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Lattice of generalized neighbourhood
sequences in nD and ∞D
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To the memory of Professor Péter Kiss

Abstract. In this paper we generalize the concept of neighbourhood sequences
introduced by Das et al. [2]. We extend the natural ordering relation given in [2] to the
set of generalized nD-neighbourhood sequences, and investigate the structure obtained.
As we do not always get nice properties, another ordering relation is introduced which
behaves better. We also involve the abstract digital plane Z∞ into our analysis, and
extend our results to this case. Our investigations generalize previous results of Das [1]
and Fazekas [4] in 2D and 3D, respectively.

1. Introduction

Rosenfeld and Pfaltz gave two types of motions in two-dimensional
digital geometry (see [7]). The cityblock motion is restricted to horizontal
and vertical movements only. That is, two points on the digital plane Z2

are neighbours, if one of their coordinate values coincide, while the others
differ at most by 1. The chessboard motion beside horizontal and verti-
cal steps, also allows diagonal movements. In this case two points of Z2

are neighbours when both of their coordinate values differ at most by 1.
The so called octagonal distance can be obtained by the alternating use of
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these motions. (The exact concept of distance will be given in the follow-
ing chapter.) More detailed description about these and other concepts of
digital topology can be found in [6] and [8].

Das, Chakrabarti and Chatterji (see [2]) extended the defini-
tion of the ordinary octagonal distance, allowing arbitrarily long periodic
sequences of cityblock and chessboard motions, called neighbourhood se-
quences. Moreover, they established a formula for calculating the distance
of two points in the nD digital space, determined by such a neighbour-
hood sequence. Using this formula, Das in [1] showed that on the set of
periodic 2D-neighbourhood sequences a natural partial ordering relation
can be introduced. Furthermore, he investigated the structure of this set
and some of its subsets with respect to this ordering. More precisely, he
proved that under this ordering, the set of l-periodic 2D-neighbourhood
sequences forms a distributive lattice. Das also claimed the same for the
set of sequences with a period at most l (see Theorem 4 of [1]), and that the
set of the periodic 2D-neighbourhood sequences forms a complete compact
distributive lattice with respect to the relation mentioned above (cf. Corol-
lary 1 of [1]). However, these two results of Das [1] are false. This follows
from our Propositions 3.8 and 3.7, respectively. Recently, Fazekas proved
that a similar partial ordering can also be introduced for neighbourhood
sequences in 3D (see [4]).

In this paper we generalize the concept of neighbourhood sequences,
allowing not periodic sequences only. We show that the results of Das [1]
and Fazekas [4] about ordering the set of periodic neighbourhood se-
quences, can be extended to arbitrary dimension, even in case of general-
ized neighbourhood sequences. We also prove that in 2D the set of such
sequences forms a complete distributive lattice under this relation. More-
over, we extend our investigations to ∞D, which is the most interesting
case theoretically. We give a formula for the calculation of the distance of
two points in Z∞ with respect to a generalized neighbourhood sequence.
By the help of this result we generalize the natural ordering relation to∞D.
The lattice obtained in ∞D under this ordering relation, in a certain sense
is the closure of the union of the finite dimensional lattices; this shows the
significance of such investigations.

We also study the structure of some subsets of the generalized neigh-
bourhood sequences in nD and ∞D under the ordering mentioned. We
involve into our investigations all types of subsets which were studied by
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Das [1] in the periodic case. Unfortunately, in several cases we obtain
negative results: some of the studied structures do not have nice prop-
erties. Thus we consider another relation, which is in close connection
with the original one. More precisely, the natural ordering is a refinement
of the relation introduced here. We show that under this new ordering,
the examined sets (with one exception) form lattices, with certain further
properties in some cases.

Finally, to support our investigations we note that neighbourhood se-
quences may have many applications not only in 2D, but also from 3D on.
In 3D one can think of three-dimensional pictures, for instance in medi-
cal applications (see e.g. [3] and the references given there). Interestingly,
even in 2D higher dimensional neighbourhood sequences can be useful. For
example, in case of colour images (when three additional colour parame-
ters appear), or during tracking motion (when time can be consdiered as
a third dimension). The motivation and theoretical background of such
investigations can be found e.g. in [5].

2. Basic concepts

In order to reach the aims formulated in the introduction we would
like to give the basic definitions and notation in this chapter. From now
on, n will denote an arbitrary positive integer.

Definition 2.1. Let p and q be two points in Zn. The ith coordinate
of the point p is indicated by Pri(p). Let N be an integer with 0 ≤ N ≤ n.
The points p and q are N -neighbours, if the following two conditions hold:

• |Pri(p)− Pri(q)| ≤ 1 for 1 ≤ i ≤ n,

•
∑n

i=1 |Pri(p)− Pri(q)| ≤ N .

Definition 2.2. The infinite sequence B = {b(i) : i ∈ N and b(i) ∈
{1, 2, . . . , n}} is called a generalized nD-neighbourhood sequence. If for
some l ∈ N, b(i) = b(i + l) holds for every i ∈ N, then B is called peri-
odic, with a period l, or simply l-periodic. In this case we will use the
abbreviation B = {b(1), . . . , b(l)}.
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Remark 2.3. We note that the above concept of the generalized nD-
neighbourhood sequences is actually a generalization of the notion of neigh-
bourhood sequences introduced in [2]. The authors in [1], [2] and [4] dealt
only with periodic sequences.

The simple distances introduced by Rosenfeld and Pfaltz [7] can
also be given by (periodic) neighbourhood sequences. Namely, the city-
block-, chessboard- and octagonal distances can be generated by the se-
quences {1}, {2} and {1, 2}, respectively.

Definition 2.4. Let p and q be two points in Zn and B = {b(i) : i ∈ N}
a generalized nD-neighbourhood sequence. The point sequence Π(p, q; B)
– having the form p = p0, p1, . . . , pm = q, where pi−1 and pi are b(i)-
neighbours for 1 ≤ i ≤ m – is called a path from p to q determined by B.
The length |Π(p, q; B)| of the path Π(p, q; B) is m. Clearly, there always
exist paths from p to q, determined by B. The distance between p and q
is defined as the length of a shortest path, and is denoted by d(p, q; B).

Using the above distance we cannot obtain a metric in Zn for every
nD-neighbourhood sequence. In order to prove this, consider the following
simple example. Let B = {2, 1}, n = 2, p = (0, 0), q = (1, 1) and r = (2, 2).
In this case d(p, q; B) = 1, d(q, r; B) = 1, but d(p, r;B) = 3.

We have the following natural question: knowing B, how can we de-
cide whether the distance function related to B is a metric on the n-
dimensional digital plane, or not? The answer in the periodic case can be
found in [2].

For later use we need to introduce some further notation.

