we get (a + 3)(1 + 3)/(1 — )% < 1. Thus by (2.23) we have

D(u, Su) < D(z,Sz),

a contradiction with definition of D(z,Sz). Therefore, D(z,S5z) = 0.
Hence, as Sz is closed, z € Sz. Further, if we suppose that z ¢ Tz,
then by (2.17) we have

D(z,Tz) < H(Sz,Tz) < D(z,Tz) < D(z,T%),

a contradiction. Therefore, z is a common fixed point of S and 7. This
completes the proof. O

Remark. Theorem 2.3 is a generalization of Theorem 3.4 of KAHN [5]
and a generalization and an extension of Theorem 2 of ITOH [4] and The-
orem of ASSAD [1]. The presented method of proof gives a simplification
of the corresponding proofs given by Itoh and Khan.
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