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A new approach to generalized Berwald manifolds II

By SZ. SZAKÁL (Budapest) and J. SZILASI (Debrecen)

Abstract. Generalized Berwald manifolds were introduced by V. V. Wagner
and systematically investigated by M. Hashiguchi and Y. Ichijy�o. They are re-
considered here in the context and with the tools of the general theory developed in
the first part of our work. (However, this second part is self-contained to a reasonable
extent.) Under some natural conditions we establish key relations between a horizon-
tal endomorphism and the distinguished Barthel endomorphism on a Finsler manifold.
We construct intrinsically a vector field which plays a dominant role in these and fur-
ther, geometrically relevant relations. In the case of a generalized Berwald manifold
(M, E,∇) the linear connection ∇ is far from unique. Our results enable us to link
different generalized Berwald manifolds with common Finsler structure. Applications
to Wagner manifolds and a family of examples (parallelizable manifolds endowed with
one-form Finsler structure) illustrate how the general theory works in practice.

0. Introduction

0.1. In the first part ([12]) of our paper we have already introduced the
generalized Berwald manifolds, providing also a preliminary characteriza-
tion of this concept in terms of Ichijyō connections. – Let us mention that
we called a triplet (M, E,∇) a generalized Berwald manifold if (M,E) is
a Finsler manifold, ∇ is a linear connection on M , and the horizontal en-
domorphism h∇ generated by ∇ is conservative, i.e., dh∇E = 0. Thus a
Finsler structure is nicely related to a linear connection.
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0.2. A quite immediate but important consequence of the definition is
that generalized Berwald manifolds are Finsler manifolds modeled on a
Finsler–Minkowski vector space in the sense of Y. Ichijyō [9]. This means
that any two tangent spaces of the Finsler manifold (M,E) in question
are isomorphic as Finsler–Minkowski vector spaces (see 5.1 below); the
Finsler–Minkowski functional on a tangent space TpM is given by the rule
v ∈ TpM 7→

√
2E(v) ∈ R.

0.3. It will be worth-while to present here a brief conceptual justification
of our above assertion. – Let (M,E,∇) be a generalized Berwald manifold.
Choose two (different) points p, q of M and connect them with a smooth
curve c : [0, 1] → M . Fix an arbitrary vector v ∈ TpM and consider
the unique parallel vector field X : [0, 1] → TM along c satisfying the
initial condition X(0) = v. Let w := X(1). It is enough to check that
E(v) = E(w). – Let ∇c be the covariant differentiation induced by ∇
along c. Consider the connector

K∇ := ι ◦ (1TTM − h∇) (ι : V TM → TM is the canonical map)

belonging to ∇. Then

0 = ∇cX = K∇ ◦ TX ◦ d

du
=: K∇ ◦ Ẋ (u := 1R).

Since Ker K∇ = Im h∇, this means that the vector field Ẋ := TX ◦ d
du :

TR ∼= R→ TTM is horizontal: h∇◦Ẋ = Ẋ. Using this trivial observation
and (1.3c) below, for any τ ∈ [0, 1] we obtain:

(E ◦X)′(τ) = T (E ◦X)
(

d

du

)

τ

= TE ◦ TX ◦ d

du
(τ) = TE ◦ Ẋ(τ)

= dE(Ẋ(τ)) = dE
[
h∇(Ẋ(τ))

]
= dh∇E(Ẋ(τ)) = 0.

Thus E ◦X is constant along c, which implies our claim E(v) = E(w).

0.4. The notion of generalized Berwald manifold was originally introduced
by V. V. Wagner in 1943 [19]. A modern approach to these manifolds
within the framework of Matsumoto’s theory, via the so-called gener-
alized Cartan connections, was elaborated by M. Hashiguchi [8]. Our
definition provides another, geometrically natural approach which is also
in harmony with Matsumoto’s principle of the “best” Finsler connections
cited in part 1.
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0.5. The first question that offers itself in connecetion with a generalized
Berwald manifold is without any doubt the following: to what extent is
the linear connection ∇ determined by the structure? Concerning this
problem, we are going to show that two generalized Berwald manifolds
(M, E,∇1) and (M, E,∇2) are equal if ∇1 and ∇2 have the same torsion
tensor field. More or less, this result is analogous to the well-known theo-
rem: two linear connections on a manifold are equal if they have common
geodesics and their torsion tensor fields are also the same. To derive our
theorem (and for other purposes), in Section 2 we present under some
– as far as possible “natural” – conditions a careful analysis of the rela-
tions between two horizontal endomorphisms given on the same manifold.
“Natural conditions” in the Finslerian case certainly do exist. For ex-
ample: let both horizontal endomorphisms be conservative, or let one of
them be conservative and the other be the distinguished Barthel endo-
morphism. Nevertheless, useful relations can also be discovered in a much
more general situation (see 2.1).

0.6. Let (M, E) be a Finsler manifold. Suppose that h is a horizontal en-
domorphism on M with weak torsion t, and let t◦ := iSt (S is an arbitrary
semispray on M) be the potential of t. We can consider the one-form dt◦E,
and we can construct the vector field (dt◦E)# which corresponds canon-
ically to dt◦E via the fundamental two-form of (M, E). In our opinion
this – unfortunately, a bit complicated – vector field is at the heart of the
problems (and difficulties) concerning generalized Berwald manifolds. As
a justification, we refer to Propositions 2.5, 2.7; the proof of 3.8, and the
key relations (4.5a) and (4.6a) below. In particular, a direct conclusion
will be that a generalized Berwald manifold (M,E,∇) becomes a Berwald
manifold (M,E) if, and only if, the vector field (dt◦∇E)# is quadratic.