Notation 2.5. Let p and q be two points in Zn, and B = {b(i) : i ∈ N}
a generalized nD-neighbourhood sequence. Let

x = (x(1), x(2), . . . , x(n)),

where x is the nonincreasing ordering of |Pri(p)− Pri(q)|, that is, x(i) ≥
x(j) if i < j. For k = 1, . . . , n, and i ∈ N put

ak =
n−k+1∑

j=1

x(j),

bk(i) =
{

b(i), if b(i) < n− k + 2,

n− k + 1, otherwise,

fk(i) =
i∑

j=1

bk(j).
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Furthermore, set fk(0) = 0.

The following result of Das et al. (cf. [2]) provides an algorithm for
the calculation of the distance d(p, q; B), defined in Definition 2.4.

Theorem 2.6 (see [2]). Let p and q be two points in Zn, and B =
{b(i) : i ∈ N} a periodic nD-neighbourhood sequence with period l. Using

the above notation, for i = 1, . . . , n put

gk(i) = fk(l)− fk(i− 1)− 1, 1 ≤ i ≤ l.

The length of the shortest paths from p to q determined by B is given by

the following formula:

d(p, q;B) =
n

max
k=1

dk(p, q),

where dk(p, q) =
l∑

i=1

⌊
ak + gk(i)

fk(l)

⌋
.

Now we recall some definitions and remarks from lattice theory that
we need to analyze the lattices of the generalized neighbourhood sequences.

As usual, let (P,≤) denote a partially ordered set. An element a ∈ P

is the least upper bound (greatest lower bound) of a subset S ⊆ P if for
all x ∈ S, a ≥ x (a ≤ x), and b ≥ a (b ≤ a) for every upper bound (lower
bound) b of S. Moreover, if every pair of elements {(x, y) : x, y ∈ P} has
a least upper bound x∨ y and a greatest lower bound x∧ y then (P,≤) is
called a lattice. The lattice (P,≤) is distributive if for all x, y, z ∈ P

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Clearly, (P,≤) is distributive if and only if

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

The lattice (P,≤) is complete if its every subset S ⊆ P has a least
upper bound

∨
S and a greatest lower bound

∧
S. Let (P,≤) be a complete

lattice and S ⊆ P . The set Sc = {x ∈ P : x ≤ ∨
S} is called the closure

of S.

Remark 2.7. It is well known that (P,≤) is complete if its every subset
has a least upper bound.
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3. Neighbourhood sequences in nD

It is a natural question that what kind of relation exists between the
distance functions generated by two given neighbourhood sequences B1

and B2. The complexity of the problem can be characterized by the follow-
ing 2D periodic example from [1]. Let B1 = {1, 1, 2}, B2 = {1, 1, 1, 2, 2, 2}.
Choose the points o = (0, 0), p = (3, 1) and q = (6, 3). In this case we
obtain that d(o, p; B1) = 3 < 4 = d(o, p; B2), but d(o, q;B1) = 7 > 6 =
d(o, q;B2). So the distances generated by B1 and B2 cannot be compared.

In [1] it is shown that using the functions fk(i) defined in Notation 2.5,
a nice ordering relation can be established for periodic neighbourhood
sequences in 2D. A similar result was proved by Fazekas in 3D (see [4]).
Now we extend these results to nD with arbitrary n ∈ N, to generalized
nD-neighbourhood sequences. Clearly, this case also includes the periodic
one. Especially, we note that our result is new even for n = 2 and 3.

First we need the following simple lemma, which is, however of great
importance, because it shows that Theorem 2.6 can be used to com-
pute the distance of two points concerning an arbitrary generalized nD-
neighbourhood sequence.

Lemma 3.1. Let p and q be two points in Zn with
∑n

i=1 |Pri(p) −
Pri(q)| = c. Let A = {a(i) : i ∈ N} and B = {b(i) : i ∈ N} be two

generalized nD-neighbourhood sequences, with a(i) = b(i) for i ≤ c. Then

d(p, q; A) = d(p, q;B).

Proof. First, it is clear that d(p, q;A) ≤ c. Let d(p, q; A) = h, and
let p = p0, p1, . . . , ph = q be a path from p to q determined by A in Zn.
However, by h ≤ c and a(i) = b(i) for 1 ≤ i ≤ c, we obtain that pi−1 and
pi are b(i)-neighbours for i = 1, . . . , h, hence d(p, q; B) ≤ h = d(p, q; A).
The opposite inequality can be proved in a similar way, and the lemma
follows. ¤

Theorem 3.2. Using the notation introduced in 2.5, for any gener-

alized nD-neighbourhood sequences B1 = {b(1)(i) : i ∈ N} and B2 =
{b(2)(i) : i ∈ N}

d(p, q; B1) ≤ d(p, q; B2), for all p, q ∈ Zn

if and only if

f
(1)
k (i) ≥ f

(2)
k (i), for all i ∈ N, k ∈ {1, . . . , n},
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where f
(1)
k (i) and f

(2)
k (i) correspond to B1 and B2, respectively.

Proof. First we prove that if d(p, q; B1) ≤ d(p, q; B2) for any p, q,
then f

(1)
k (i) ≥ f

(2)
k (i) for every i ∈ N, k ∈ {1, . . . , n}. The proof is indirect.

Assume that there are such i ∈ N and k ∈ {1, . . . , n} for which f
(1)
k (i) <

f
(2)
k (i) holds. Put

uj =

{ |{b(2)(t) : 1 ≤ t ≤ i, b(2)(t) = j}|, for 1 ≤ j < k,

|{b(2)(t) : 1 ≤ t ≤ i, b(2)(t) ≥ j}|, for j = k,

let p = (0, 0, . . . , 0) and

Prh(q) =

{ ∑h
j=1 uj , for h ≤ k,

0, for h > k.

Using the definition of d(p, q; B), it is clear that d(p, q;B2) is equal to i. On
the other hand, by the assumption f

(2)
k (i) > f

(1)
k (i), and by the definition

of p and q, we have d(p, q;B1) > i, which is a contradiction.
Conversely, suppose that f

(1)
k (i) ≥ f

(2)
k (i) for every i ∈ N, k ∈

{1, . . . , n}. Let p and q be two points in Zn, and put c =
∑n

h=1 |Prh(p)−
Prh(q)|. Without loss of generality we may assume that c ≥ 1. To derive
d(p, q; B1) ≤ d(p, q; B2), by Theorem 2.6 and Lemma 3.1, it is sufficient to
show that for k ∈ {1, . . . , n}

d
(1)
k (p, q) =

c∑

j=1

⌊
ak + g

(1)
k (j)

f
(1)
k (c)

⌋
≤

c∑

j=1

⌊
ak + g

(2)
k (j)

f
(2)
k (c)

⌋
= d

(2)
k (p, q)

holds. For this we prove that for any fixed k with k ∈ {1, . . . , n}
⌊

ak + g
(1)
k (j)

f
(1)
k (c)

⌋
≤

⌊
ak + g

(2)
k (j)

f
(2)
k (c)

⌋
for 1 ≤ j ≤ c.

