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Some Tauberian theorems for Schwartz distributions

By RICARDO ESTRADA (San José)

Abstract. We give a condition on a space of test functions A for the inclusion
A∩A′ ⊂ S to hold. These kinds of results are Tauberian theorems that guarantee that
a generalized function of rapid distributional decay at infinity is a rapidly decreasing
smooth function, that is, an element of S.

1. Introduction

The purpose of this article is to study some class of Tauberian theo-
rems for generalized functions. Our main concern is to study some supple-
mentary conditions on a smooth generalized function that decays distribu-
tionally at infinity which guarantee that the function is a rapidly decreasing
smooth function, that is, an element of the space of test functions S.

More specifically, we identify a condition on the space of test functions
A that guarantees that

(1.1) A ∩A′ ⊂ S.

Results of this kind are very useful in mathematical physics [4, Section 4].
We mention the results OM ∩O′M ⊂ S and OC∩O′C ⊂ S given by Ortner

and Wagner [12] and later in [4]. Observe the Tauberian character of such
a result: the elements of O′M are generalized functions that in some sense
(made precise in Section 2) decay at infinity; the elements of OM are
smooth functions that do not increase too fast at infinity, but which are
usually not of rapid decay. The fact that OM ∩ O′M ⊂ S is thus a rather
interesting result.
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The main tool that we use in our analysis is the concept of the Cesàro
behavior of a distribution [3]. The notion of the Cesàro behavior of a dis-
tribution generalizes the classical methods for the summability of series
and integrals [8]. It is also closely related to the parametric or distribu-
tional behavior [5], [6], [13], [15]. We give a short account of these ideas
in Section 2. We also explain the notation for the spaces of generalized
functions needed in this article in that section.

The third section gives the main results of this study. We give a
condition on a space of test functions A that yields the inclusion A∩A′ ⊂
S. The elements of A′ are usually generalized functions of rapid decay in
the Cesàro sense while being in A gives the smoothness, and something
else, to obtain elements of S. The results are useful because there are
many smooth functions, like f(x) = cos x for instance, which show rapid
distributional decay at infinity but which do not belong to S. In this
and the next sections we present several examples and counterexamples to
illustrate the results.

2. Preliminaries

In this section we explain the spaces of test functions and distributions
needed in this paper. We also give a summary of the notion of Cesàro
behavior of a distribution. All of our functions and spaces are over the
space R.

The spaces of test functions D, E , and S and the corresponding spaces
of distributions D′, E ′, and S ′ are well-known [6], [9], [10], [14]. In general
[16] we call a topological vector space A as a space of test functions if
D ⊂ A ⊂ E , the inclusions being continuous, and if the derivative d/dx is
a continuous operator of A.

We shall also need the spaces of test functions OM , OC , Gα and K
and their duals [6], [9], [10], [14]. A smooth function φ belongs to OM

if there are constants γk such that φ(k)(x) = O(|x|γk) as |x| → ∞ for
k = 0, 1, 2, . . . . If γk = γ for all k then φ ∈ OC . When γk = γ − αk

then φ ∈ Gα [1]. Notice that G0 = OC . When α = 1 we obtain the space
K = G1 of so-called GLS symbols [7]. The topologies of these spaces are
given by the canonical seminorms.

The space K′ plays a fundamental role in the theory of asymptotic ex-
pansions of generalized functions [5], [6] and in the theory of summability
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of distributional evaluations [3]. The elements of K′ are exactly the gen-
eralized functions that decay very rapidly at infinity in the distributional
sense or, equivalently, in the Cesàro sense.

The Cesàro behavior of a distribution at infinity is studied by using
the order symbols O(xα) and o(xα) in the Cesàro sense. If f ∈ D′(R) and
α ∈ R \ {−1,−2,−3, . . . }, we say that f(x) = O(xα) as x → ∞ in the
Cesàro sense and write

(2.1) f(x) = O(xα) (C) as x →∞,

if there exists N ∈ N such that every primitive of order N of f , i.e.,
F (N) = f , is an ordinary function for large arguments and satisfies the
ordinary order relation

(2.2) F (x) = p(x) + O(xα+N ) as x →∞,

for a suitable polynomial p of degree N−1 at the most. A similar definition
applies to the little o symbol. The definitions when x → −∞ are clear.

