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Common fixed point theorems for multi-valued
non-self mappings

By LJ. B. ĆIRIĆ (Belgrade) and J. S. UME (Changwon)

Abstract. In this paper we prove three common fixed point theorems for a pair
of multi-valued non-self mappings in metrically convex metric spaces. Our results gen-
eralize and extend the main theorem of Assad and Kirk [2] and the theorems of Assad
[1], Itoh [4] and Khan [5].

1. Introduction

Markin [6] and Nadler [7] initiated the study of fixed point theo-
rems for multi-valued mappings. There are many fixed point theorems for
multi-valued mappings of a closed subset K of a complete metric space
(X, d) into a class of subsets of K. However, in many applications the
contractive mappings occur in convex setting and involved mapping is not
a self-mapping of K. Recently some authors ([1], [2], [4], [5], [8]) gave
sufficient conditions for some multi-valued mappings from K into a class
of closed bounded subset of X to have a fixed point in K. In this paper we
prove two main common fixed point theorems for a pair of multi-valued
non-self mappings. We use a more effective method of a proof in both the-
orems and obtain theorems which generalize the main theorem of Assad

and Kirk [2] and the theorems of Assad [1], Itoh [4] and Khan [5].
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2. Main results

Let (X, d) be a metric space and let CB(X) denote the family of
all nonempty bounded and closed subsets of X. For A, B ∈ CB(X), let
H(A,B) denote the distance of subsets A and B in the Hausdorff metric
introduced by d on CB(X), i.e.

H(A,B) = max
(
sup{D(a,B) : a ∈ A}, sup{D(A, b) : b ∈ B}),

where
D(x,A) = inf{d(x, a) : a ∈ A}.

It is known that CB(X) is a metric space with the distance func-
tion H.

In the theorem below we assume X is a complete metric space which
is convex in the sense of Menger, that is, X has the property that for each
x, y in X with x 6= y there exists z in X, x 6= z, y 6= z, such that

d(x, z) + d(z, y) = d(x, y).

Further (see [2], [3]), if K is a closed subset of X and if x ∈ K and
y /∈ K, then there exists a point z in ∂K, ∂K = the boundary of K, such
that

d(x, z) + d(z, y) = d(x, y).

We prove the following simple lemma which enables to make more
effective the proof of the theorems related to multi-valued mappings on
metric spaces.

Lemma 1. If A, B ∈ CB(X) and a ∈ A, then for any positive number

q < 1 there exists b = b(a) in B such that

(2.1) qd(a, b) ≤ H(A,B).

Proof. If H(A,B) = 0, then A = B and (2.1) trivially holds for
b(a) = a.

Suppose now that H(A,B)> 0. By definition of D(a, B) and H(A,B),
for any positive number ε there exists b ∈ B such that

(2.2) d(a, b) ≤ D(a,B) + ε ≤ H(A, B) + ε.
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Let 0 < q < 1. Then q−1 − 1 > 0. Since H(A,B) > 0,

ε = (q−1 − 1)H(A,B) > 0.

By inserting this ε in (2.2), we get (2.1). ¤

Now, we prove the following:

Theorem 2.1. Let (X, d) be a complete metrically convex metric

space and K a nonempty closed subset of X. Let S, T be mappings

of K into CB(X) such that

(2.3)
H(Sx, Ty) ≤ αd(x, y)

+β max{D(x, Sx) + D(y, Ty), D(x, Ty) + D(y, Sx)},

where α, β are nonnegative real numbers satisfying

(2.4) λ = α + 3β + αβ < 1.

If Sx ⊆ K and T ⊆ K for each x ∈ K then there exists an u ∈ K such

that u ∈ Su, u ∈ Tu and Su = Tu.

Proof. We select two sequences {xn} and {yn} in K and X, respec-
tively, in the following way:

Let x0 in ∂K and x1 = y1 ∈ Sx0 be arbitrary. Let a be any fixed
number such that 0 < a < 1

2 . Put q = λa.

Then from (2.4), q < 1. By Lemma 1.1, we can choose y2 ∈ Tx1 such that

qd(y1, y2) ≤ H(Sx0, Tx1).