0.7. In Section 4 we deduce some useful equivalents of the property char-
acterizing Wagner manifolds. This result has essential applications in the
theory of conformal changes of a Finsler structure, see [18].

0.8. Non-Berwald generalized Berwald manifolds do exist . In Section 5
we offer a typical family of such manifolds together with their basic data.
First, we build a special Finsler structure, the so-called one-form metric,
on a parallelizable manifold. Next, we present an elegant proof of the fact,
discovered originally by Y. Ichijyō, that our construction actually results
in generalized Berwald manifolds. – Let us note that a systematic study
of one-form metrics can be found in [11]. These metrics also occur in an
interesting context in [16].
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1. Basic setup

1.1. Since this paper is an immediate continuation of our previous work
[12], we adopt its conceptual and notational conventions without any
changes, and – in most cases – without any comment. Double numbers in
italics (i.e., of form 9.99 ) will refer to the first part.

Our “philosophical” attitude remains unaltered: we try to elaborate
a transparent intrinsic formulation on a reasonable level of generality for
the problems studied. The calculative background of our considerations
is the Frölicher–Nijenhuis calculus on the velocity space, i.e., on the tan-
gent manifold TM of the given manifold M (1.1). In the present second
part this, a bit complicated, apparatus will be applied more explicitly and
intensively than in the first part. So, for the readers’ convenience, we col-
lect here some basic facts and frequently used formulas. A more complete
overview of these technical tools is available in Youssef’s paper [22]; we
also refer to J. Klein’s stimulating survey article [10], the monograph [5],
and last but not least, the original source [6].

1.2. Let Ω(M) be the graded algebra of the differential forms of our base
manifold M . If D1 and D2 are (graded) derivations of degree r and s

(r, s ∈ Z) of Ω(M), then their bracket is

(1.2a) [D1, D2] := D1 ◦D2 − (−1)rsD2 ◦D1;

this is a graded derivation of degree r + s.

1.3. Let us denote by Ψk(M) (k ∈ N, Ψ◦(M) := X(M)) the C∞(M)-
module of the vector k-forms on M . We recall that any vector k-form
K ∈ Ψk(M) can be interpreted as a skew-symmetric C∞(M)-multilinear
map [X(M)]k → X(M) (if k ∈ N \ {0}); in particular, a vector 1-form is
just a type (1, 1) tensor field on M . In the Frölicher–Nijenhuis theory to
any vector k-form K ∈ Ψk(M) two derivations of Ω(M) are associated:

the derivation iK of degree k − 1 defined by the rule(1.3a)

iK ¹ C∞(M) = 0; iKω := ω ◦K, if ω ∈ Ω1(M);

the derivation dK of degree k given by the formula(1.3b)

dK := [iK , d] 1.2a= iK ◦ d− (−1)k−1d ◦ iK
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(d is the operator of the “ordinary” exterior derivative).

As an immediate consequence, we obtain

(1.3c) if f ∈ C∞(M) and K ∈ Ψk(M), then dKf = iKdf = df ◦K.

A characteristic property of dK is expressed by

(1.3d) [d, dK ] = 0.

1.4. For any vector k-form K ∈ Ψk(M) and vector `-form L ∈ Ψ`(M)
there exists a unique vector (k + `)-form [K, L] ∈ Ψk+`(M) such that

d[K,L] = [dK , dL];

[K, L] is said to be the Frölicher–Nijenhuis bracket of K and L. This
bracket is graded anticommutative and satisfies the graded Jacobi identity ,
i.e., for any vector forms Ki ∈ Ψki(M) (1 ≤ i ≤ 3) we have

[K1,K2] = −(−1)k1k2 [K2, K1];(1.4a)

(−1)k1k3
[
K1, [K2,K3]

]
+ (−1)k2k1

[
K2, [K3,K1]

]
(1.4b)

+(−1)k3k2
[
K3, [K1, K2]

]
= 0.

In particular, let us suppose that K and L are vector one-forms. Then
the following important formulas can be deduced:

[K,Y ]X = [KX,Y ]−K[X, Y ];(1.4c)

[fX, K] = f [X, K] + df ∧ iXK − dKf ⊗X;(1.4d)

[K, fL] = f [K, L] + dKf ∧ L− df ∧ (K ◦ L);(1.4e)

[K,ω ⊗X] = dKω ⊗X − dω ⊗KX + (−1)rω ∧ [K, X];(1.4f)

iX ◦ iK = iK ◦ iX + iKX ;(1.4g)

iK ◦ iL = iL ◦ iK + iL◦K − iK◦L;(1.4h)

iX ◦ dK = −dK ◦ iX + LKX + i[K,X];(1.4i)

iK ◦ dX = dX ◦ iK + i[K,X];(1.4j)
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iK ◦ dL = dL ◦ iK + dL◦K − i[K,L](1.4k)

(X,Y ∈ X(M), f ∈ C∞(M), ω ∈ Ωr(M); note that dX is just the Lie-
derivative LX). – Observing that d[K,Y ] := [dK , dY ] = [dK ,LY ], (1.4c) can
be deduced immediately. (1.4d)–(1.4f) are stated in [22]. Finally, formulas
(1.4g)–(1.4k) can be obtained as special cases of (5.6)a) and (5.9) of [6].

