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Points of monotonicity in Musielak—Orlicz function spaces
endowed with the Orlicz norm

By H. HUDZIK (Poznan), X. LIU (Harbin) and | T. WANG | (Harbin)

Abstract. Points of lower monotonicity, upper monotonicity, lower local uniform
monotonicity and upper local uniform monotonicity in Musielak—Orlicz function spaces
L(J)\/I endowed with the Orlicz norm are characterized. Criteria for lower and upper local
uniform monotonicities of L?\/I are deduced.

1. Introduction

It is well known that various monotonicity properties are important
in applications to the approximation theory and ergodic theory in Banach
lattices (see [1]-[3], [11] and [13]). Roughly speaking, monotonicity proper-
ties of Banach lattices play similar role as rotundity properties of Banach
spaces. Monotonicity properties are restrictions of respective rotundity
properties to the set of the couples of comparable elements in the posi-
tive cone of a Banach lattice (see [10]). Such properties can also be used
to prove monotonicity and rotundity properties of Calderéon—Lozanovskii
spaces (see [5] and [10]). But sometime we only need to know whether
a certain (fixed) point is a point of suitable monotonicity and we need
not to know if the whole lattice is suitable monotone. Various monotonic-
ity points in Banach lattices play similar rule as various rotundity points
(extreme points, exposed points, strongly extreme points, denting points,
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H-points, points of local uniform rotundity, etc.) in Banach spaces. There-
fore, we discuss in this paper criteria in order that a fixed element of the
unit sphere of LY, be suitable monotone.

Let (X,|| ||) be a Banach lattice with a partial order “<” and let
S(X) denote its unit sphere of X. Let X denote the positive cone in
X. A point x € S(X) is said to be upper monotone (or a point of upper
monotonicity) if for any y € X+ \ {0} there holds ||z + y|| > 1. We write
then x € UM for short. A point x € S(X ) is said to be lower monotone
(or a point of lower monotonicity) if for any y € X \ 0 satisfying y < x
there holds ||z — y|| < 1. We write then x € LM for short. It is obvious
that X is strictly monotone (STM for short) if and only if every point
x € S(X™T) is a UM-point (equivalently, every point x € S(X ™) is an LM-
point). However, as we will see below the notions of a UM-point and an
LM-point are different.

A point z € S(X ) is called upper locally uniformly monotone (ULUM
for short) or a point of upper local uniform monotonicity if for any € > 0
there exists § > 0 such that if y € X and ||y|| > e, then ||z +y|| > 1+4.
A point z € S(X) is said to be lower locally uniformly monotone (LLUM
for short) or a point of lower local uniform monotonicity if for any e > 0
there exists 6 > 0 such that for y € X with y < z and ||y|| > ¢ there
holds [lz —y|| <1 —4.

Obviously, X is ULUM (resp. LLUM) if and only if every point = €
S(X*) is ULUM (resp. LLUM). Strict monotonicity and uniform mono-
tonicity were defined in [2]. Lower and upper local uniform monotonicity
were defined in [11]. Although these notions were used already, they were
not distinguished.

Let (G, %, 1) be a monotonic, complete and o-finite measure space,
R be the set of real numbers, R be a set of positive numbers from R and
N be the set of natural numbers. A mapping M : G x R — [0, +00] is said
to be a Musielak—Orlicz function if there is a set F' € ¥ with p(F') = 0 such
that for any ¢ € G \ F, the function M (t,-) is convex, even, continuous
at zero and left-hand side continuous on Ry (infinite left limits are not
excluded here), and for any v € R the function M (-,u) is X-measurable.
We denote by p(t,u) the right derivative of M(¢,-) at w and by N (¢,v) the
function complementary to M (t,u) in the sense of Young. We define

e(t) =sup{u>0: M(t,u) =0}, B(t)=sup{u>0:M(t,u) < oo},

é(t) =sup{v > 0: N(t,v) =0}, B(t) =sup{v>0: N(t,v) < c0}.
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For a set Gy C G we write M € As(Gp) if there exist K > 0 and a -
measurable function ¢ : G — R, such that fGo d(t)dp < oo and for p-a.e.
t € Gp and all v € R, we have

M(t,2u) < KM(t,u) + 8(t).