Using the definition of gk(j), the above inequalities are equivalent to the
following ones:

⌊
ak + f

(1)
k (c)− f

(1)
k (j − 1)− 1

f
(1)
k (c)

⌋
≤

⌊
ak + f

(2)
k (c)− f

(2)
k (j − 1)− 1

f
(2)
k (c)

⌋
,

1 ≤ j ≤ c,
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which is the same as

1+

⌊
(ak − 1)− f

(1)
k (j − 1)

f
(1)
k (c)

⌋
≤ 1+

⌊
(ak − 1)− f

(2)
k (j − 1)

f
(2)
k (c)

⌋
, 1 ≤ j ≤ c.

If (ak − 1)− f
(2)
k (j − 1) ≥ 0, then we even have

(ak − 1)− f
(1)
k (j − 1)

f
(1)
k (c)

≤ (ak − 1)− f
(2)
k (j − 1)

f
(2)
k (c)

.

Indeed, this inequality is equivalent to

f
(2)
k (c)(ak − 1− f

(1)
k (j − 1)) ≤ f

(1)
k (c)(ak − 1− f

(2)
k (j − 1)),

which clearly holds because of our assumption f
(2)
k (i) ≤ f

(1)
k (i), i ∈ N.

In the case of (ak − 1)− f
(2)
k (j − 1) < 0, by the definitions of fk and

ak, we obviously have
⌊

(ak − 1)− f
(2)
k (j − 1)

f
(2)
k (c)

⌋
= −1.

However, using again f
(2)
k (i) ≤ f

(1)
k (i), i ∈ N, now the equality

⌊
(ak − 1)− f

(1)
k (j − 1)

f
(1)
k (c)

⌋
= −1

also holds, which completes the proof of the theorem. ¤

Definition 3.3. Let Sn, S′n, S′n(l≥) and S′n(l) be the sets of general-
ized, periodic, at most l-periodic and l-periodic (l ∈ N) nD-neighbourhood
sequences, respectively. For any B1, B2 ∈ Sn we define the relation w∗ in
the following way:

B1 w∗ B2 ⇐⇒ f
(1)
k (i) ≥ f

(2)
k (i)

for all i ∈ N and k ∈ {1, . . . , n}.
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Remark 3.4. Using the previous theorem, it is evident that w∗ is a
partial ordering relation in Sn, hence also all in its subsets. Moreover, this
relation w∗ in 2D and 3D, is clearly identical to those introduced by Das

[1] and Fazekas [4], respectively.

Beside Sn, we investigate the structure of all those sets which were
studied by Das [1] in the periodic case, like S′n, S′n(l≥) and S′n(l) under w∗.
Unfortunately, in most cases the above sets with respect to this relation
does not form a nice structure. Although some of the forthcoming results
are very easy to prove, they are of certain importance because provide some
information about the differences of the sets involved. Our only “positive”
result in this direction is the following.

Theorem 3.5. (S2,w∗) is a complete distributive lattice.

Proof. Let S ⊆ S2, and for every C ∈ S2, for k ∈ {1, 2} denote by
f

(C)
k (i) the corresponding functions defined in Notation 2.5. Put b(1) =

maxA∈S

(
f

(A)
2 (1)

)
and inductively, for i ∈ N, i ≥ 2 let b(i) be the minimum

of those j ∈ {1, 2} for which
∑i

h=1 b(h) ≥ f
(A)
2 (i) holds for all A ∈ S, and

let B = {b(i) : i ∈ N}. By Theorem 3.2, and by the definition of B we
have B w∗ A for every A ∈ S. (Clearly, f

(B)
1 (i) = f

(A)
1 (i) = i for i ∈ N.)

Let B′ be an arbitrary upper bound of S, and let j ∈ N be arbitrary, but
fixed. The definition of B implies that f

(B)
2 (j) = f

(A)
2 (j) for some A ∈ S.

Hence, as B′ is an upper bound of S, f
(B′)
2 (j) ≥ f

(A)
2 (j) ≥ f

(B)
2 (j), which

proves the minimality of B. Now, by Remark 2.7 we have that (S2,w∗) is
a complete lattice.

Let A1, A2, A3 be arbitrary elements of S2 and i ∈ N. Now

f
(A1∧(A2∨A3))
2 (i) = min

(
f

(A1)
2 (i), max

(
f

(A2)
2 (i), f (A3)

2 (i)
))

= max
(
min

(
f

(A1)
2 (i), f (A2)

2 (i)
)
,min

(
f

(A1)
2 (i), f (A3)

2 (i)
))

= f
((A1∧A2)∨(A1∧A3))
2 (i),

which proves the distributive property of the lattice (S2,w∗). The proof
of the theorem is complete. ¤

Now we show that the above Theorem does not hold in higher dimen-
sions. Roughly speaking, the reason of this phenomenon is that from 3D
on, we have to deal with n− 1 ≥ 2 “non-trivial” fk(i), when k > 1.
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Proposition 3.6. (Sn,w∗) is not a lattice for n ≥ 3.

Proof. Put A1 = {3, 1}, A2 = {2}, B1 = {2, 1, 3, 1, 3, 1, 3, 1, 3, . . . }
and B2 = {1, 3, 1, 1, 1, 1, . . . }. Clearly, A1 w∗ B1 and A2 w∗ B1. On the
other hand, if B3 ∈ Sn then A1 w∗ B3 and A2 w∗ B3 implies B3 6w∗ B1.
Indeed, the first element of B3 can be at most 2. Suppose that the first i

elements of B1 and B3 are identical, but the (i+1)th elements are different.
Now B3 w∗ B1 would yield that b(3)(i + 1) > b(1)(i + 1), where these
numbers are the corresponding elements of B3 and B1, respectively. If
b(1)(i+1) = 1 then b(3)(i+1) ≥ 2, which implies f

(B3)
2 (i+1) > f

(A1)
2 (i+1),

contradicting A1 w∗ B3. (Here for C ∈ Sn and i ∈ {1, . . . , n}, f
(C)
k (i)

denotes the functions defined in Notation 2.5.) Otherwise, when b(1)(i +
1) = 3 then b(3)(i + 1) ≥ 4, whence f

(B3)
4 (i + 1) > f

(A2)
4 (i + 1), which

contradicts A2 w∗ B3. (The latter case can occur only when n ≥ 4.) On
the other hand, it is clear that A1 w∗ B2, A2 w∗ B2, but B1 6w∗ B2. Hence,
A1 and A2 have no greatest lower bound, thus Sn is not a lattice for n ≥ 3.

¤

Concerning some special sets of periodic sequences, we show that sim-
ilar unpleasant properties of w∗ also occur. In what follows we list these
“negative” results. We note that Propositions 3.7 (case n = 2) and 3.8
disprove Corollary 1 and Theorem 4 of Das [1], respectively.

Proposition 3.7. (S′n,w∗) is not a lattice for n ≥ 2.