The equivalent notations f(x) = O(x−∞) and f(x) = o(x−∞) mean
that f(x) = O(x−β) for each β > 0. It is shown in [3] that a distribution
f ∈ D′ is of rapid decay at ±∞ in the (C) sense,

(2.3) f(x) = O(|x|−∞) (C) as |x| → ∞,

if and only if f ∈ K′.
Functions like sinx, J0(x), or x2eix belong to K′ and thus are “distri-

butionally small”.
Since A′ ⊂ K′ for A = OM , OC , and Gα for α ≤ 1, it follows that the

elements of O′M , O′C and G′α for α ≤ 1 are distributionally small. But G′α
is not a subset of K′ for α > 1.

The space K′ is a distributional analogue of the space S of rapidly
decreasing smooth functions [3].

We say that a distribution f ∈ D′ has the limit L in the (C) sense as
x →∞ and write limx→∞ f(x) = L (C), if f(x) = L+o(1) (C) as x →∞.

Distributional evaluations are treated as follows. Let f ∈ D′ and let
φ ∈ E . Then in general the evaluation 〈f(x), φ(x)〉 does not make sense.
Of course, if we can find a space B ⊂ E such that f ∈ B′ and φ ∈ B then
there is no problem. A different approach is to use the summability ideas
as we now explain. Suppose first that supp f is bounded on the left. Let
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g(x) be the first order primitive of φ(x)f(x) with support bounded on the
left. We say that the evaluation 〈f(x), φ(x)〉 exists in the Cesàro sense and
equals L, and write

(2.4) 〈f(x), φ(x)〉 = L (C),

if limx→∞ g(x) = L (C). The case when supp f is bounded on the right is
similar and the general case is handled by writing f = f1 +f2 with supp f1

bounded on the left and supp f2 bounded on the right. It is easy to see that
the Cesàro limit of the evaluation is independent of the decomposition.

3. The main result

In order to give our Tauberian theorem we need several preliminary
lemmas. The first one is proved in [3].

Lemma 1. Let f ∈ K′ and let φ ∈ K. Then the evaluation 〈f(x), φ(x)〉
exists in the (C) sense.

Proof. We may suppose that supp f is bounded on the left, since the
analysis when the support is bounded on the right is similar, and we can
always decompose f as the sum of a distribution with support bounded
on the left and another with support bounded on the right.

Let g be the first order primitive of φf with support bounded on the
left. Since φ ∈ K, f ∈ K′, then φf ∈ K′, and then φ(x)f(x) = o(x−∞)
(C), as x → ∞, that is, φ(x)f(x) = o(x−β) (C), as x → ∞, ∀β. Take
β = −3/2; then we can find N ∈ N and a primitive of order N of φf ,
G(N) = φf , and a polynomial p of order N − 1 such that the ordinary
relation

(3.1) G(x) = p(x) + o
(
xN−3/2

)
, x →∞,

holds. But G is a primitive of order N − 1 of g, so that if we write
p(x) = AxN−1 + p1(x), where p1 is of order N − 2, we obtain

(3.2) G(x)−AxN−1 = p1(x) + o
(
xN−3/2

)
, x →∞.

The definition of the order relations in the Cesàro sense therefore yields

(3.3) g(x)− (N − 1)!A = o
(
x−1/2

)
(C) x →∞,
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and consequently,

(3.4) lim
x→∞

g(x) = (N − 1)!A (C),

which means that

(3.5) 〈f(x), φ(x)〉 = (N − 1)!A (C),

as required. ¤

Observe that the unit function, φ(x) = 1, belongs to K. It follows
that if f ∈ K′ then 〈f(x), 1〉 (C) exists. In particular, if f ∈ K′ is locally
integrable then the integral

∫∞
−∞ f(x) dx is Cesàro summable to the value

〈f(x), 1〉. Similarly, if f(x) =
∑∞

n=1 anδ(x− bn) belongs to K′, then the
series

∑∞
n=1 an is Cesàro summable to 〈f(x), 1〉.