1.5. In our calculations some special derivations of the algebra Ω(TM) of
the differential forms on the tangent manifold TM will play a distinguished
role. The most frequently used operators are

iC , iJ , dC = LC , dJ , iS , dS = LS ,

where C ∈ Xv(TM) is the Liouville vector field , J ∈ Ψ1(TM) is the
vertical endomorphism and S is an arbitrary semispray on M . Taking into
account that

Im J = Ker J = Xv(TM), J2 = 0;(1.5a)

[J,C] = J, [J, J ] = 0;(1.5b)

JS = C,(1.5c)

(1.4g), (1.4i) and (1.4j) yield the following relations:

iC ◦ iJ = iJ ◦ iC ;(1.5d)

[iC , dJ ] = iJ ;(1.5e)

[iJ ,LC ] = iJ .(1.5f)

1.6. A vector k-form K ∈ Ψk(TM) (k ∈ N\{0}) is said to be semibasic, if
J ◦K = 0 and, for any vector field X ∈ X(TM), iJXK = 0. The potential
of a semibasic vector k-form K ∈ Ψk(TM) is the vector (k − 1)-form

K◦ := iSK,

where S in an arbitrary semispray. – For more details, see [7] or [5].
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1.7. We recall that the complete lift αc of a function α ∈ C∞(M) can be
introduced by

(1.7a) αc := S(α ◦ π) =: Sαv,

where S is again an arbitrary semispray on M . Then the complete lift of
a vector field X ∈ X(M) is the unique vector field X ∈ X(TM) satisfying

(1.7b) ∀α ∈ C∞(M) : Xcαc = (Xα)c.

The following useful relations can be deduced easily:

Xcαv = Xvαc = (Xα)v;(1.7c)

[X,Y ]c = [Xc, Y c], [X, Y ]v = [Xv, Y c];(1.7d)

[C,Xc] = 0; i.e., Xc is homogeneous of degree 1;(1.7e)

JXc = Xv, [J,Xc] = 0(1.7f)

(X,Y ∈ X(M); Xv ∈ Xv(TM) is the vertical lift of X; α ∈ C∞(M)).

1.8. Sharp operator and gradient on a Finsler manifold. Suppose that
(M, E) is a Finsler manifold with the fundamental form ω := ddJE. If β
is a 1-form on TM , we denote by β# (read: “β sharp”) the vector field
corresponding to β via ω; i.e.,

(1.8a) iβ#ω = β.

In particular, the gradient of a function f ∈ C∞(TM) is the vector field

grad f := (df)#.

The gradient of a vertical lift , i.e., of a function of form αv = α ◦ π,
α ∈ C∞(M) has the following nice properties:

gradαv ∈ Xv(TM);(1.8a)

[C, gradαv] = − grad αv;(1.8b)

i.e., grad αv is homogeneous of degree 0;

(gradαv)E = αc(1.8c)

(see [14], Proposition 1).
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1.9. Theorems of M. Crampin and J. Grifone. The following sub-

stantial results, due to M. Crampin [3], [4] and J. Grifone [7] are among

the most important theorems of the theory of connections and lie at the

foundations of Finsler geometry. They will be repeatedly referred to also

in our subsequent considerations.

(A) If S is a semispray on a manifold M , then

h :=
1
2

(
1X(TM) + [J, S]

)

is a horizontal endomorphism on M with vanishing weak torsion. If,

in particular, S is a spray, then the horizontal endomorphism h is

homogeneous, i.e., H := [h,C] = 0.

(B) A horizontal endomorphism arises from a semispray in the above man-

ner if and only if its weak torsion vanishes.

(C) On any Finsler manifold (M,E) there exists a unique conservative

horizontal endomorphism with vanishing strong torsion; it is given by

the formula

h0 =
1
2

(
1X(TM) + [J, S0]

)
,

where S0 is the canonical spray of the Finsler manifold. – h0 is said

to be the Barthel endomorphism of (M, E).

1.10. We conclude this overview with a practical convention. – The basic
geometric data – such as associated semispray, tension, weak and strong
torsion, almost complex structure, horizontal lifting – arising from a hori-
zontal endomorphism h or h̃ will be denoted by

S, H, t, T, F, Xh and S̃, H̃, t̃, T̃ , F̃ , X
eh (X ∈ X(M)),

respectively. The corresponding data determined by the Barthel endomor-
phism h0 are

S0, H0, t0, T0, F0, Xh0 .

In particular, any linear connection ∇ on M gives rise to a horizontal
endomorphism h∇. Then the above data are denoted by

S∇, H∇, t∇, T∇, F∇, Xh∇

(here, in fact, H∇ = 0).
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2. Horizontal endomorphisms on a Finsler manifold

2.1. Lemma. Suppose that h is a homogeneous horizontal endomor-

phism on the manifold M and let S be the semispray associated with h

([7], Prop. I.38). If h̃ is the horizontal endomorphism determined by S

according to 1.9. (A), then h and h̃ are related by

h̃ = h− 1
2
t◦,

where t is the weak torsion of h, and t◦ is its potential.

