The structure of two-sided networks for completely simple semigroups

By MARIO PETRICH (Granada)

Abstract

As a byproduct of the kernel-trace approach to congruences on regular semigroups S we have the operators $\Gamma=\left\{T_{l}, K, T_{r}, t_{l}, k, t_{r}\right\}$ induced by the classes of the left trace, kernel and right trace relations via their upper and lower ends. The semigroup generated by these operators forms the two-sided network of S.

For S a Rees matrix semigroup with a normalized sandwich matrix, the two-sided network Ω was characterized in a previous paper by the author in terms of generators and relations. The theme of this paper is the structure of Ω. After isolating the right zeros of Ω, consisting of constant operators, we find the structure of the rest by means of certain triples. These triples resemble those of a Rees matrix semigroup and indeed a part of Ω can be embedded into such a semigroup. Other structural features of Ω are studied together with a special case.

1. Introduction and summary

The kernel-trace approach to congruences on regular semigroups has brought unexpected results; maybe the most interesting one is the appearance of operators $T_{l}, K, T_{r}, t_{l}, k, t_{r}$ defined as follows. Let S be a regular semigroup with congruence lattice $\mathcal{C}(S)$. For each $\rho \in \mathcal{C}(S)$, ker ρ, the kernel of ρ, is the union of idempotent ρ-classes, $\operatorname{tr} \rho$, the trace of ρ, is the restriction of ρ to the set $E(S)$ of idempotents of S. Further,

$$
\operatorname{ltr} \rho=\operatorname{tr}(\rho \vee \mathcal{L})^{\circ}, \quad \operatorname{rtr} \rho=\operatorname{tr}(\rho \vee \mathcal{R})^{\circ},
$$

Mathematics Subject Classification: 20M10.

Key words and phrases: regular semigroups, Rees matrix semigroups, congruences, twosided networks, embedding.
Supported by DGICYT of Spain, SAB11995-0594.
where ($)^{\circ}$ means the greatest congruence contained in (), are the left and right traces of ρ, respectively. The relations $\mathcal{T}_{l}, \mathcal{K}, \mathcal{T}_{r}$ defined on $\mathcal{C}(S)$ by

$$
\begin{aligned}
& \lambda \mathcal{T}_{l} \rho \text { if } \operatorname{ltr} \lambda=\operatorname{ltr} \rho, \\
& \lambda \mathcal{K} \rho \text { if } \operatorname{ker} \lambda=\operatorname{ker} \rho, \\
& \lambda \mathcal{T}_{r} \rho \text { if } \operatorname{rtr} \lambda=\operatorname{rtr} \rho
\end{aligned}
$$

are the left trace, kernel and right trace relations on $\mathcal{C}(S)$, respectively. The first and third of these are complete congruences and the second one is a complete \wedge-congruence on $\mathcal{C}(S)$. Each of their classes is an interval, so for $\rho \in \mathcal{C}(S)$, denoting by $\rho \mathcal{P}$ the \mathcal{P}-class of ρ, we may write

$$
\rho \mathcal{T}_{l}=\left[\rho t_{l}, \rho T_{l}\right], \quad \rho \mathcal{K}=[\rho k, \rho K], \quad \rho \mathcal{T}_{r}=\left[\rho t_{r}, \rho T_{r}\right]
$$

which introduces the above mentioned operators on $\mathcal{C}(S)$. For a treatment of this subject, consult [2].

For a fixed $\rho \in \mathcal{C}(S)$, the set

$$
\rho, \rho T_{l}, \rho K, \rho T_{r}, \rho t_{l}, \rho k, \rho t_{r}, \rho T_{l} K, \rho T_{l} T_{r}, \ldots,
$$

partially ordered by inclusion, is the two-sided network for ρ. This network was studied in [6] on a free completely regular semigroup of infinite rank with a view of application to the semigroups generated by corresponding operators on the lattice of varieties of completely regular semigroups. The semigroup generated by the set Γ of the above six operators we call the two-sided network for S.

In [5], we have characterized the two-sided network Ω for a Rees matrix semigroup by means of generators Γ and relations Σ and found an isomorphic copy of Ω within the free semigroup Γ^{+}with the product of representatives of the congruence μ on Γ^{+}induced by Σ. The network so obtained turns out to be infinite (in general) and appears quite complicated. It is the purpose of the present paper to determine the semigroup structure of this network.

Defining the trace relation \mathcal{T} on $\mathcal{C}(S)$ by

$$
\lambda \mathcal{T} \rho \quad \text { if } \operatorname{tr} \lambda=\operatorname{tr} \rho
$$

we are led to operators T and t defined for each $\rho \in \mathcal{C}(S)$ by $\rho \mathcal{T}=[\rho t, \rho T]$. In [4], we performed a similar analysis for the operators K, T, k, t. In this
case, the corresponding network is finite and of quite simple structure. We may order these (two-sided) networks by letting $u \leq v$ if $\rho u \subseteq \rho v$ for all $\rho \in \mathcal{C}(S)$. In the same paper, we characterized the lattice generated by the network of congruences in terms of generators and relations. In the case of the two-sided networks this seems a formidable task and is not even attempted.

Section 2 contains all the necessary notation as well as the main result in [5]. We treat in Section 3 the semigroup Δ of right zeros and prove some related lemmas to be used later. Section 4 contains the main result of the paper namely a faithful representation of Ω by Δ and certain triples; its proof requires seven additional lemmas. A part of the quotient Ω / Δ is embedded into a Rees matrix semigroup in Section 5. The regularity of elements of Ω and its \mathcal{D}-structure are determined in Section 6. The case of rectangular groups is treated in Section 7 which represents the simplest case that can occur; the section ends with an example showing what might happen in the rectangular group case.