In place of M € Ay(G) we write shortly M € As. We define on the
space LY = LY(G, 3, u) of all (equivalence classes of) Y-measurable real
functions on G the convex modular (see [1])

QM(m)Z/GM(t,x(t))d,u.

The Musielak—Orlicz space Ljs generated by a Musielak—Orlicz function
M is defined by

Ly = {z € LY : ppr(A\x) < 0o for some X > 0}.
Its subspace of order continuous elements is defined by

Ey = {x € L°: opr(A\r) < oo for any A > 0}.
Both spaces Lj; and Ej; are endowed in this paper with the Amemiya—
Orlicz norm (we say Orlicz norm for short)

1
0o _ -
J° = inf (1 + oas (k).

Under this norm the spaces Ly and Ejs are denoted by LY, and EY,,
respectively. The Luxemburg norm is defined in Lj; by the formula

||z|| = inf{\ > 0: ops(z/N) < 1}.

This norm is equivalent to the Orlicz norm, namely ||z|| < ||2]|° < 2||z]|
for any x € Lys. For the theory of Musielak-Orlicz spaces we refer to [6]
and [18] and for the theory of Orlicz spaces to [6], [12] and [17]-][19].

For any x € LY, we define

() =inf{ec > 0: op(x/c) < o0},

Gy =suppz = {t € G : z(t) # 0},
K(z) = [k}, k"] if kJ <ooand

x) T

K(z) = [k, k) if kX = oo,

x)
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where
kr =inf{k > 0: on(po k|z|) > 1},
ky" =sup{k >0: on(pokfz]) <1},

(poklz|)(t) = p(t, klz(t)]) for t € G.

It is well known (see [6] and [19]) that &x(z) = d(z, EY;). The sit-
uation that k¥ = oo is possible. It appears for example if M (t,u) = |u|
for t € G and v € R. If k** < oo, then k~1(1 + opr(kx)) = ||z]|° for any
k € K(z). If k} < oo but k* = oo, then k=11 + opr(kz)) = ||z||° for
any k € [k, kx*) and ||z|° = limg oo k71 (1 + opr (k) (see [6], [19] and
[21]). Monotonicity properties of Orlicz spaces, Musielak—Orlicz spaces
and Lorentz spaces were considered in [4], [8], [9], [11], [13]-[15] and [20].

2. Results

We start with the following

Proposition 1. Let x € L?\/[ \ {0}. Then:
(i) If [, N(t,B(t))dp > 1, then K(z) # 0 and

1
2] = %(1 + oy (kx)) if and only if k € K (x).

(ii) If fGI N(t,B(t))d,u <1, then
z|° = z(t)| B .
&4l /G| ()| B(t)dp

PROOF. (i). Note that B(t) = limy, e (M (t,u)/u) = lim, . p(t, u).
Threfore, by the left continuity of N(¢,-) for p-a.e. t € G and by the
Beppo—Levi theorem, we get

/ N(t, B(t))dp = lim / Nt p(t, Bz (1)) dp.
Gy —XJG,

Thus, the assumption from (i) implies that on (pok|z|) > 1 for some k > 0.
Consequently, k;* < oo and so, by the facts presented at the end of the
introduction, the thesis of (i) follows.

The proof of (ii) is the same as in the case of Orlicz spaces in [7], so
we omit it here.
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Theorem 1. If z € S(LY,), z > 0 and K(z) = (), then z is both a
ULUM-ponit and an LLUM-point.