Proof. Since h is homogeneous, its associated semispray S is actu-
ally a spray. In view of 1.9. (A), the weak torsion of h̃ vanishes. h̃ is also
homogeneous, because it is generated by the spray S ([7], Proposition I.41).
Thus

h̃S = S, hS = S;

and the vector 1-form
K := h̃− h

is obviously semibasic, therefore

J ◦K = K ◦ J = 0.

Since

0 = t̃ := [J, h̃] = [J, h + K] = [J, h] + [J,K] = t + [J,K],

it follows that t = −[J,K], hence

t◦ = −[J,K]◦.

The vector 1-form [J,K]0 is clearly semibasic, so it is determined by its
action on the complete lift vector fields. Taking into account our previous
observations, for any vector field X on M ,

[J,K]◦(Xc) = [J,K](S,Xc)
(6.4) of [6]

= [JS, KXc] + [KS, JXc]

+ J ◦K[S, Xc] + K ◦ J [S,Xc]− J [S,KXc]− J [KS,Xc]

−K[S, JXc]−K[JS, Xc] = [C, KXc]− J [S, KXc]−K[S,Xv].
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On the right hand side the first term vanishes by the homogeneity of h

and h̃:

[C, KXc] = [C, h̃Xc]− [C, hXc] = [C,X
eh]− [C, Xh] = 0.

As for the second term, we get

J [S, KXc] 1.2= −KXc = (h− h̃)Xc.

The third term can be formed as follows:

K[S, Xv] = h̃[S,Xv]− h[S, Xv] = F̃ ◦ J [S, Xv]− F ◦ J [S, Xv]

= −F̃Xv + FXv = −F̃ ◦ JXc + F ◦ JXc = (h− h̃)Xc.

To sum up, it can be stated that

∀X ∈ X(M) : [J,K]◦(Xc) = 2(h̃− h)Xc, i.e., [J,K]◦ = 2(h̃− h).

Hence t◦ = 2(h− h̃), which proves our assertion. ¤

2.2. Lemma. If ω is the fundamental two-form of the Finsler manifold

(M, E) and h is a conservative horizontal endomorphism on M , then

ihω = ω + itdE,

where t is the weak torsion of h.

Proof. In view of (1.4k)

ih ◦ dJ = dJ ◦ ih + dJ◦h − i[h,J]
( 1.3a), (1.4b)

= dJ ◦ ih + dJ − it,

therefore

ihω = ihddJE
(1.3d)
= −ihdJdE

= −dJ ihdE − dJdE + itdE

= ddJE + itdE = ω + itdE

(using that ihdE = 0 by the conservativity of h). ¤
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2.3. Corollary. If ω is the fundamental two-form of the Finsler man-

ifold (M, E) and h is a conservative horizontal endomorphism on M with

vanishing weak torsion then ihω = ω.

2.4. Lemma. Let h be a conservative horizontal endomorphism on

the Finsler manifold (M, E). Then

dHE = 0,

where H is the tension of h.

Proof. Take an arbitrary vector field X on M . An easy calculation
shows that H(Xc) = [Xh, C], so

dHE(Xc)
(1.3c)
= dE(HXc) = dE

(
[Xh, C]

)
= [Xh, C]E

= Xh(CE)− C(XhE) = Xh(2E) = 0,

since h is conservative. ¤

2.5. Proposition. Suppose that h is a conservative horizontal endo-

morphism on the Finsler manifold (M, E) with the associated semispray S.

Then S can be represented in the form

S = S0 + (dt◦E)# ,

where S0 is the canonical spray of (M, E) and t◦ is the potential of the

weak torsion of h.

Proof. Let us note first that the general formula (5.6)(a) of [6] yields
the relation

iS0 ◦ it = it ◦ iS0 + it◦ ,

while using (1.4g) we obtain

ih ◦ iS0 = iS0 ◦ ih − ihS0 = iS0 ◦ ih − iS .

Thus, since h is conservative,

0 = dhE
(1.3c)
= ihdE = −ihiS0ω = iSω − iS0ihω.
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Hence

iSω = iS0ihω
2.2= iS0(ω + itdE) = iS0ω + iS0itdE

= iS0ω + itiS0dE + it◦dE = iS0ω + dt◦E,

taking into account that iS0dE = S0E = 0 by the “energy conservation
law”. The result we have just obtained can be written in the form

iS−S0ω = dt◦E.

This means by (1.8a) that S − S0 = (dt◦E)#. ¤

2.6. Theorem. Suppose h and h̃ are conservative horizontal endomor-

phism on the Finsler manifold (M, E). If h and h̃ have common strong

torsion, then h = h̃.

Proof. We are going to use systematically the conventions of 1.10.
By assumption,

dhE = dehE = 0, T = T̃ .

Let S0 be the canonical spray of (M, E). As we have seen in the preceding
proof,

iSω − iS0ω = dt◦E, ieSω − iS0ω = det◦E.

Subtracting the second equation from the first we obtain

iS−eSω = dt◦E − det◦E.

The strong torsion of h is T = t◦ + H, so

dt◦E = dT−HE = dT E − dHE
2.4.= dT E.

In the same way,
det◦E = deT E.

Combining the last three formulas we obtain

iS−eS ω = dT E − deT E = dT E − dT E = 0.