Proof. Let A1 = {2, 1, 1} and A2 = {1, 2, 2}. The least upper bound
of these sequences in (Sn,w∗) is obviously B = {2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2,

. . . }, which is clearly not in S′n. Suppose that B′ = {b′(1), . . . , b′(l)}, and
B′ = A1 ∨ A2 in S′n. However, in this case B′ w∗ B in Sn, but B′ 6= B,
hence for some i ∈ N, b′(i) > b(i) must hold; suppose that i is the least
number with this property. Now putting b′′(j) = b(j) for 1 ≤ j ≤ 3i and
B′′ = {b′′(1), . . . , b′′(3i)}, we have B′′ w∗ A1, A2, but B′′ 6w∗ B′, which
contradicts B′ = A1 ∨A2 in S′n. The proof of the proposition is complete.

¤

Proposition 3.8. (S′2(l≥),w∗) is not a lattice for any l ≥ 5.

Proof. First let A1 = {1, 2, 2} and A2 = {1, 2, 2, 2, 1}. One can
readily verify that A1 and A2 have no least upper bound in S′2(5≥), thus
the statement holds for l = 5.
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Let now l ≥ 6, and choose any even number k with l
6 < k ≤ l

3 . Put
X = {x1, . . . , xk} = {1, 2, 2, 1, 2, 1, 2, 1, . . . , 2, 1} and Y = {y1, . . . , yk} =
{2, 1, 1, 2, 2, 1, 2, 1, 2, 1, . . . , 2, 1}, i.e. x1 = 1, x2 = 2 and xi = (i mod 2)+1
for 3 ≤ i ≤ k while y1 = 2, y2 = 1, y3 = 1, y4 = 2 and yi = (i mod 2) + 1
for 5 ≤ i ≤ k. Let A1 = {X, Y } be the sequence of period 2k, ob-
tained by writing Y after X, i.e. the elements of the 2k long period
of A1 with odd indices equal to 2 and with even indices equal to 1, ex-
cept for a(1)(1) = 1, a(1)(2) = 2, a(1)(k + 3) = 1, a(1)(k + 4) = 2. Sim-
ilarly, let A2 = {X, Y,X} be a sequence of period 3k. Furthermore,
set B1 = {2, 1} and B2 = {1, 2, 2}. Observe that in S2 we have A1 ∨
A2 = A = {X,Y, X, 2, 1, 2, 1, . . . , 2, 1} of length 6k and B1 ∧ B2 = B =
{1, 2, 2, 1, 2, 1, 2, 1, . . . }, which is not periodic. We claim that A1∨A2 does
not exist in S′2(l≥). Indeed, if such a C = {c(i) : i ∈ N} ∈ S′2(l≥) exists,
then in S2, A v∗ C v∗ B must hold. However, every period of C should
be even, moreover, c(2i − 1) + c(2i) = 3 should hold for every i ∈ N.
Furthermore, c(1) = 1 should also be valid, which in view of l < 6k and
A v∗ C is impossible, and the Proposition is proved. ¤

Remark 3.9. It is easy to check that (S′2(l≥),w∗) is a distributive
lattice if 1 ≤ l ≤ 4. Hence the statement of Theorem 4 of Das [1] is valid
in these special cases only.

Proposition 3.10. (S′n(l≥),w∗) is not a lattice for any l ≥ 2, n ≥ 3.

Proof. Let l ≥ 5. It is clear that the sequences A1 and A2, defined
in the proof of the previous proposition, have no least upper bound in
S′n(l≥).

Let now 2 ≤ l ≤ 4, and let A1 = {a(1)(1), . . . , a(1)(l)} and A2 = {2},
where A1 is defined in the following way: a(1)(1), . . . , a(1)(l) is the first l

elements of {3, 1, 3, 1}. It is easy to check that these sequences have no
least upper bound in S′n(l≥), which completes the proof. ¤

As we mentioned above, S′2(l) is a distributive lattice for every l∈N
(see [1]). The following result shows that this statement cannot be gener-
alized to nD with n ≥ 3.

Proposition 3.11. (S′n(l),w∗) is not a lattice for any l ≥ 2, n ≥ 3.

Proof. Let l ≥ 2 and n ≥ 3 be arbitrary, but fixed integers. We use
the same sequences as in Proposition 3.6. Namely, in Sn choose the fol-
lowing sequences: A1 = {3, 1}, A2 = {2}, B1 = {2, 1, 3, 1, 3, 1, 3, 1, 3, . . . }
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and B2 = {1, 3, 1, 1, 1, 1, . . . }. Define A′j = {a(j)′(1), . . . , a(j)′(l)}, and

B′
j = {b(j)′(1), . . . , b(j)′(l)} for j = 1, 2 in S′n(l) in the following way:

a(j)′(i) = a(j)(i), b(j)′(i) = b(j)(i), i = 1, . . . , l. Just as in the proof of
Proposition 3.6, it is easy to show that if A′1 ∧ A′2 exists in S′n(l), then
it must be B′

1. However, clearly B′
2 v∗ A′1, A

′
2, but B′

2 6v∗ B′
1, which

completes the proof. ¤
The above results show that under the relation w∗ we cannot obtain a

nice structure neither in Sn, nor in various subsets of it. Now we introduce
a new ordering relation, which is in close connection with w∗. Moreover,
Sn and its subsets considered above, will form much nicer structures under
this new relation.

Definition 3.12. For any B1 = {b(1)(i) : i ∈ N},
B2 = {b(2)(i) : i ∈ N} ∈ Sn we define the relation w in the following way:

B1 w B2 ⇐⇒ b(1)(i) ≥ b(2)(i), for every i ∈ N.

Remark 3.13. It is clear that w∗ is a proper refinement of w in Sn,
S′n, S′n(l≥) and S′n(l).

We examine the structure of Sn, S′n, S′n(l≥) and S′n(l) with respect
to w. As we will see, the structures we get will be much nicer than in the
case of w∗.

Proposition 3.14. (Sn,w) is a complete distributive lattice with great-
est lower bound

∧
Sn = {1} and least upper bound

∨
Sn = {n}.

Proof. From the definition of w it follows that this relation is re-
flexive, antisymmetric and transitive on Sn. Thus (Sn,w) is a partially
ordered set.

It is clear that for every B1, B2 ∈ Sn, B1∧B2 and B1∨B2 exist in Sn,
and we have

B1 ∧B2 = {min(b(1)(i), b(2)(i)) : i ∈ N},

B1 ∨B2 = {max(b(1)(i), b(2)(i)) : i ∈ N}.
Thus (Sn,w) is a lattice. Let now S = {Bγ : Bγ ∈ Sn, γ ∈ Γ} with
some index set Γ, and put b(i) = maxγ∈Γ

(
b(γ)(i)

)
, where b(γ)(i) is the ith

element of Bγ . Clearly, B = {b(i) : i ∈ N} is the least upper bound of S,
hence by Remark 2.7 (Sn,w) is a complete lattice.