PrROOF. On the basis of Proposition 1, we have sz N(t, B(t))du < 1
and [|z]|° = [ |«(t)|B(t) dp. For any y € (L§,)" with y < 2 and ||y||0
e, we have me,y N(LB( )) du < 1. Therefore, ||z —y||° = [ (a(
y(t))B(t)dp. Hence

e —yll° = /G £(t) B(t)dp — /G y(OB(E)dp = 2]° — y]® < 1.

This means that z is an LLUM-point.
Assume for the contrary that z is not a ULUM-point. Then, there exists
a sequence (z,,) in (L§,)" such that ||z,]|°>e >0 and ||z + z,[]° — 1.

We consider few cases.

I. There exists an infinite number of n such that K(z, +x) = (. In virtue
of Proposition 1, we have

ln + ] = /G (£(t) + 2 (1) B(t)dp = /G () B(t)du + /G £ (0)B()dp

> l2]|® + llznll® > 1+,

for infinitely many n € N, a contradiction.
I1. There exists an infinite number of n such that K(x, + x) # 0. In this
case we may assume without loss of generality that K, (z, + x) # 0 for
any n € N. Let k, € K(z,, +z),n=1,2,....

We consider two subcases.

II 1. k,, — kg < co. Then

(1+0M(k (@ +2))) = — (1 + om(kn)).

?r‘,_.
?\H

zn +=77H0

Therefore, by K(x) = 0, lim,, .o ||z, + 2||° = 1 and the Fatou lemma, we
get

. 1
1= lim |z, + xHO > k—(l + onm (ko))
n—oo 0

: —1 _ 0 __
> Inf k(1 + on (ko)) = |lz]" =1,



390 H. Hudzik, X. Liu and T. Wang

a contradiction.
II 2. k, — oo. Then, by superadditivity of M on R, , we get

> lim,, ook (1 + onr (knwn)) + onr (kn))
lim,, o [ky (1 + onr(knan)) + k' (1 + o (Kn))

> lim,, oo (lzal® + 1|2]°) > 1+,

= lim

a contradiction. This finishes the proof. O
Theorm 2. A point x € S((LY,)") is upper monotone if and only if
K(z) =0 or
kx(t) > e(t) (u—a.e.)
for any k € K(x) whenever K(zx) # 0.
PROOF. Necessity. Otherwise, there is k € K(z) such that A := {t €

G : kx(t) < e(t)} has positive measure. Let y(t) = (5 elt) _ x(t))xa. Then
y >0 and

;u+pMu+®m+y )

<]1€<1+QM ka)) /Mtk +y(t))dp

lz +yl° <

which means that z is not a UM-point.

Sufficiency. If K(z) = 0, then x is a UM-point by Theorem 1. Assume
that K(x) # 0, k € K(z) and y > 0. Since G4y D G, we easily deduce
that K(z 4+ y) # 0, i.e. there is h > 0 such that

L+ on (e +w))).

0 _
o+ yl® = 1

If h ¢ K(z), then

lo+ 910 = = (1 + oar(h(z + 1)) > ~(1 + oar(ha))

w\»—ﬂ;ﬂr—t
>

(1+ onm(kz)) =
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If h € K(x), then by the assumption we get that hxz(t) > e(t) p-ae.,
whence

o+l = 0+ [ MEH(0) +(0) do

1
> 7 (1 + /G M (t,hx(t)) du + /GM(t,e(t) + hy(t)) d,u>
> (1 -+ o(he)) = o] = 1. o

Corollary 1. The space LY, is STM if and only if on(B) < 1 or
e(t) =0 p-a.e..

PrROOF. Sufficiency. If on(B) < 1, then by Proposition 1, ||z||° =
[ lz(®)|B(t)dp for any = € LY. Therefore L}, is even uniformly mono-
tone. Assume now that e(t) = 0 p-a.e.. Takez € S(LY,), z > 0and y > 0.
If K(z) = 0, then x is uM-monotone by Theorem 1. If K(z) # (), then
the condition kx(t) > e(t) holds for p-a.e. t € G and for any k € K(x).
Therefore, by Theorem 2, x is a UM-point. We proved that, under the
assumptions, any point x € S((LY,)") is a UM-point. Therefore LY, is
STM.