Since ω is nondegenerate, this implies that S = S̃. Thus h and h̃ have
also the same associated semispray, therefore, by Proposition 4.9.2 of [5],
h and h̃ coincide. ¤
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2.7. Proposition. A homogeneous, conservative horizontal endomor-
phism h on a Finsler manifold (M, E) can be expressed with the help of
the Barthel endomorphism h0 as follows:

h = h0 +
1
2
t◦ +

1
2

[
J, (dt◦E)#

]
.

Proof. Let S be the semispray associated with h, and let us denote
by h̃ the horizontal endomorphism generated by S according to 1.9 (A).
Then

h0
1.9 (C)

=
1
2

(
1X(TM) + [J, S0]

) 2.5=
1
2

(
1X(TM) + [J, S]− [

J, (dt◦E)#
])

= h̃− 1
2
[
J, (dt◦E)#

] 2.1= h− 1
2
t◦ − 1

2
[
J, (dt◦E)#

]
,

which gives the desired formula. ¤

3. Applications to generalized Berwald manifolds

3.1. Remark. In 0.1 we have already presented a preliminary discus-
sion of generalized Berwald manifolds, including their definition. Let us
also recall from 4.1 that a generalized Berwald manifold is said to be a
Berwald manifold if ∇ is a torsion-free linear connection on M . Then ∇
is unique and we write (M,E) rather than (M,E,∇).

3.2. Corollary. If (M, E,∇) is a generalized Berwald manifold, then
(by the conventions of 1.10) we have

S∇ = S0 +
(
dt◦∇E

)#;(3.2a)

h∇ = h0 +
1
2
t◦∇ +

1
2

[
J,

(
dt◦∇E

)#
]
.(3.2b)

Proof. This is an immediate consequence of Propositions 2.5 and 2.7.
¤

3.3. Theorem. Suppose that (M, E,∇) and (M, E,∇) are generalized
Berwald manifolds. The linear connections ∇ and ∇ are equal if and only
if they have same torsion tensor field.

Proof. Let us denote by T∇ and T∇ the classical torsion tensor
field of ∇ and of ∇, respectively. From the Theorem of section 3 of [4]
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and Lemma 1 of [13] we obtain immediately that for any vector fields X,
Y on M

(3.3a) t∇(Xc, Y c) = [T∇(X, Y )]v .

Thus in the case of T∇ = T∇ the horizontal endomorphisms h∇ and h∇
have the same weak torsion. On the other hand, h∇ and h∇ are homo-
geneous, so their strong torsions are also equal. This implies by 2.6 that
h∇ = h∇, whence ∇ = ∇.

The necessity of the condition T∇ = T∇ is evident. ¤

3.4. Remark. For any τ ∈ R, let us denote by µτ the diffeomorphism

TM → TM, v 7→ eτv.

We recall that – in general – a vector field X of class Ck (k ∈ N)
on TM or on TM is called homogeneous of degree r (r ∈ Z) – briefly
r-homogeneous – if

∀ τ ∈ R : X ◦ µτ = e(r−1)τ (Tµτ ) ◦X.

As is well-known (see e.g. [5], Proposition 4.2.5), if X is of class C1, then
it is r-homogeneous if and only if

[C, X] = (r − 1)X;

we have used this characterization of homogeneity up to now. In particular,
a vector field of class C2 on TM or on TM is said to be quadratic if it is
homogeneous of degree two.

3.5. Corollary. A generalized Berwald manifold (M,E,∇) reduces

to a Berwald manifold (M, E) if, and only if, the vector field (dt◦∇E)# is

quadratic.

Proof. We recall (see e.g. [15], 6.6) that a Finsler manifold is a
Berwald manifold if, and only if, its canonical spray S0 is smooth on the
whole tangent manifold; then the spray S0 is necessarily quadratic. Since(
dt◦∇E

)# (3.2a)
= S∇ − S0, and S∇ is always a quadratic spray, we infer

immediately that the Corollary is true. ¤
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3.6. Remark. A coordinate version of 3.5 for Finsler manifolds with
one-form metrics can be found in [1]. It is not needless to point out that
the linear connection of the Berwald manifold (M, E) in question does not
coincide with the given linear connection ∇ in general.

3.7. Remark. We recall that two sprays S1 and S2 on a manifold M

are said to be projectively equivalent if there exists a function λ : TM →
R, smooth on TM , C1 on TM such that S1 = S2 + λC. Then λ is
automatically 1-homogeneous, i.e., Cλ = λ.

3.8. Proposition. Let (M, E,∇) be a generalized Berwald manifold.

If the spray S∇ arising from ∇ is projectively equivalent to the canonical

spray S0 then S∇ = S0, and – consequently – (M, E) is a Berwald manifold.

Proof. In view of (3.2a), S∇ is projectively equivalent to S0 if and
only if (

dt◦∇E
)# = λC,

where the function λ : TM → R satisfies the requirements of 3.7. Then
on the one hand

iS∇−S0ω
(3.2a)
= i(

dt◦∇
E
)#ω = iλC ω = λiC ω = λdJE,

on the other hand
iS∇−S0ω = dt◦∇E

(see the proof of 2.5). Comparing these two equations we obtain the for-
mula

dt◦∇E = λdJE.