The statements that this lattice is distributive and
∧

Sn = {1},∨
Sn = {n} are trivial. ¤
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Proposition 3.15. (S′n,w) is a distributive lattice with greatest lower

bound
∧

S′n = {1} and least upper bound
∨

S′n = {n}.
Proof. It is clear that if B1, B2 ∈ S′n, then B1 ∧ B2 and B1 ∨ B2 –

given in the proof of the previous proposition – are also in S′n. Thus, as
S′n ⊆ Sn and {1}, {n} ∈ S′n, we immediately obtain the statement. ¤

However, the ordering relation w has worse properties in S′n than
in Sn. This is shown by the following “negative” result.

Proposition 3.16. For n ≥ 2, (S′n,w) is not a complete lattice.

Proof. To prove the statement, we give a counterexample. To find
such an example, we construct a monotonously increasing and a monoto-
nously decreasing sequence in S′n, such that their “limit” sequence is the
same, however, this “limit” is in Sn \ S′n. This will show that (S′n,w) is
not complete.

For the precise formulation of the above idea we need some nota-
tion. If A ∈ S′n is l-periodic for some l ∈ N, i.e. A = {a(1), . . . , a(l)},
then put A2(l) = {a(1), . . . , a(l), a(1), . . . , a(l)}. (That is, we write A

into a 2l-periodic form.) Moreover, if A ∈ S′2 and A is l-periodic, A =
{a(1), . . . , a(l)}, then for i ∈ {1, . . . , l} let A〈i〉(l) = {a′(1), . . . , a′(l)} such
that a′(j) = a(j) for j 6= i and a′(i) = 3− a(i). (That is, all the elements
of A remains the same, except for the ith which is changed.) Finally, let
uk and vk be integer sequences defined by u0 = v0 = 0, uk = uk−1 + k,
vk = vk−1 + k + 1 for k ≥ 1. Clearly, the length of the closed inter-
val It = [ut, vt] is t, and these intervals for t ≥ 0 provide a partition of
N ∪ {0}.

Now let A−1 = {1}, B−1 = {2}, and define the sequences Ak and Bk in
S′n in the following way. If k∈ It where t is even, then let Ak = A2

k−1(2
k),

Bk =
(
B2

k−1(2
k)

)〈2k〉(2k+1), and if t is odd then put Ak =
(
A2

k−1(2
k)

)〈2k〉×
(2k+1), Bk = B2

k−1(2
k). (That is, to obtain Ak and Bk, we write the 2k

long periods of Ak−1 and Bk−1 after Ak−1 and Bk−1, respectively, and
then we change exactly one of the 2k+1th long periods obtained, at the
2kth place; the parity of t determines which period is to be modified. For
the first few values of k we get A−1 = {1}, A0 = {1, 1}, A1 = {1, 2, 1, 1},
A2 = {1, 2, 1, 2, 1, 2, 1, 1}, A3 = {1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1} and
B−1 = {2}, B0 = {1, 2}, B1 = {1, 2, 1, 2}, B2 = {1, 2, 1, 2, 1, 2, 1, 2}, B3 =
{1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2}.) From the definition of the sequences
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Ak and Bk immediately follows that Ak−1 v Ak and Bk−1 w Bk for
every k ∈ N ∪ {0}, with strict inequalities in both sequences infinitely
often. Moreover, observe that for every k ∈ N ∪ {0,−1} for the 2k+1

long periods {a(k)(1), . . . , a(k)(2k+1)} and {b(k)(1), . . . , b(k)(2k+1)} of Ak

and Bk, respectively, we have a(k)(i) = b(k)(i) for 1 ≤ i < 2k+1 and
a(k)(2k+1) < b(k)(2k+1); this fact is just a straightforward consequence of
the shape of A−1 and B−1, and of the definition of the sequences. Now
for every i ∈ N choose a k ∈ N with 2k+1 > i, and put c(i) = a(k)(i)
and C = {c(i) : i ∈ N}. By the above mentioned property of Ak and
Bk, C is well-defined. We show that C ∈ Sn \ S′n. Indeed, from the
definition of Ak and Bk it follows that for every t ∈ N ∪ {0} we have
c(i) = c(i + ms) with 1 ≤ i ≤ 2ut , s = 2ut and 0 ≤ m ≤ 2vt−ut+1 − 1, but
c(2ut) 6= c(2vt+1) = c(2ut+1). However, it is impossible for any periodic
sequence to have this property.

Let now S = {Ak : k ∈ N ∪ {0,−1}}, and suppose that B =
∨

S

in S′n for some B = {b(1), . . . , b(l)}. However, then in Sn B w C, but
B 6= C, hence for some i ∈ N, b(i) > c(i). But this implies Bk 6w B in
S′n, if 2k+1 > i, which by Bk w Aj , j ∈ N ∪ {0,−1}, contradicts B =

∨
S

in S′n. Hence S has no least upper bound in S′n, which proves that (S′n,w)
is not complete. ¤

The forthcoming proposition shows that S′n(l≥) is not a “good” subset
of Sn, in the sense that it does not form a nice structure even under w.
Of course, it is not surprising in view of the following observation: if A1

and A2 are in S′n(l≥), then A1 ∨ A2 and A1 ∧ A2 defined in Sn, does not
belong to S′n(l≥) in general.

Proposition 3.17. (S′n(l≥),w) is not a lattice for n, l ∈ N with n ≥ 2
and l ≥ 6.

Proof. Let n ≥ 2 be arbitrary. First observe that {1, 1, 2, 1} and
{1, 2, 1, 2, 1, 1} for 6 ≤ l ≤ 11, and {1, 1, 1, 1, 1, 1, 2, 1} and {1, 2, 1, 2, 1,

2, 1, 2, 1, 2, 1, 1} for 12 ≤ l ≤ 14 have no least upper bound in S′n(l≥).
Let now l ≥ 15, and choose a prime p with max{3, l

6} < p ≤ l
3 . (By

Bertrand’s postulate, for l ≥ 18 such a prime always exists, and for l < 18
we may take p = 5.) Put A1 = {1, 2} and A2 = {1, 1, 1, . . . , 1, 1, 1, 2},
where the period of A2 is 3p (i.e. the first 3p − 1 elements of the 3p long
period of A2 equal to 1, and the last element is 2). Moreover, let B1 =
{1, 2, 2, 2, 1, 2} and B2 = {b(2)(1), . . . , b(2)(2p)} with b(2)(i) = 1 if i is odd



Lattice of generalized neighbourhood sequences in nD and ∞D 419

but i 6= p and b(2)(i) = 2 otherwise (that is when i is even or i = p). Now it
is easy to check that A1, A2, B1, B2 ∈ S′n(l≥), A1, A2 v B1, A1, A2 v B2,
but B1 and B2 cannot be compared. Moreover, in Sn we have A1 ∨A2 =
B1 ∧B2. However, as A1 ∨A2 is of period 6p (but not of shorter period),
it is not in S′n(l≥), hence A1 and A2 cannot have a least upper bound in
S′n(l≥), which completes the proof of the proposition. ¤

Remark 3.18. We note that (S′n(l≥),w) is a distributive lattice if 1 ≤
l ≤ 5, for every n ∈ N. We omit the trivial proof of this statement.