Necessity. Assume that on(B) > 1 and e(t) > 0 for t € A, where
A € ¥ and p(A) > 0. Then there is B € ¥ such that G\ B C A,
(G \ B) >0 and on(Bxg) > 1.

Consequently, for any = € LY, with ||z]|° = 1 and G, = B there is
k > 0 such that on(p o kx) > 1. This yields K(z) # 0 for such z. Let
k € K(z). Defining y = x + %XG\B, we get

1 1
lyl|® < %(1 + om(ky)) = E(l + om(kz)) = 1.
Since 0 < z < y, this means that LY, ¢ sTM. O

Remark. The proof of the necessity of Corollary 1 can be found in [8].
We presented it here for the sake of completeness only.

Theorem 3. A point z € S((LY,)") with K(x) # () is a lower mono-
tone point if and only if whenever k € K (z) then

(i) p{t e G:0 < kz(t) <e(t)} =0,
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(ii)) fAC{t e G:0<kx(t)=e(t)} and p(A) > 0, then there exists
s € (0,1) such that [, 4, N(t,p(t ROV dp < 1.

7 1-s

PROOF. If (i) does not hold, then u({t € G : 0 < kz(t) < e(t)}) > 0.
Hence, there is €y > 0 such that the set

C:={teG:0< (14¢eg)kx(t) <e(t)}
has positive measure. For any ¢ € (0,¢) there holds

on((po (I —e)kx)xa\c) < on(po (1 —¢)kr) <1

and
on((po (1+e)kx)xa\c) = on(po (1 +e)kx) > 1,

so k€ K(zxa\c), i.e.

lzxenell” =k~ (1 + om(kaxene)) = K~ (1 + onr (k).

This means that ||z —zxc||° = 1. Since zxc > 0, this contradicts the fact
that x is an LM-point.

If (ii) does not hold, there exist A C {t € G : 0 < kxz(t) = e(t)} with
p(A) > 0 such that on((po (1+e)kx)xa\a) > 1 for any € > 0. This yields
that k7, . , =k, whence k € K(xxa).

So,

lzxenall® = k71 (1 + oar(krxeya)) = 71 (1 + on(kz)) = [|l=]|° = 1.

i.e. ||z —2xall® = 1. Since xx4 > 0, this means that z is not an LM-point.

Sufficiency. Denote A = {t € G, : 0 < kxz(t) = e(t)}. Then G, \ A =
{t e Gy : kx(t) > e(t)}. Assume that 0 <y <z andy # 0. Since G, C G,
and p(Gy) > 0, we have p(Gy N (G \ A)) > 0 or u(G, N A) > 0. We will
consider two cases.

Case I. (Gy N (Gy \ A)) > 0. For t € G, N (G, \ A) we have
M(t, k(z(t) —y(t))) < M(t, kx(t)).

So,

/ Mt Ka(®) - y(t))d < | M (t, k() dp,
GyN(G\A) GyN(Gz\A)
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whence
lz = yl® < k71 + omr(k(z —y))) < k7M1 + on(k2)) = [Jz]° = 1.

Case II. p(Gy, N A) > 0. For t € G, N A we have kz(t) — ky(t) <
kx(t) = e(t). There exists 6 € (0, 1) such that the set

Q:{teGyﬂA:k(x(?__ey(t))<e(t)}

has positive measure. By condition (ii) there is s € (0, 6] such that on(po

1k_xSXG\Q> < 1. Hence
oN | P 1—s Y)] SON | P 1_SXG\Q oN | P 9 xa )

This means that k* > £ whence k ¢ K (z — ). Consequently,

o=yl = (K;_ )" (1 + onr (K (2 — y)) < k71 (1 + oar(k(z — y)))
< k7 (1 + onr(kz)) = ||z]|° = 1. 0

Theorem 4. Ifz € S((LY,)") and K (z) # (), then x is an LLUM-point
if and only if whenever k € K (x) then
(i) &ar(x) =0,
(i) p({t € G:0 < ke(t) <e(t)}) =0,
(iii) For any ¢ > 0 there is s € (0,1) such that if AC {t € G:0 < kx(t) =
e(t)} and u(A) > e, then fG\AN(t,po 22 ())dp < 1—s.