Hence, for any semispray S,

dt◦∇E(S) = λdJE(S).

But
dt◦∇E(S)

(1.3c)
= dE

(
t◦∇(S)

)
= dE

(
t∇(S, S)

)
= dE(0) = 0,

while
λdJE(S) = λdE(JS) = λdE(C) = λCE = 2λE,

so it follows that λE = 0, which implies immediately the vanishing of λ.
¤
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4. Wagner–Ichijyō connections and Wagner manifolds

4.1. Definition. Let ∇ be a linear connection on the manifold M . A

triplet (
∇
D, h∇, α) is said to be a Wagner–Ichijyō connection (induced by

∇) if (
∇
D, h∇) is an Ichijyō connection (3.1, 3.2), α is a smooth function

on M and the h-horizontal torsion
∇
A of

∇
D has the following form:

(4.1a)
∇
A = dαv ∧ h∇ := dαv ⊗ h∇ − h∇ ⊗ dαv.

4.2. Proposition. Let (
∇
D, h∇, α) be a Wagner–Ichijyō connection on

the manifold M . Then we have the following relations:

T∇(X,Y ) = dα(X)Y − dα(Y )X (X, Y ∈ X(M));(4.2a)

t∇ = dαv ∧ J := dαv ⊗ J − J ⊗ dαv;(4.2b)

t◦∇ = αcJ − dαv ⊗ C.(4.2c)

Proof. Let X and Y be arbitrary vector fields on M . We have
already learnt in 3.5 that

∇
A(Xc, Y c) =

(
T∇(X, Y )

)h∇
.

But
∇
A(Xc, Y c)

(4.1a)
= dαv(Xc)h∇(Y c)− dαv(Y c)h∇(Xc)

= (Xcαv)Y h∇ − (Y cαv)Xh∇

(1.7c)
= (Xα)vY h∇ − (Y α)vXh∇ =

[
(Xα)Y − (Y α)X

]h∇
,

so we obtain the formula (4.2a).
Next we check that (4.2b) is also valid. We can write

t∇(Xc, Y c)
(3.3a)
=

(
T∇(X, Y )

)v (4.2a)
=

[
dα(X)Y − dα(Y )X

]v

= (Xα)vY v − (Y α)vXv (1.7c)
= (Xcαv)Y v − (Y cαv)Xv

(1.7f)
= [(dαv)Xc]J(Y c)− [

(dαv)Y c
]
J(Xc)

= (dαv ∧ J)(Xc, Y c),
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whence the desired relation.
Finally, for any semispray S on M ,

t◦∇(Xc) = t∇(S, Xc)
(4.2b)
= dαv(S)JXc − dαv(Xc)(JS)

= (Sαv)JXc − dαv(Xc)C
(1.7a)
= αcJXc − dαv(Xc)C

= (αcJ − dαv ⊗ C)Xc,

which proves (4.2c). ¤

4.3. Definition. A quadruple (M, E,∇, α) is said to be a Wagner man-
ifold if (M, E,∇) is a generalized Berwald manifold, α is a smooth function
on M , and the relation

(4.3a) T∇(X,Y ) = dα(X)Y − dα(Y )X (X, Y ∈ X(M))

holds.

4.4. Remark. It can be seen immediately that for a Wagner manifold
(M, E,∇, α) the Ichijyō connection induced by ∇ is just a Wagner–Ichijyō
connection.

4.5. Theorem. Let (M, E) be a Finsler manifold. Suppose that ∇ is

a linear connection and α a smooth function on M . Then the following

assertions are equivalent:

(i) (M, E,∇, α) is a Wagner manifold.

(ii) The Wagner–Ichijyō connection (
∇
D, h∇, α) induced by ∇ is

h∇-metrical, i.e.,
∇
Dh∇g = 0.

(iii) The horizontal endomorphism h∇ is of form

(4.5a) h∇ = h0 + αcJ − E[J, gradαv]− dJE ⊗ gradαv.

Proof of (i) ⇐⇒ (ii). This equivalence is an immediate consequence
of 4.4 and 4.3/(a) ⇐⇒ (c).
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Proof of (i) =⇒ (iii). Let X be a vector field on M . Evaluating
the one-form dt◦∇ on Xc, we obtain

dt◦∇E(Xc) = dE
(
t◦∇(Xc)

)
= t◦∇(Xc)E

(4.2c)
=

[
αcXv − dαv(Xc)C

]
E

= αc(XvE)− 2Edαv(Xc)
(∗)
= αciC ω(Xc)− 2Edαv(Xc)

(1.8a)
= αciC ω(Xc)− 2Eigrad αvω(Xc) = i(αcC−2E grad αv)ω(Xc),

taking into account at the step (∗) that

XvE = dE(JXc) = dJE(Xc) = iCω(Xc).

Thus we infer immediately that

(
dt◦∇E

)# = αcC − 2E gradαv.

Combining this result with (3.2b), we can proceed as follows:

h∇ = h0 +
1
2
t◦∇ +

1
2
[J, αcC]− 1

2
[J, 2E grad αv]

(4.2c), (1.4d)
= h0 +

1
2
(αcJ − dαv ⊗ C) +

1
2
αc[J,C]− 1

2
dαc ∧ iCJ

+
1
2
dJαc ⊗ C −E[J, gradαv] + dE ∧ igrad αvJ

− dJE ⊗ grad αv (1.5b), (1.7c), (1.8a)
= h0 +

1
2
αcJ − 1

2
dαv ⊗ C

+
1
2
αcJ +

1
2
dαv ⊗ C − E[J, grad αv]− dJE ⊗ grad αv

= h0 + αcJ − E[J, gradαv]− dJE ⊗ gradαv,

and so the implication (i) =⇒ (iii) is verified.