Proposition 3.19. (S′n(l),w) is a distributive lattice for every

n, l ∈ N.

Proof. As for any A1, A2 ∈ S′n(l) the sequences A1∨A2 and A1∧A2

defined in Sn are also in S′n(l), the statement is an immediate consequence
of Proposition 3.14. ¤

4. Neighbourhood sequences in ∞D

Throughout this chapter we denote the set of infinite integer sequences
by Z∞, i.e. Z∞ = {(zi)∞i=1 : zi ∈ Z}. We shall refer to the elements of Z∞
as points.

Our purpose is to extend the result of the previous chapter, concerning
Zn, to this general case. Moreover, we will extend Theorem 2.6, due to
Das et al. [2] to Z∞, too. First we give some definitions that are natural
generalizations of the concepts in Chapter 2.

Definition 4.1. Let p and q be two points in Z∞. The ith coordinate
of the point p is indicated by Pri(p). The points p, q in Z∞ are called
N -neighbours for some N ∈ N ∪ {∞}, if

• ∀i ∈ N : |Pri(p)− Pri(q)| ≤ 1,

•
∑∞

i=1 |Pri(p)− Pri(q)| ≤ N .

Definition 4.2. An infinite sequence B = {b(i) : i ∈ N and b(i) ∈
N ∪ {∞}} is called an ∞D-neighbourhood sequence. If for some l ∈ N,
b(i) = b(i + l) holds for every i ∈ N, then B is called periodic, with a
period l, or simply l-periodic. In this case we will use the abbreviation
B = {b(1), . . . , b(l)}.
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Definition 4.3. Let p and q be two points in Z∞ and let B be an
∞D-neighbourhood sequence. The point sequence Π(p, q;B) – having the
form p = p0, p1, . . . , pm = q, where pi−1 and pi are b(i)-neighbours for
1 ≤ i ≤ m – is called a path of length m from p to q determined by
B. If such a path exists, then the distance of p and q (determined by
B) is defined as the common length of the shortest paths from p to q

determined by B. It will be denoted by d(p, q; B). If there is no path from
p to q determined by B, then we put d(p, q; B) = ∞.

Remark 4.4. Observe that the following two statements are equiva-
lent:

• d(p, q;B) = ∞ for every ∞D-neighbourhood sequence B,
• the set {|Pri(p)− Pri(q)| : i ∈ N} is unbounded.

To prove our main results concerning ∞D-neighbourhood sequences,
we need three lemmas. The following result shows that for any ∞D neigh-
bourhood sequence B, the function d(p, q;B) has some “symmetry” prop-
erties. We note that by Theorem 2.6, the same is also true in nD for every
n ∈ N.

Lemma 4.5. Let B = {b(i) : i ∈ N} be an ∞D-neighbourhood

sequence, and p, q ∈ Z∞. The distance value d(p, q; B) depends only

on the differences of the coordinates of the points, i.e. on the numbers

|Pri(p)− Pri(q)|, i ∈ N. Especially, for any ∞D-neighbourhood sequence

B and p, q ∈ Z∞ we have d(p, q;B) = d(q, p; B).

Proof. First, it is clear that for every a, b, x ∈ Z∞ and an ∞D-
neighbourhood sequence B, d(a, b; B) = d(a− x, b− x;B) holds. Thus we
may suppose that p = o = (0, 0, 0, . . . ). Let q, q′ ∈ Z∞ with |Pri(q)| =
|Pri(q′)| for every i ∈ N. To prove the first part of the lemma, it is sufficient
to show that d(o, q; B) = d(o, q′;B). To do this, first put d(o, q; B)= k <∞
and let o = q0, q1, . . . , qk = q be a path from o to q. For i = 0, . . . , k define
the points q′i in the following way:

Prj(q′i) =

{
Prj(qi), if Prj(q) = Prj(q′),

−Prj(qi), if Prj(q) = −Prj(q′).

Now we have q′0 = o and q′k = q′. Moreover, for i = 1, . . . , k and j ∈ N,
Prj(q′i−1) 6= Prj(q′i) implies Prj(qi−1) 6= Prj(qi). Indeed, suppose that
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Prj(qi−1) = Prj(qi) and let εPrj(q) = Prj(q′) with ε ∈ {1,−1}. How-
ever, by the definition of Prj(q′i−1) and Prj(q′i), in this case we would have
Prj(q′i−1) = εPrj(qi−1) = ε Prj(qi) = Prj(q′i), which would be a contradic-
tion. Hence

∑∞
i=1 |Prj(q′i)−Prj(q′i−1)| ≤

∑∞
i=1 |Prj(qi)−Prj(qi−1)|, which

shows that q′i−1 and q′i are b(i)-neighbours. This proves d(o, q′;B) ≤ k.
Exchanging q and q′ we have d(o, q;B) = d(o, q′; B) in the case k < ∞.
However, if d(o, q; B) = ∞, just as above we must have d(o, q′; B) = ∞, as
well. Indeed, d(o, q′;B) = k < ∞ would imply d(o, q; B) ≤ k which would
be a contradiction.

The second statement of the lemma is an immediate consequence of
the first one. ¤

If the points p, q ∈ Z∞ differ only at finitely many coordinates, then
their distance is certainly finite (regardless of B), and the points of a
shortest path connecting them belongs to an nD subspace of Z∞ for some
n ∈ N. By this observation, the following two lemmas are obvious. How-
ever, since these lemmas play important roles in the proof of Theorem 4.8,
and for the convenience of the reader, we provide the easy proofs of these
statements.

Lemma 4.6. Let p and q be two points in Z∞ such that |{i : Pri(p) 6=
Pri(q)}| = c < ∞. Let B = {b(i) : i ∈ N} be an ∞D-neighbourhood

sequence, and let A = {a(i) : i ∈ N} be an ∞D-neighbourhood sequence

with a(i) = min{b(i), c} for i ∈ N. Then d(p, q;A) = d(p, q;B).