PROOF. Necessity. If (i) does not hold, then £y;(z) =€ > 0. Choose
(Gp) C ¥ such that p(Gy) — 0 and Epv(zxe,) = Em(z) (n =1,2,...).
Then ||zxg, ||° > € for any n € N and

lz = 2xa, I° = llaxeva, I = llz]° =1

because L9, has the Fatou property. This means that x is not an LLUM-
point.
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The necessity of condition (ii) follows by Theorem 3. If condition (iii)
is not true, then there exist ¢ > 0 and a sequence (A,) of measurable
subsets of the set {t € G : 0 < kz(t) = e(t)} such that u(A,) > ¢ and

ka(t 1
/ N(t,po x(3>d,u>1— (n=1,2...).
G\A, L=2 n

We will concider two cases.

Case I. For an infinite number of n € N (say for any n € N without
loss of generality) there holds

k
/ N(t,po x(t3>du>1.
G\A, L=5

This yields that kme\A < 1 sz\A >
k follows by the fact that k € K( ) and on (pok:z:XAn) =0. 50, k3 ia,
k as n — oo. Denote ky = k7, . , . Then

lzxaa, |I” = kn ' (1 + onr(Bnzxana,)) = k' (1+ oar(knzxaya)),

where A ={t € G:0 < kxz(t) = e(t)}. Hence, we get by the Fatou lemma
Jim. lexena, [” > B~ (1 + omr(kexena)) = k71 (1 + om (k) = 1,

whence it follows that ||zxc\a, | — 1.
Notice that e(t) > 0 implies M (¢, 2e(t)) > 0. There is a > 0 such that
p({t € A: M(t,2e(t)) <a}) < 5. Hence

[\3\(“)

M (2kxxa,) / M(t,2e(t

and consequently [|2kzx4,|° > min(5a,1) or equivalently [|zxa,[® >
+min(5a,3) (n=1,2,...). Combining this with
|z — 2xa,|° = llzxc\ A, HU — 1, we get that x is not an LLUM-point.

Case II. The inequality




Points of monotonicity in Musielak—Orlicz function spaces ... 395

holds for an infinite number of n € N (we can assume that it holds for any
n € N). Then

kx(t
lzxena, |I® > /G TXe\4, ()P (t _(EXG\AJ dps

L=
L)
S L) o (am)]
S (L))

1
1
k

—

(1+ enr(koxeva)) = 7 (1 + enr (ko)) = [l2]|° = 1.

=

Since ||zxe\ 4, | — 1, this yields that = is not an LLUM-point.

Sufficiency. If x is not an LLUM-point, then there is a sequence (z,,)
in (LY,)" such that 0 < z, < z, [|z,]|° > & > 0 for n = 1,2,.... and
|z —2,]|° — 1 as n — oo.

It is easy to prove that x,, % 0 (otherwise we can deduce that ||z, ||° —
0). So, we can assume without loss of generality that there are o > 0 and
d >0 such that p(E,)>0 for any n €N, where E, ={te G:kz,(t)>0o}.
Denote A = {t € G, : kz(t) < e(t)}. We will consider two cases.