Proof of (iii) =⇒ (i). First we show that the horizontal endomor-
phism given by (4.5a) is conservative.



A new approach to generalized Berwald manifolds II 447

For any vector field X on M we have

Xh∇ := h∇Xc (4.5a)
= Xh0 + αcXv− E[J, grad αv]Xc − dJE ⊗ gradαv(Xc)

= Xh0 + αcXv−E[Xv, gradαv] + EJ [Xc, grad αv]−(XvE) gradαv

(1.8a)
= Xh0 + αcXv − E[Xv, grad αv]− (XvE) grad αv.

Thus

dh∇E(Xc) = dE(Xh∇) = Xh∇E = αc(XvE)− EXv[gradαv(E)]

+ E gradαv(XvE)− (XvE) grad αv(E)
(1.8c)
= αc(XvE)− E(Xvαc)

+ E gradαv(XvE)− (XvE)αc = E(gradαv(XvE)−Xvαc).

Since on the one hand

ω(grad αv, Xc) = d(dJE)(gradαv, Xc)

= grad αvdJE(Xc)−XcdJE(gradαv)− dJE
(
[gradαv, Xc]

)

= grad αv(XvE)−XcdE(J gradαv)− dE
(
J [gradαv, Xc]

)

(1.8.a)
= grad αv(XvE),

on the other hand

ω(grad αv, Xc) = dαv(Xc) = Xcαv (1.7c)
= Xvαc,

it follows that grad αv(XvE) = Xvαc, and therefore dh∇E(Xc) = 0 – as
we claimed. Thus (M, E,∇) is a generalized Berwald manifold.

To conclude the proof we have to check that the torsion tensor of ∇
has the form (4.3a). For this let us first observe that

(∗) [
J, [J, gradαv]

]
= 0,

since by the graded Jacobi identity (1.4b)

0 =
[
J, [J, grad αv]

]− [
J, [gradαv, J ]

]
+

[
gradαv, [J, J ]

]

(1.4a), (1.5b)
= 2

[
J, [J, gradαv]

]
.
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Thus, calculating as before,

t∇ := [J, h∇]
(4.5a)
= [J, h0] + [J, αcJ ]− [

J,E[J, gradαv]
]

− [J, dJE ⊗ gradαv]
(1.4e,f)

= αc[J, J ] + dJαc ∧ J − dαc ∧ J ◦ J

− E
[
J, [J, grad αv]

]− dJE ∧ [J, grad αv] + dE ∧ J ◦ [J, gradαv]

− dJdJE ⊗ gradαv + ddJE ⊗ J gradαv + dJE ∧ [J, grad αv]

(1.5a,b), (1.8a), (∗)
= dJαc ∧ J

(1.7c)
= dαv ∧ J = dαv ⊗ J − J ⊗ dαv.

This implies the relation (4.3a), as we have already seen in the proof
of (4.2b). ¤

4.6. Corollary. If (M, E,∇, α) is a Wagner manifold then the spray

S∇ generated by h∇ and the canonical spray S0 are related by

(4.6a) S∇ = S0 + αcC − 2E gradαv.

Proof. It turned out in the proof of (i) =⇒ (iii) that (dt◦∇E)# =
αcC − 2E gradαv. In view of (3.2a) this implies (4.6a). ¤

4.7. Remark. The relations (4.5a) and (4.6a) have already been ob-
tained by Cs. Vincze in [17], but his reasoning follows a very different,
less direct path.

5. Examples: Finsler manifolds with “one-form metric”

5.1. Finsler–Minkowski functionals. To avoid any confusion, we lay down
here the following definition.

A function f : Rn → R is said to be a Finsler–Minkowski functional
and the pair (Rn, f) a Finsler–Minkowski vector space if

∀ v ∈ Rn : f(v) ≥ 0; f(v) = 0 ⇐⇒ v = 0 (positivity);(5.1a)

∀ τ ∈ [0,∞ [ , ∀ v ∈ Rn : f(τv) = τf(v)(5.1b)

(positive homogeneity);
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f ∈ C3(Rn \ {0}) (differentiability);(5.1c)

the second Fréchet derivative of the function F :=
1
2
f2(5.1d)

is a positive definite symmetric bilinear function from

Rn × Rn to R at any point of Rn \ {0} (strong convexity).

Then the mapping

〈 , 〉 : p ∈ Rn \ {0} 7→ 〈 , 〉p,(5.1e)

∀ v, w ∈ TpRn ∼= Rn : 〈 , 〉p(v, w) =: 〈v, w〉p := F ′′(p)(v, w)

is a Riemannian metric on Rn \ {0}.
5.2. Let β be a one-form on a manifold M . In the sequel we are going to
denote by β̃ the function

TM → R, v 7→ β̃(v) := βπ(v)(v).