If y2 ∈ K, put x2 = y2. If y2 /∈ K, then, as X is convex, we can choose
x2 ∈ ∂K such that

d(x1, x2) + d(x2, y2) = d(x1, y2).
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Let y3 ∈ Sx2 be such that

qd(y2, y3) ≤ H(Tx1, Sx2).

By induction we may obtain sequences {xn} and {yn} such that for n =
1, 2, . . .

(i) yn ∈ Sxn−1, if n is odd and
yn ∈ Txn−1, if n is even;

(ii) qd(yn, yn+1) ≤ H(Sxn−1, Txn), if n is odd and
qd(yn, yn+1) ≤ H(Txn−1, Sxn), if n is even;

(iii) yn+1 = xn+1, if yn+1 ∈ K for all n, or

(iv) d(xn, xn+1) + d(xn+1, yn+1) = d(xn, yn+1) and xn+1 ∈ ∂K,
if yn+1 /∈ K for all n.

Define

P = {xi ∈ {xn} : xi = yi}, Q = {xi ∈ {xn} : xi 6= yi}.

Observe that if xn ∈ Q for some n, then xn−1 and xn+1 belong to P , as
two consecutive terms of {xn} cannot be in Q.

We wish to estimate d(xn, xn+1). Three cases need to be considered.

Case 1. xn ∈ P and xn+1 ∈ P . If n is odd, then from (ii) and (2.3)
we have

qd(xn, xn+1) = qd(yn, yn+1) ≤ H(Sxn−1, Txn) ≤ αd(xn−1, xn)

+ β max{D(xn−1, Sxn−1)+D(xn, Txn), D(xn−1, Txn)+D(xn, Sxn−1)}
≤ αd(xn−1, xn) + β max{d(xn−1, xn) + d(xn, xn+1), d(xn−1, xn+1)}.

Hence, using the triangle inequality for d(xn−1, xn+1),

(2.5) qd(xn, xn+1) ≤ αd(xn−1, xn) + β
(
d(xn−1, xn) + d(xn, xn+1)

)
.

From (2.5) we get

(2.6) d(xn, xn+1) ≤
(

α + β

q − β

)
d(xn−1, xn).



Common fixed point theorems for multi-valued non-self mappings 363

We obtain a similar inequality for n even.
Case 2. xn ∈ P and xn+1 ∈ Q. Then by (iv)

d(xn, xn+1) ≤ d(xn, yn+1) = d(yn, yn+1).

By the same method, as in Case 1, we have for odd and even n

(2.7) d(xn, xn+1) ≤
(

α + β

q − β

)
d(xn−1, xn).

Case 3. xn ∈ Q and xn+1 ∈ P . By the triangle inequality we have

d(xn, xn+1) ≤ d(xn, yn) + d(yn, xn+1) = d(xn, yn) + d(yn, yn+1).

Let n be odd. Then from (ii) and (2.3) we have

qd(xn, xn+1) ≤ qd(xn, yn) + qd(yn, yn+1) ≤ qd(xn, yn) + H(Sxn−1, Txn)

≤ qd(xn, yn) + αd(xn−1, xn) + β max{D(xn−1, Sxn−1)

+ D(xn, Txn), D(xn−1, Txn) + D(xn, Sxn−1)}(2.8)

≤ qd(xn, yn) + αd(xn−1, xn) + β max{d(xn−1, yn)

+ d(xn, yn+1), d(xn−1, xn+1) + d(xn, yn)}.

Since two consecutive terms of {xn} cannot be in Q, xn−1 ∈ P . Then
by (iv), d(xn, yn)+d(xn−1, xn)= d(xn−1, yn) and hence, as α ≤ λ < λa = q,
we have

qd(xn, yn) + αd(xn−1, xn) ≤ qd(xn−1, yn).

Also, by the triangle inequality,

d(xn−1, xn+1) + d(xn, yn) ≤ d(xn−1, xn) + d(xn, xn+1) + d(xn, yn)

= d(xn−1, yn) + d(xn, xn+1).