In the classical theory of summability [8] it is shown that if the series∑∞
n=1 an diverges to infinity in the ordinary sense then

∑∞
n=1 an = ∞ (C).

The same idea can be used in the summability of distributional evaluations
to obtain the following Tauberian result.

Lemma 2. Let g be a locally integrable function. Suppose g(x) ≥ 0
for x ∈ R. If the integral

∫∞
−∞ g(x) dx = 〈g(x), 1〉 is (C) summable then

the integral converges.

Proof. It is enough to prove the result if supp g ⊂ [0,∞). If the
integral

∫∞
0

g(x) dx diverges, then it diverges to infinity. Let A > 0. Then
we can find y > 0 such that

∫ y

0
g(t) dt > A. Define the function h(x) by

h(x) = g(x) for x < y and h(x) = 0 for x ≥ y. Then

lim sup
x→∞

(
1
xn

∫ x

0

(x− t)n

n!
g(t) dt

)
≥ lim

x→∞

(
1
xn

∫ x

0

(x− t)n

n!
h(t) dt

)
> A,

and it follows that
∫∞
0

g(t) dt = ∞ (C). ¤

We remark that this lemma has an obvious generalization, which will
not be needed presently, namely, if µ is a positive Radon measure for
which the integral

∫∞
−∞ dµ = 〈µ, 1〉 is (C) summable then the integral is

convergent.
We shall also need the following simple variation of a well-known

result.
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Lemma 3. Let ψ be a smooth function. Suppose the integrals

(3.6)
∫ ∞

−∞
|ψ(j)(x)|2x2n dx,

converge for all j, n = 0, 1, 2, . . . . Then ψ ∈ S.

Proof. If n > 0, x 6= 0, and j ∈ N, then the Cauchy–Schwartz
inequality yields

∣∣ψ(j)(x)
∣∣ =

∣∣∣∣
∫ x

0

(
tn+1/2ψ(j)(t)

)′dt

∣∣∣∣|x|−n−1/2

=
∣∣∣∣
∫ x

0

{
(n + 1/2)tn−1/2ψ(j)(t) + tn+1/2ψ(j+1)(t)

}
dt

∣∣∣∣ |x|−n−1/2

≤
{

(n + 1/2)
( ∫ x

0

∣∣tn−1/2ψ(j)(t)
∣∣2dt

)1/2

+
( ∫ x

0

∣∣tn+1/2ψft(j+1)(t)
∣∣2dt

)1/2}
|x|−n

≤
{

(n + 1/2)
( ∫ ∞

0

∣∣tn−1/2ψ(j)(t)
∣∣2dt

)1/2

+
( ∫ ∞

0

∣∣tn+1/2ψ(j+1)(t)
∣∣2dt

)1/2}
|x|−n.

Thus

(3.7) ψ(j)(x) = O(|x|−n), x →∞,

for each j ∈ N, for each n > 0. Therefore, ψ ∈ S. ¤
We are going to use the following notation. If A and B are spaces of

functions then AB = {φψ : φ ∈ A, ψ ∈ B}.
We can now give our result.

Theorem 1. Let A be a space of test functions closed under complex
conjugation. Suppose AK ⊂ A. Then

(3.8) A ∩A′ ⊂ S.

Proof. Observe first that the condition AK ⊂ A yields the inclusion
AA′ ⊂ K′. Indeed, if f ∈ A′, φ ∈ A and ψ ∈ K, then the identity
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〈φf, ψ〉 = 〈f, φψ〉 shows that φf is a well-defined element of K′ since the
right hand side is defined because φψ ∈ A.

Let now f ∈ A ∩ A′. Then, for each j ∈ N, the function |f (j)|2 =
f (j)f̄ (j) belongs to AA′ and, consequently, belongs to K′. Hence if n ∈
N then 〈|f (j)(x)|2, x2n〉 is a well-defined evaluation in K′ × K since x2n

belongs to K, and therefore the integral
∫∞
−∞ |f (j)(x)|2x2n dx, namely this

evaluation, is Cesàro summable. The Lemma 2 then yields the convergence
of these integrals and by the Lemma 3 we conclude that f ∈ S. ¤

Notice that if the conditions of the theorem are satisfied then A∩A′
might be a proper subset of S. However, when S ⊂ A ⊂ S ′ then S ⊂ A∩A′
and therefore in this case the theorem would give A ∩A′ = S.