Case I n((Gx \A)NE,) > % (n=1,2,...). Ift € G, \ A, then
kxz(t) > e(t). So, M(t,kx(t) — o) < M(t,kz(t)). There is a > 0 such that

p({t € G\ A: Mt kz(t) — o) > M(t, kz(t)) — a}) < g
Denote

B,={te(G\A)NE,: M(t,kx(t) — o) < M(t, kx(t) — a}.
Then u(B,) > % for any n € N, whence
2= 2 < K1 (1 + o (k(z — 7))
< kN1 + om(kaxens,) + om ((kx — 0)xs,))

< k7' (1 + om(kxxe\,) + om(kzxs,) — ap(By))
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1) ad
< -1 _ af — _
<k <1 + o (kx) 1 > 1 T

which is a contradiction.
Case II. p(AN Ey,) > 3 for any n € N. There is 6 € (0,1) such that
p({t € A:e(t)— o> (1—0)e(t)}) < . Denoting

H,={tc ANE, :e(t)—o < (1—0)e(t)},

we have u(H,) > 2. By condition (iii), there is 0 < s < 6 satisfying

/(;\HnN <t’p<t’ ]fx_(t;» dp<l-s (n=1,2,...).

—
|
»

v@k
=
/N N
\?’“
—t
| =~
S ~~
o
=
~_
~_
N
=
Il
[—
|
i

This means that k, :==k;_, > % So, we have

1= lz = 2nl|® = k71 (1 + onr (ko)) — k' (1 + onr (kn(z — 20)))
> k7N 1+ onr(k(z — aa))) = (L= 8)k™ (1 + oar(k(1 = 5) 7 (2 — 24)))

> ot {1 [ () - muw (12 )~ ()
M (t, 1 b ~(a(t) - azn(t)>> di
= {1 [ (T 6 - oo (6600 - 2.0)
k
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> sk 1 - (1-9)} =s%"1,

whence ||z —z,[|® < 1—s2k~!, which is a contradiction finisfing the proof.
O

By Theorem 4 we can easily deduce the following result proved origi-
nally in [8].
Corollary 2. The space LY, is LLUM if and only if on(B) < 1 or
e(t) =0 p-a.e. in G and M € A,.
Theorem 5. A point z € S((LY,)") with K(z) # 0 is a ULUM-point
if and only if whenever k € K(z), then
(i) kxz(t) > e(t) p-a.e. in G,

(i) If Go C G, Gy € %, 5 € (0,1) and op (£ xc,) < oo, then M €
As(Go).

PROOF. Necessity. The necessity of (i) follows by Theorem 2. If (ii) is
not true there are Gy C G, G € £, and s € (0, 1) satisfying on (% x,) <
o0, and M ¢ Ay(Go). There are x, € LY,(Go) such that x, = xxg,,
|z, ]|° > e >0 for any n € N, u(G,) — 0 and opr(2,) — 0. Hence

|z + sk 2, ||® < k7M1 + on(k(z + sk~ zy)))

— k! <1 +om(kxxena,) +/(; M<t’ (1-s) ]Ix—(tz

n

+ sxn(t))d,u>

<k (14 om(kx) + (1 — s)om <1k_xsxgn> + som(zp)) — 1.

But ||sk~'z,||° > sk~le for any n € N, so z is not a ULUM-point. O
Before proving the sufficiency we prove the following

Lemma 1. If M € Ay, then for any ¢ > 0 there is 6 > 0 such that
x € (Ly)T and ||z]|° > ¢ imply op(e + ) > 6.

PROOF. Otherwise, there exists a sequence (x,,) in (L,)" with
|lz,]|° > € for any n € N such that gp(e + z,) — 0 as n — oo.
From [, M(t,e(t) + zn(t))dp — 0 we deduce that M(t, e(t) + zn(t)) £

m

0.
Hence it follows that e(t) + z,(t) = e(t) and consequently z,(t) - 0.
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Since M € As, for any A > 0 there are K > 0 and 0y € L1 satisfying the
inequality
M(t, \u) < KM (t,u) + do(t)

for all w € R and p-a.e. t € G. There exists A € ¥ such that p(A4) < oo
and fG\A do(t)dp < %. Further, by the Jegorov theorem, we can choose
E C A, E € ¥ such that [, do(t)dp < § and x,, — 0 uniformly in 4\ E.
Then for n large enough (say n > m) we have