We shall also utilize the following fact.
If ∇ is a linear connection on M , then for any vector field X ∈ X(M)

and one-form β ∈ Ω(M)

(5.2 a) Xh∇ β̃ = ∇̃Xβ

(see [21], Lemma 2).

5.3. Let us suppose for our subsequent considerations that M is a paral-
lelizable manifold with a parallelization (Xi)n

i=1; Xi ∈ X(M), 1 ≤ i ≤ n
([2], p. 117). Let (λi)n

i=1 be the coframe dual to (Xi)n
i=1. Using the con-

vention fixed in 5.2, consider the mapping

λ̃ := (λ̃1, . . . , λ̃n) : TM → Rn, v 7→ λ̃(v) =
(
λ̃1(v), . . . , λ̃n(v)

)
.

Suppose that f : Rn → R is a Finsler–Minkowski functional, and let us
introduce the functions

L := f ◦ λ̃, E :=
1
2
L2.

Then (M, E) is a Finsler manifold, the Finsler structure constructed in
this way is said to be a one-form Finsler structure. Following (at least
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partly) the traditions, in the sequel we shall mention (M, E) as a “Finsler
manifold with one-form metric” (cf. [11]).

Concerning some basic analytic data of (M,E), we have the following
results.
(5.3a) The fundamental two-form of (M, E) is

ω =
∼
λ
∗
df ∧ iJ

∼
λ
∗
df − (f ◦ λ̃)dJ

∼
λ
∗
df

(the ∗ denotes pull-back).
(5.3b) The vertical metric g (1.10) of (M, E) is the pull-back of the

Riemannian metric 〈 , 〉 via λ̃, i.e.

g =
∼
λ
∗
〈 , 〉;

hence the mapping λ̃ preserves the Finslerian norms.
(5.3c) The (lowered) first Cartan tensor of (M, E) can be represented

in the form

C[ =
1
2

(
η ¯ dJ (f ◦ λ̃) + (f ◦ λ̃)

◦
DJη

)
,

where (
◦
D, h)is a Finsler connection of Berwald-type ([13]), η is a

type (0, 2) tensor field given by

(X,Y ) ∈ X(TM)× X(TM)

7→ η(X, Y ) := ddJ(f ◦ λ̃)(JX, Y ) ∈ C∞(TM),

and ¯ is the symbol of the symmetric product.

5.4. Proposition. Let (M, E) be the Finsler manifold with the one-
form metric constructed in 5.3. Consider the linear connection ∇ deter-
mined by the parallelization (Xi)n

i=1 ([2], 9.1.2), and let h∇ be the hor-
izontal endomorphism arising from ∇. Then (M,E,∇) is a generalized
Berwald manifold. If, in addition, ∇ is torsion-free, then (M, E) is a lo-
cally Minkowski manifold.

Proof. First we show that (M, E,∇) is a generalized Berwald man-
ifold, i.e. dh∇E = 0. The members of the dual coframe (λi)n

i=1 are clearly
parallel with respect to ∇, so for any vector fields X, Y on M we have

0 = [(∇λi)(Y,X)]v =
[(∇Xλi

)
(Y )

]v I.2.8 of [20]
= Y v∇̃Xλi (1 ≤ i ≤ n);
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hence for any vector field X on M ,

∇̃Xλi = 0 (1 ≤ i ≤ n).

On the other hand

Xh∇ λ̃i = ∇̃Xλi (1 ≤ i ≤ n)

by (5.2a). So we conclude that

∀X ∈ X(M) : Xh∇ λ̃i = dh∇ λ̃i(Xc) = 0 (1 ≤ i ≤ n),

therefore
dh∇ λ̃i = 0, 1 ≤ i ≤ n.

From this we obtain the desired relation dh∇E = 0 by the chain rule.
To prove the second assertion, let us consider the Ichijyō connection

(
∇
D,h∇). Since – as we have just seen – (M,E,∇) is a generalized Berwald

manifold, 4.3 assures that
∇
D is h-metrical. Furthermore ∇ is clearly a flat

connection and – by assumption – it is torsion-free. These three properties
imply by 4.8 that (M,E) is indeed a locally Minkowski manifold. ¤

5.5. Curvature and torsion data. Suppose that (M,E) is a Finsler man-
ifold with one-form metric, according to 5.3. Let ∇ be the linear con-
nection determined by the parallelization of M , and let us consider the

Ichijyō connection (
∇
D, h∇). (Using local coordinates, this connection has

already been constructed in [11] under the name “one-form connection”.)

Concerning the partial curvatures and torsion of (
∇
D, h∇), the following ta-

bles can be obtained as easy consequences of our preceding considerations
and 3.5.

Curvature (X,Y Z ∈ X(TM))

horizontal
∇
R = 0

mixed
∇
P = 0

vertical
∇
Q(X, Y )Z = C(F (C(X,Z), Y )− C(X, FC(Y, Z))
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Torsion (X, Y ∈ X(M))

h-horizontal
∇
A(Xh∇ , Y h∇) = (T∇(X, Y ))h∇

h-mixed
∇
B(Xh∇ , Y v) = −F∇C(Xh∇ , Y h∇)

v-horizontal
∇
R1 = 0

v-mixed
∇
P1 = 0

v-vertical
∇
S1 = 0

(F is an arbitrary almost complex structure on TM , C is determined
by (5.3c).)

Acknowledgement. The authors are indebted to the anonymous ref-
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