The following examples illustrate the use of the theorem.

Example 1. If A = K then clearly KK ⊂ K and so

(3.9) K ∩ K′ = S.

Observe that there are functions like sinx, cos x or J0(x) which are of
rapid distributional decay at infinity, i.e., belong to K′, but which do not
belong to S: such functions do not belong to K.

Example 2. If A = OM we have OMK ⊂ OM . Thus

(3.10) OM ∩ O′M = S.

Example 3. If A = OC we have OCK ⊂ OC . Thus

(3.11) OC ∩ O′C = S.

This can also be obtained from (3.10) by taking the Fourier transform.

Example 4. Let us take A = P, the space of test functions φ that
satisfy φ(j)(x) = o(eα|x|) for each j ∈ N and for each α > 0. This space
was introduced in [11]. Then PK ⊂ P and so

(3.12) P ∩ P ′ = S.

Example 5. If A = E then we clearly have that E ∩E ′ = D, a subspace
of S. Observe however that in this case E ∩ E ′ is a proper subspace of S.
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Example 6. The spaces Gα for α ≤ 1 satisfy GαK ⊂ Gα. Hence

(3.13) Gα ∩ G′α = S, for α ≤ 1.

This does not hold if α > 1.

The theorem also holds in Rd. Actually the proof is the same, ex-
cept that in the multi-dimensional case one needs to consider the Cesàro
summability of distributional evaluations by spherical means [2].

4. Counterexamples

We now give two counterexamples to show how the conclusion of the
theorem might not hold if the assumptions are not satisfied.

Let us first consider the space Gα for α > 1. It is clear that K is not a
subset of Gα and since 1 ∈ Gα, then GαK 6⊂ Gα. In this case we also have
Gα ∩ G′α 6⊂ S since any polynomial belongs to Gα ∩ G′α. Indeed, if p is a
polynomial and φ ∈ Gα then 〈p, φ〉 =

∫∞
−∞ P (x)φ(N)(x) dx where P (N) = p

and N is large enough for the integral to converge. Observe that in general
if f ∈ G′α and φ ∈ Gα then the evaluation 〈f, φ〉 is not (C) summable.

As a second example, consider the space C = lim
→
Cγ , where Cγ is the

space of continuous functions g that satisfy g(x) = O(|x|γ) as x → ∞,
with the canonical norm,

(4.1) ‖g‖γ = max
{

sup{|g(x)| : |x| ≤ 1}, sup{|x|−γ |g(x)| : |x| ≥ 1}}.

Observe that CK ⊂ C. However, C ∩ C′ 6⊂ S. Indeed, let g0 ∈ C be a
positive function with supp g0 ⊂ [0, 1]. Let % > 1. Define the new function
g ∈ C by

(4.2) g(x) =
∞∑

n=1

g(%n(x− n)).

Observe that g(x) = O(1) as |x| → ∞ and so g indeed belongs to C. But
also

(4.3)
∫ ∞

−∞
g(x)|x|n dx < ∞, ∀n ∈ N,
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and so

(4.4)
∫ ∞

−∞
g(x)φ(x) dx

converges for any φ ∈ C. Therefore g ∈ C′. Clearly, however, g /∈ S.
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Birkhäuser, Boston, 1994.

[7] A. Grossman G. Loupias and E. M. Stein, An algebra of pseudodifferential
operators and Quantum Mechanics in phase space, Ann. Inst. Fourier 18 (1968),
343–368.

[8] G. H. Hardy, Divergent Series, Clarendon Press, Oxford, 1949.

[9] J. Horv�ath, Topological Vector Spaces and Distributions, vol. 1, Addison-Wesley,
Massachusetts, 1966.

[10] R. P. Kanwal, Generalized Functions: theory and technique, Birkhäuser, Boston,
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