Thus from (2.8) we get

qd(xn, xn+1) ≤ qd(xn−1, yn) + βd(xn−1, yn) + βd(xn, xn+1)

and hence

(2.9) d(xn, xn+1) ≤
(

q + β

q − β

)
d(xn−1, yn).
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We obtain a similar inequality for an even n.
Since by the above observation xn−1 ∈ P , we have d(xn−1, yn) =

d(yn−1, yn) and so by the same method as in Case 1 we get

(2.10) d(xn−1, yn) ≤
(

α + β

q − β

)
d(xn−2, xn−1).

By (2.9) and (2.10) we obtain

(2.11) d(xn, xn+1) ≤
(

α + β

q − β

)(
q + β

q − β

)
d(xn−2, xn−1).

Since q = λa < 1, we have

h =
(

α + β

q − β

)(
q + β

q − β

)
(2.12)

= 1 +
(α + β)(q + β) + 2qβ − β2 − q2

q2 − 2qβ + β2

≤ 1 +
(α + β)(1 + β) + 2β − β2 − q2

q2 − 2qβ + β2

= 1− λ2a − (α + 3β + αβ)
(λa − β)2

= 1− λ2a − λ

(λa − β)2
.

Since λ2a > λ, we conclude that h < 1.
By (2.6), (2.7) and (2.11), we conclude that in all cases

(2.13) d(xn, xn+1) ≤ h max{d(xn−2, xn−1), d(xn−1, xn)}

for all n ≥ 2, where h is given by (2.12).
Now it is easily shown by induction that from (2.13) we have

d(xn, xn+1) ≤ h(n−1)/2 max{d(xn−2, xn−1), d(xn−1, xn)}.

For m > n > N ,

d(xn, xm) ≤
∞∑

i=N

d(xi, xi+1)

≤
(

hN/2

h1/2 − h

)
max

{
d(xn−2, xn−1), d(xn−1, xn)

}
.
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Hence we conclude that {xn} is a Cauchy sequence, hence convergent. Call
the limit u. From the way in which the {xn} were chosen, there exists an
infinite subsequence {xnk

} of {xn} such that xnk
∈ P . Then for an odd

nk = m, we have

D(xnk
, Tu) ≤ H(Sxm−1, Tu)

≤ αd(xm−1, u)

+ β max
{
D(xm−1, Sxm−1) + D(u, Tu), D(xm−1, Tu) + D(u, Sxm−1)

}

≤ αd(xm−1, u)

+ β max
{
d(xm−1, xm) + D(u, Tu), D(xm−1, Tu) + d(u, xm)

}
.

Taking the limit as k →∞ yields

D(u, Tu) ≤ βD(u, Tu),

which implies, as β < 1, that D(u, Tu) = 0. Since Tu is closed, u ∈ Tu.
Similarly, we can show that u ∈ Su. Thus u is a common fixed point of S

and T .
From (2.3)

H(Su, Tu) ≤ αd(u, u)

+β max
{
D(u, Su) + D(u, Tu), D(u, Tu) + D(u, Su)

}
= 0,

which implies Su = Tu. ¤

From Theorem 2.1 we have the main result of Khan [5] as corollary.

Corollary 2.1 ([5, Theorem 3.1]). Let (X, d) be a complete metrically

convex metric space and K a nonempty closed subset of X. Let S, T be

mappings of K into CB(X) such that

(2.14)
H(Sx, Ty) ≤ αd(x, y) + β

(
D(x, Sx) + D(y, Ty)

)

+ γ
(
D(x, Ty) + D(y, Sx)

)
,

where α, β, γ are nonnegative real numbers satisfying

(2.15)
(α + β + γ)(1 + β + γ)

(1− β − γ)2
< 1.
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If S(x) ⊆ K and T (x) ⊆ K for any x ∈ ∂K, then there exists u ∈ K such

that u ∈ Su and u ∈ Tu.

Proof. It is clear that (2.14) implies

H(Sx, Ty) ≤ αd(x, y)

+(β + γ)max{D(x, Sx) + D(y, Ty), D(x, Ty) + D(y, Sx)}.

Since

(α + β + γ)(1 + β + γ)
(1− β − γ)2

=
α + 3(β + γ) + α(β + γ)− 2(β + γ) + (β + γ)2

1− 2(β + γ) + (β + γ)2
,

we see that (2.15) implies (2.4):

λ = α + 3(β + γ) + α(β + γ) < 1.