1 1
om(zn) <om(e+z,) < —— and M (t, \xy, (t))dp < =.
3K A\E 3
Therefore we have for n > m,
onr (b Azy) = / Mt Ao (1))
G
— [ Mm@ [ M An0)d
A\E G\(A\E)
< [ Mt Aen()du+ K (M (t, 20 (t)) + 80(1))du
A\E G\(A\E)
<1+K1+/ So(t)dp
37 3K Javae)
P
3 3 3

Consequently, [|z,[|° < 2||z,|| < %. By the arbitrariness of A > 0, this
contradicts the condition ||z,[|° > & > 0 for any n € N. So, the lemma is
proved.

Now we give a proof of the sufficiency of Theorem 5. Assume the
assumptions are satisfied. If  is not a ULUM-point, there exists a sequence
(zy) in (LY,)™ such that ||z, |® > 4 > 0 for any n € N and ||z +z,||° — 1
as n — oo. We may assume that k := k¥ < oo (othervise, k(z) = 0 and so,
by Theorem 1, x is a ULUM-point). Take k,, := k; ., (n € N). It is easy
to see that k, < k (since z(t) + x,(t) > z(t)). We may assume without
loss of generality (passing to a subsequence if necessary) that k, — ko as

n — 0o. We will consider four cases.
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Case I. k,, — ko < k. Then
1= lim ||z + mn||O = lim k:;l(l + ovi (kn(z + x4)))

> lim &k, (14 on(knz))

> kot (1+ onr (ko)) > k™ (1 + onr (k) = [J2]® = 1,

which is a contradiction.
Therefore, we may assume in the remaining part of the proof that
k,, — k. Denote
Goo ={t € G : ka(t)= B(t)}.

Take a sequence (G,,) of measurable sets in G\ G such that G; C G2 C

1\t
oM (k: (1 — n) J,'Xgn> < 0

and u(G,) — (G \ G ). Denote

ey

B, ={te G:x,(t) >ex(t)}.
From
de < wnl® < llzaxes, |I” + lzaxs, I° < &+ |zaxs, I’

we obtain that ||z, xp, ||° > 3¢ for any n € N.

Case II. There is an infinite number of n € N satisfying the inequality
lznxB,nc. ||’ > e. Then clearly u(B, NGs) > 0 for an infinite sequence
of n. We may assume without loss of generality that ||z, x5, nc..[|® > €
for any n € N. Therefore

L[z + anO = krjl(l + onr (kn (7 + 25)))

> L / Mt b (2() + 20 (8)) )t
B,NG o

Y

k! / M(t, kn(1+e)x(t))du
B,NG

= /Bmw M <t, (1 + g) kx(t)) dp

— k! /Bme M (t, (1 + 5) B(t)) dip = k=100 - (B N Gay) = 00,

v

2
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which is a contradiction.
So, in the further part of the proof we may assume (and we do this)

that ||z, xB,.nc.|® <& e |lznXp,n@\c.0)ll® = 2¢ for any n € N.

Case III. There is m € N such that ||z,Xx5,na,,||° > ¢ for any n € N.

By condition (ii), M € Ay(G,,). By Lemma 1, there is § > 0 such

that op ((e+kzn)XxB,na,,) > 0 for any n € N. Noticing that kx(t) > e(t),
we have for n large enough,

4+ znl|® = k(1 + ons (kn (2 + 20)))
> k' (L4 o (Bn@XG\ (BrnGom)) + 00 (kn (T + Tn)X B, G )

1)
>kt (1 + oM (knTXa\(BhnGm)) T oM (K(Z + Tn)XB,nGym ) — 5)

_ 1)
>kt (1 +onm (kn@X\ (BanGm)) T 00 (BTX B, NG )+ 00 (e + kTn)X B, NG ) — 5)

> k! (1 + on (knz) + g) — k7 (14 on (k) +6(2k) " =1+ 6(2k) 71,

which is a contradiction. So, we may assume (and we do this) in the further
part of the proof that for any m € N, the inequality ||z,x5,na,,||° > €
holds for at most finite number of n € N. Therefore, we may assume
without loss of generality that there holds the following

Case IV. HanBnﬁ(G\Goo\Gn)HO > ¢ for any n € N. Denote B, N (G \
Goo \Gpn) =9, (n=1,2,...). We consider two subcases.