Proof. It is clear that d(p, q; B) ≤ d(p, q;A), so we have only to
show the opposite relation. Put H = {i : Pri(p) 6= Pri(q)}, and m =
d(p, q; B). Since c < ∞, we have m < ∞. Hence there exists a path p = p0,
p1, . . . , pm = q from p to q determined by B in Z∞. For 1 ≤ i ≤ m− 1 let

Prj(qi) =

{
Prj(pi), for j ∈ H,

Prj(p), for j ∈ N \H,

and set q0 = p and qm = q. Now by the definitions of A and the points qi,
it is clear that q0, q1, . . . , qm is a path from p to q determined by A, which
yields d(p, q;A) ≤ m = d(p, q; B), and the lemma is proved. ¤
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Lemma 4.7. Let B be an ∞D-neighbourhood sequence, and p and q

two points in Z∞ such that the set H = {i : Pri(p) 6= Pri(q)} is finite. Let

d(p, q; B) = m. Then there exists a path p = q0, q1, . . . , qm = q from p to

q determined by B in Z∞ such that for every i = 1, . . . ,m and j ∈ N \H

we have Prj(qi−1) = Prj(qi).

Proof. The points q0, . . . , qm defined in the proof of Lemma 4.6
clearly have the desired properties. ¤

In Theorem 4.8 we describe how d(p, q;B) can be calculated. This
result is of independent interest, but it will be useful in the proof of The-
orem 4.10, too.

Theorem 4.8. Let p and q be two distinct points in Z∞ such that the

set {|Pri(p)−Pri(q)| : i ∈ N} is bounded, and let B = {b(i) : i ∈ N} be an

∞D-neighbourhood sequence. For c ≥ 1 let Hc = {i : |Pri(p)− Pri(q)| ≥
c}, and put k = min{c : |Hc| < ∞} and h = |Hk|. For i ∈ N let a(i) =
min{h, b(i)}, and A = {a(i) : i ∈ N}. Moreover, put r = (Pri(p))i∈Hk

and

s = (Pri(q))i∈Hk
. Let t be defined by the following properties:

• b(t) = ∞,

• |{i : i ≤ t and b(i) = ∞}| = k − 1.

If such t does not exist, then put

t =
{ 0, if k = 1,

∞, otherwise.

Now the following equality holds:

d(p, q; B) = max{dh(r, s; A), t},

where for h ≥ 1, dh(r, s; A) is the h-dimensional distance of r and s deter-

mined by A, and d0(r, s; A) = 0.

Proof. By Lemma 4.5, without loss of generality we may suppose
that Pri(p) ≤ Pri(q) for every i ∈ N. First, it is clear that if h = 0,
then d(p, q;B) = t. Assume that h ≥ 1, and put dh(r, s; A) = x. Let
r = r0, r1, . . . , rx = s be a path from p to q determined by A in Zh. First
suppose that x ≥ t, and let 1 ≤ m1 < m2 < · · · < mt ≤ x be the k − 1
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indices with b(mi) = ∞, i = 1, . . . , t. Set M = {m1, . . . , mt}. Define the
points qi for i = 0, . . . , x in Z∞ in the following way: q0 = p,

Prj(qi) =





Prj(ri), for j ∈ Hk, i ∈ {1, . . . , x},
Prj(qi−1), for j ∈ N \Hk,

i ∈ {1, . . . , x} \M,

min (Prj(qi−1) + 1,Prj(q)) , for j ∈ N \Hk, i ∈ M.

By this definition, the points qi−1, qi are b(i)-neighbours for i = 1, . . . , x.
Moreover, we have qx = q. Indeed, for j ∈ Hk clearly Prj(qx) = Prj(rx) =
Prj(q) holds. On the other hand, as x ≥ t, for j ∈ N \ Hk the jth
coordinate is increased k−1 times (if necessary), and we obtain Prj(qx) =
Prj(q) for these indices, too. Hence in this case we have d(p, q;B) ≤ x =
max{dh(r, s;A), t}. Now suppose that t > x. If t = ∞, then there is
nothing to prove, so suppose that t < ∞. Let the points r0, . . . , rx be
as before, and for 0 ≤ i ≤ x define the points qi in the same way. For
i = x + 1, . . . , t put

Prj(qi) =

{
min (Prj(qi−1) + 1,Prj(q)) , if b(i) = ∞ and j ∈ N \Hk,

Prj(qi−1), otherwise.

It is clear that for i = 1, . . . , t the points qi−1, qi are b(i)-neighbours.
Moreover, we have qt = q. Indeed, for j ∈ Hk we even have Prj(qx) =
Prj(q). On the other hand, if j ∈ N \ Hk, then the jth coordinate is
increased (at most) k − 1 times, which yields Prj(qt) = Prj(q) for such
indices, too. Hence, in this case we have again

d(p, q; B) ≤ t = max{dh(r, s; A), t}.

Now we prove that d(p, q; B) ≥ max{dh(r, s; A), t}. Let d(p, q; B) = m <

∞. (If m = ∞, then we are ready.) Let p = p0, p1, . . . , pm = q be a path
from p to q determined by B in Z∞. Let qi for i = 0, . . . ,m be defined in
the following way:

Prj(qi) =

{
Prj(pi), for j ∈ Hk,

0, for j ∈ N \Hk.
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Clearly, for i = 1, . . . , m, qi−1 and qi are b(i)-neighbours. Hence, by
Lemma 4.6 and Lemma 4.7, and by the definitions of r, s and A, we
have

d(p, q; B) ≥ d(q0, qm; B) = d(q0, qm;A) ≥ dh(r, s;A).

On the other hand, it is clear that d(p, q;B) ≥ t. Indeed, let u, v, and
w be any three points in Z∞ such that u and v are b(i)-neighbours for
some i ∈ N. For c ∈ N let Uc = {i : |Pri(u) − Pri(w)| ≥ c}, Vc = {i :
|Pri(v) − Pri(w)| ≥ c}, and put ku = min{c : |Uc| < ∞}, kv = min{c :
|Vc| < ∞}. If |Uc| = ∞ or |Vc| = ∞ for every c ∈ N, then put ku = ∞ or
kv = ∞, respectively. Now, if b(i) < ∞, then clearly ku = kv, and even
if b(i) = ∞, we have |ku − kv| ≤ 1 (with the agreement |∞ − ∞| = 0).
Hence, by the definition of k and t, we obtain d(p, q; B) ≥ t, which implies
d(p, q; B) ≥ max{dh(r, s; A), t}. The proof of the theorem is now complete.

¤
Remark 4.9. It is interesting to note that combining the above result

with the formula provided for d(p, q; B) in Theorem 2.6, it is possible to
calculate explicitely the distance of two points in Z∞, determined by an
∞D-neighbourhood sequence. On the other hand, if we take p, q ∈ Z∞
such that they differ at only finitely many places, then we have k = 1
whence t = 0 in Theorem 4.8. This shows that the distance defined in Z∞ is
in fact a generalization of the distances introduced in the finite dimensional
cases.

The following result is the extension of Theorem 3.2 to Z∞.

Theorem 4.10. Let Bc = {b(c)(i) : i ∈ N} (c = 1, 2) be two ∞D-
neighbourhood sequences. For i, k ∈ N, c = 1, 2, put

f
(c)
k (j) =

∑j
i=1 min(b(c)(i), k). Then

d(p, q;B1) ≤ d(p, q;B2) for all p, q ∈ Z∞

if and only if

f
(1)
k (i) ≥ f

(2)
k (i) for all i ∈ N, k ∈ N.