Thus all assumptions of Theorem 2.1 are fulfiled, where now (β + γ) has
the same significance as β in Theorem 2.1.

As a slightly generalization of Theorem 2.1 we have the following
result.

Theorem 2.2. Let (X, d) be a complete metrically convex metric

space, K a nonempty closed subset of X and let F = {Tj}j∈J be a family

of multi-valued mappings of K into CB(X). Suppose that there exists

some Ti ∈ F such that for each Tj ∈ F

(2.16)
H(Tix, Tjy) ≤ αjd(x, y)

+βj max{D(x, Tix) + D(y, Tjy), D(x, Tjy) + D(y, Tix)},

where αj , βj are nonnegative real numbers satisfying

λj = αj + 3βj + αjβj < 1.

If Tj(∂K) ⊆ K for each Tj ∈ F then a family F has a common fixed point

in K, i.e. there exists some u ∈ K such that u ∈ Tju for all Tj ∈ F .

Proof. Let Tj0 be an arbitrary but fixed member of F . Then from
Theorem 2.1 with S = Ti and T = Tj0 , there exists a point in K, say u,
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which is a common fixed point of Ti and Tj0 . Let Tj ∈ F , Tj 6= Tj0 , be
arbitrary. Then from (2.16) we have

D(u, Tju) ≤ H(Tiu, Tju) ≤ βj max{0 + D(u, Tju), D(u, Tju) + 0},

and hence
(1− βj)D(u, Tju) ≤ 0.

Since βj ≤ λj < 1, we have D(u, Tju) = 0. Hence u ∈ Tju, which
completes the proof. ¤

Now we shall give a common fixed point theorem for a pair of con-
tinuous multi-valued mappings weaking the condition (2.3), not requiring
that the constant λ be less than 1. We need the following.

Definition 1. Let K be a nonempty subset of a metric space (X, d).
A mapping T : K → CB(X) is said to be continuous at x0 ∈ K if for
any ε > 0, there exists a δ > 0 such that H(Tx, Tx0) < ε, whenever
d(x, x0) < δ. If T is continuous at each point of K, then T is said to be
continuous on K.

Theorem 2.3. Let (X, d) be a complete and metrically convex met-
ric space, K a nonempty compact subset of X. Let S, T be continuous
mappings of K into CB(X) such that for all x, y ∈ K with x 6= y,

(2.17)
H(Sx, Ty) < αd(x, y)

+β max{D(x, Sx) + D(y, Ty), D(x, Ty) + D(y, Sx)},
where α, β ≥ 0 and such that

(2.18) α + 3β + αβ ≤ 1.

If Sx ⊂ K and Tx ⊂ K for each x ∈ ∂K, then there exists an u ∈ K such
that u ∈ Su, u ∈ Tu and Su = Tu.

Proof. Let f(x) = D(x, Sx) for each x ∈ K. Since for each x, y ∈ K

D(x, Sx) ≤ d(x, y) + D(y, Sx); D(y, Sx) ≤ D(y, Sy) + H(Sy, Sx),

we have

|f(x)− f(y) ≤ |D(x, Sx)−D(y, Sx)|+ |D(y, Sx)−D(y, Sy)|
≤ d(x, y) + H(Sx, Sy).



368 Lj. B. Ćirić and J. S. Ume

Hence, as S is continuous, f(x) is continuous. Similarly, the function
g(x) = D(x, Tx) is continuous. Thus, the function

h(x) = min{D(x, Sx), D(x, Tx)}

is continuous, and since K is compact, there exists a z ∈ K such that
h(z) = min{h(x) : x ∈ K}. Without loss of generality we may suppose
that h(z) = D(z, Sz), i.e. that

D(z, Sz) ≤ min{D(x, Sx), D(x, Tx)}

for each x ∈ K. We shall show that D(z, Sz) = 0. Assume the contrary
that h(x) > 0 for all x ∈ K. Let {xn} be a sequence in Sz such that

(2.19) lim
n→∞

d(z, xn) = D(z, Sz).