1V.1.

inf ops ((1 + %) k:xxgn) =ka > 0.

Take ng large enough satisfying

_ a
N1+ om(kexeoue,,)) > 1 - 1
For n large enough,
a a a
k(1 En 1—-———-=1-—.
o (L4 om(knzxGoue,, ) > 171 5
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Hence, we get for n large enough,

2+ 2n]” > k' (1 + o (ke ue,,) + oM (B (2 4+ Zn) X\ (G UGng)))

>1— % + k;lgM(k‘n(ﬁ + z,)Xxq,)

1
>1- g + ou k(14 €)axa,)

a (3 a a
>1-2 40 ((1 7>k >>1—f —14+2
> 5 T & om t35) krxe, ) 2 5 Ta Ty

which is a contradiction.
Threfore we need only to consider the subcase
1V.2.
inf o <<1 + g) kmxgn) =0.

We may assume (passing to a subsequence if necessary) that

niO:lgM ((1 + %) k:cxgn> < 00.

Let @ = U~ ;9. Then on((1 + §)krxo) < oco. By condition (ii),
M € Ay (9).

From |z,xa,[|® > € and z,xq, € L3;(Q) for any n € N it follows
that there is § > 0 such that oa((e + kzn)xq, ) > . Hence we get for n
large enough,

_ 0
>kt <1 + om(knrXxcnq, ) + om(k(2 + 20) X0, ) — 2>
1 0
>k, | 1+ om(knzxene,) + o (krxa,) + on((e + kzn)xa,) — B
-1 0 -1
>k, <1+QM(kn$)+2) — 1+0(2k)" ",
which is a contradiction. The proof is completed. O

From Theorem 5 we can obtain the following result from [8].
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Corollary 3. The space L9, is uLuM if and only if opr(B) < 1 or
e(t) =0 for p-a.e. t € G and M € A,.

Criteria for points of monotonicity of various kinds in EY, we present
below. Their proofs are quite similar to the respective proofs for Theo-
rems 2, 3, 4 and 5. So, we omit them in this paper.

Theorem 6. A point x € S((EY,;)") with K(z) # (0 is upper mono-
tone if and only if whenever k € K(z), then kx(t) > e(t) for p-a.e. t € G.

Corollary 4. The space EY; is STM if and only if e(t) = 0 for u-a.e.

teGoroy(B)<l1.

Theorem 7. A point z € S((EY,;)T) with K(x) # ) is lower monotone
if and only if whenever k € K (x), then
() 1({t € Ga s kalt) < e(t)}) = 0;
(ii) If A C {t € G, : kz(t) = e(t)} and u(A) > 0, then there is s € (0,1)

such that on((p o ffs)XG\A) <1l

Theorem 8. A point z € S((EY,)") with K(x) # 0 is lower locally
uniformly monotone if and only if whenever k € K(x), then
(i) p({t € Gy : kx(t) <e(t)}) =0;
(ii) For any € > 0 there is s € (0,1) such that if A C {t € G, : kx(t) =
e(t)} and u(A) > €, then on(p o 1’“_msxg\A) <1-—s.

Corollary 5. The space EY, is LLUM if and only if o (B) < 1 or
e(t) =0 for p-a.e. t € G.

Theorem 9. A point x € S((EY,)") with K(z) # 0 is upper locally
uniformly monotone if and only if whenever k € K(x), then

(1) kz(t) > e(t) for p-a.e. t € G and (i) M € As.
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