Proof. First we derive the second property from the first one. Con-
trary to the second statement, suppose that for some j, h ∈ N, f

(1)
h (j) <

f
(2)
h (j) holds. Let

ui =

{ |{b(2)(t) : b(2)(t) = i, 1 ≤ t ≤ j}|, for 1 ≤ i < h,

|{b(2)(t) : b(2)(t) ≥ i, 1 ≤ t ≤ j}|, for i = h,
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and put p = (0, 0, 0, . . . ), q = (u1, u1 + u2, . . . , u1 + u2 + · · ·+ uh, 0, 0, . . . ).
For c = 1, 2 and i ∈ N set a(c)(i) = min{b(c)(i), h} and sequences Ac =
{a(c)(i) : i ∈ N}. By Lemma 4.6, by the constructions of p, q and Al,
l = 1, 2, and by f

(1)
h (j) < f

(2)
h (j), we have

d(p, q; B1) = d(p, q; A1) > d(p, q;A2) = d(p, q; B2),

which contradicts the first statement, and the first part of the theorem is
proved.

Now we prove that the second statement implies the first one. Fix
two arbitrary points, p and q in Z∞. Without loss of generality we may
suppose that the set {|Pri(p) − Pri(q)| : i ∈ N} is bounded, otherwise
we have d(p, q; B1) = d(p, q;B2) = ∞. Let h, r, s, tc and Ac denote the
parameters, points and sequences corresponding to p, q, and Bc, c = 1, 2,
defined in Theorem 4.8. Using this Theorem, it is sufficient to show that
t1 ≤ t2 and dh(r, s;A1) ≤ dh(r, s; A2) in Zh.

First suppose that t1 > t2. This implies that for some n ∈ N,
|{i : i ≤ n and b(1)(i) = ∞}| < |{i : i ≤ n and b(2)(i) = ∞}|. However, in
this case for some m we clearly have f

(1)
m (n) < f

(2)
m (n), which contradicts

the second statement. Now we prove that dh(r, s;A1) ≤ dh(r, s;A2). To
do this, observe that Ac for c = 1, 2 is an hD-neighbourhood sequence.
Moreover, for 1 ≤ k ≤ h the functions f

(c)
k corresponding to Bl are just

the same as those corresponding to Ac, c = 1, 2 in Theorem 3.2. Hence,
by Theorem 3.2 we have dh(r, s; A1) ≤ dh(r, s;A2), which completes the
proof of the theorem. ¤

Now we study the structure of the ∞D-neighbourhood sequences.
First we define two ordering relations on them, which are just the ex-
tensions of the finite dimensional orderings to this general case.

Definition 4.11. Let B1 and B2 be∞D-neighbourhood sequences. We
write B1 w∗ B2, if for every i, k ∈ N, f

(1)
k (i) ≥ f

(2)
k (i) holds.

Remark 4.12. Let S∞, S′∞, S′∞(l≥) and S′∞(l) be the sets of general-
ized, periodic, at most l-periodic and l-periodic (l ∈ N)∞D-neighbourhood
sequences, respectively. It is clear that w∗ is an antisymmetric, transitive
relation, i.e. a partial ordering on all these sets. However, just as in the
finite dimensional case, (S∞,w∗), (S′∞,w∗), (S′∞(l≥),w∗) and (S′∞(l),w∗)
with l ≥ 2 are not lattices. These statements are simple consequences of
Propositions 3.6 through 3.11.
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Definition 4.13. By the above notation, for B1 = {b(1)(i) : i ∈ N},
B2 = {b(2)(i) : i ∈ N} ∈ S∞ we write B1 w B2 if and only if b(1)(i) ≥ b(2)(i)
for every i ∈ N.

It turns out that w has much more pleasant properties than w∗ in
case of ∞D-neighbourhood sequences, too.

Proposition 4.14. (S∞,w), (S′∞,w) and (S′∞(l),w) for any l ≥ 1 are

distributive lattices, with greatest lower bound {1} and least upper bound

{∞}. Moreover, the first and third lattices are complete, but the second

one is not.

Proof. The statement is a simple consequence of Propositions 3.14,
3.15, 3.16 and 3.19. We omit the details. ¤

Remark 4.15. (S′∞(l≥),w) is a complete distributive lattice for 1 ≤
l ≤ 5. If l ≥ 6, then (S′∞(l≥),w) is not a lattice. The proofs of these
statements are trivial (see Proposition 3.17 and Remark 3.18).

The following result provides some information about the structures
of several other subsets of S∞ under w.

Proposition 4.16. Let S∗∞= {B : B = {b(i) : i ∈ N and b(i) ∈ N}},
S+
∞ =

⋃∞
n=1 Sn and S−∞ =

⋃∞
n=1 S′n, where Sn and S′n are defined in

Definition 3.3. Then (S∗∞,w), (S+
∞,w) and (S−∞,w) are non-complete dis-

tributive lattices (sublattices of S∞) with greatest lower bound {1}. S∗∞,

S+
∞ and S−∞ have no least upper bounds.

Proof. Let S be any of the sets S∗∞, S+
∞, S−∞. It is evident that for

each A1, A2 ∈ S, A1 ∨ A2 and A1 ∧ A2 defined in S∞, also belong to S.
Hence these three sets clearly form distributive lattices under w. It is
obvious that {1} is the greatest lower bound of each lattice, and that they
have no least upper bounds. The last observation immediately implies the
non-completeness of the lattices. ¤

Finally, we show that the lattice (S∞,w) (and in some special cases
(S′∞(l≥),w) or (S′∞(l),w)) can be considered as the closure of the union
of the finite dimensional lattices, studied in the previous chapter. We also
include the lattices (S′∞,w) and (S∗∞,w) into this consideration.
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Proposition 4.17. Use the previous notation, and put S−∞(l≥) =⋃∞
n=1 S′n(l≥) and S−∞(l) =

⋃∞
n=1 S′n(l) for l ∈ N, where S′n(l≥) and S′n(l)

are defined in Definition 3.3. In S∞, (S∞,w) is the closure of the lattices
(S′∞,w), (S∗∞,w), (S+

∞,w), (S−∞,w), (S−∞(l≥),w) and (S−∞(l),w). More-
over, in S′∞(l) for every l ∈ N, (S′∞(l),w) is the closure of (S−∞(l),w).
Finally, in S′∞(l≥) for 1 ≤ l ≤ 5, (S′∞(l≥),w) is the closure of (S−∞(l≥),w).

Proof. The statements are trivial by noting that S∞, S′∞(l) (l ∈ N)
and S′∞(l≥) (1 ≤ l ≤ 5) are complete lattices with respect to w, and that
all the examined sets have the least upper bound {∞} in S∞ (or in S′∞(l)
or S′∞(l≥), respectively). ¤
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