If there exists an infinite subsequence of {xn} which is contained in a
compact subset K, then there exists a subsequence {xni

} which converges
to some x0. Since Sz is closed, x0 ∈ Sz. Thus d(z, x0) = D(z, Sz). From
(2.17) we obtain

D(x0, Tx0) ≤ H(Sz, Tx0)

< αd(z, x0) + β max{D(z, Sz) + D(x0, Tx0), D(z, Tx0)}

and hence, as D(z, Tx0) ≤ d(z, x0)+D(x0, Tx0) = D(z, Sz)+D(x0, Tx0),
we have

D(x0, Tx0) < αD(z, Sz) + β
(
D(z, Sz) + D(x0, Tx0)

)
.

Now, using that D(z, Sz) ≤ D(x0, Tx0) and α + 2β ≤ 1, we have

D(x0, Tx0) < (α + 2β)D(x0, Tx0) ≤ D(x0, Tx0),

a contradiction.
Suppose now that xn /∈ K for all sufficiently large n. Since X is

convex and z ∈ K, for each such xn there exists yn ∈ ∂K such that

(2.20) d(z, yn) + d(yn, xn) = d(z, xn).
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Since ∂X is compact, we may suppose, for the sake of convenience, that
{yn} converges to some y0 ∈ ∂K. Since g is continuous,

(2.21) lim
n→∞

D(yn, T yn) = D(y0, T y0).

By the triangle inequality, (2.20) and (2.17) we have

D(yn, T yn) ≤ d(yn, xn) + D(xn, T yn)

≤ d(z, xn)− d(z, yn) + H(Sz, Tyn) < d(z, xn)− d(z, yn)

+ αd(z, yn) + β max{D(z, Sz) + D(yn, T yn), D(z, Tyn) + D(yn, Sz)}

≤ d(z, xn)

+ β max{D(z, Sz) + D(yn, T yn), d(z, yn) + D(yn, T yn) + d(yn, xn)}

= d(z, xn) + β max{D(z, Sz) + D(yn, T yn), d(z, xn) + D(yn, T yn)}.

Taking the limit when n tends to infinity and considering (2.19) and (2.21)
we get

D(y0, T y0) ≤ D(z, Sz) + β
(
D(z, Sz) + D(y0, T y0)

)
.

Hence

(2.22) D(y0, T y0) ≤ 1 + β

1− β
D(z, Sz).

Since y0 ∈ ∂K, Ty0 ⊂ K. Thus Ty0 is compact and so there exists u ∈ Ty0

such that d(y0, u) = D(y0, T y0).

From (2.17),

D(u, Su) ≤ H(Ty0, Su)

< αd(u, y0) + β max{D(u, Su) + D(y0, T y0), D(y0, Su)}.

Since D(y0, Su) ≤ d(y0, u) + D(u, Su) = D(y0, T y0) + D(u, Su), we have

D(u, Su) < αD(y0, T y0) + β
(
D(u, Su) + D(y0, T y0)

)
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and hence

D(u, Su) <
α + β

1− β
D(y0, T y0).

So by (2.22) we have

(2.23) D(u, Su) <
α + β

1− β
· 1 + β

1− β
D(z, Sz).

Since
(α + β)(1 + β)

(1− β)2
=

α + 3β + αβ − 2β + β2

1− 2β + β2
,

by (2.18) we get (α + β)(1 + β)/(1− β)2 ≤ 1. Thus by (2.23) we have

D(u, Su) < D(z, Sz),

a contradiction with definition of D(z, Sz). Therefore, D(z, Sz) = 0.
Hence, as Sz is closed, z ∈ Sz. Further, if we suppose that z /∈ Tz,
then by (2.17) we have

D(z, Tz) ≤ H(Sz, Tz) < βD(z, Tz) ≤ D(z, Tz),

a contradiction. Therefore, z is a common fixed point of S and T . This
completes the proof. ¤

Remark. Theorem 2.3 is a generalization of Theorem 3.4 of Kahn [5]
and a generalization and an extension of Theorem 2 of Itoh [4] and The-
orem of Assad [1]. The presented method of proof gives a simplification
of the corresponding proofs given by Itoh and Khan.
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