2. Notation

We state here first the minimum notation needed from [5] and for a complete discussion refer to that paper. Let

$$
\Gamma=\left\{T_{l}, K, T_{r}, t_{l}, k, t_{r}\right\}
$$

where these are operators on the congruence lattice $\mathcal{C}(S)$ of a fixed Rees matrix semigroup S. We consider the free semigroup Γ^{+}generated by Γ as the set of all (nonempty) words over Γ. We refer to elements of Γ as letters. For any $w \in \Gamma^{+}$,
$h(w)$, the head of w, is the first letter occurring in w,
$l(w)$, the length of w, is the length of w,
$t(w)$, the tail of w, is the last letter occurring in w.
Let Σ be the set of relations:
(i) $T_{l} T_{r}=T_{r} T_{l}=T_{l} K=T_{r} K$,
(ii) $T_{l} t_{r} k=T_{r} t_{l} k$,
(iii) $t_{l} t_{r}=t_{r} t_{l}=k t_{l}=k t_{r}=t_{l} t_{r} k$,
(iv) $(K p)^{2}=K p,(p K)^{2}=p K$ for $p \in\left\{t_{l}, t_{r}\right\}$,
(v) $P^{2}=p P, p^{2}=P p=p$ for $P \in\left\{T_{l}, K, T_{r}\right\}, p \in\left\{t_{l}, k, t_{r}\right\}$ and P corresponding to p
and μ be the congruence on Γ^{+}induced by Σ.
Let Φ^{\prime} be the set of all subwords of the words of the form
$K t_{l} K t_{r} K t_{l} \ldots K t_{r}$, and

$$
\begin{align*}
& \Phi_{0}=\left\{w \in \Phi^{\prime} \mid l(w) \geq 2\right\}, \tag{1}\\
& \Phi_{l}=\left\{w K T_{l} \mid w \in \Phi^{\prime}, t(w)=t_{r}\right\}, \\
& \Phi_{k}=\left\{w k \mid w \in \Phi^{\prime}, l(w) \geq 2, t(w) \in\left\{t_{l}, t_{r}\right\}\right\}, \\
& \Phi_{r}=\left\{w K T_{r} \mid w \in \Phi^{\prime}, t(w)=t_{l}\right\}, \\
& \Phi_{e}=\left\{t_{l} K t_{l}, t_{l} K T_{l}, t_{r} K t_{r}, t_{r} K T_{r}\right\}, \\
& \Phi=\Phi_{0} \cup \Phi_{l} \cup \Phi_{k} \cup \Phi_{r} \cup \Phi_{e}, \\
& J=\left\{t_{l} k, t_{r} k, K T_{l}, K T_{r}\right\} .
\end{align*}
$$

We use the letters ω and ϵ for the universal and equality relations on any set. The letters σ and τ denote the least group and greatest idempotent pure congruences, respectively, and \mathcal{L}, \mathcal{R} and \mathcal{H} Green's relations on any semigroup. Beside these meanings, we use these letters, with some meets and joins, for certain words over Γ as follows. Let Δ be the following set of words:

$$
\begin{array}{lll}
\omega=T_{l} T_{r}, & \mathcal{L}=t_{r} T_{l}, & \mathcal{R}=t_{l} T_{r}, \\
\mathcal{H}=T_{l} k, & \sigma=T_{l} t_{r} K, & \tau=t_{l} t_{r} k, \\
\mathcal{L} \wedge \sigma=T_{l} t_{r}, & \mathcal{R} \wedge \sigma=T_{r} t_{l}, & \mathcal{H} \wedge \sigma=T_{l} t_{r} k, \\
\mathcal{L} \vee \tau=t_{l} t_{r} K T_{l}, & \mathcal{R} \vee \tau=t_{l} t_{r} K T_{r}, & \mathcal{L} \wedge \tau=t_{l} t_{r} K t_{r}, \\
& \mathcal{R} \wedge \tau=t_{l} t_{r} K t_{l} . &
\end{array}
$$

Finally let

$$
\begin{equation*}
\Omega=\Gamma \cup J \cup \Phi \cup \Delta . \tag{2}
\end{equation*}
$$

It is proved in [5] that Ω is a set of representatives for the μ-classes and the products of representatives are given. As a consequence, any word can
be reduced to its normal form by using the relations in Σ. When writing elements of Ω in the form $w=x_{1} x_{2} \ldots x_{n}$ or $u=u_{1} u_{2} \ldots u_{n}$ we shall always mean that $x_{i}, u_{i} \in \Gamma$ for $i=1,2, \ldots, n$. The main result of paper [5] follows.

Theorem 2.1. For any completely simple semigroup S, the semigroup generated by Γ on $\mathcal{C}(S)$ is a homomorphic image of $\Omega(\cong\langle\Gamma, \Sigma\rangle)$. No proper homomorphic image of Ω has this property.

In order to avoid cumbersome notation, we shall denote by juxtaposition both the product in Γ^{+}and in Ω and will make their distinction explicit only when this is needed for clarity. Note that the union in (1) is disjoint. We shall need in this paper a somewhat different decomposition of Ω. So we introduce some more notation. Let

$$
\begin{aligned}
& \Psi=\Omega \backslash \Delta \\
& \Pi=\left\{w \in \Psi \mid \text { either } t_{l}, t_{r} \text { or } t_{l}, T_{r} \text { or } T_{l}, t_{r} \text { occur in } w\right\}, \\
& \Theta=\left\{w \in \Psi \mid \text { not both } t_{l}, t_{r} \text { or } t_{l}, T_{r} \text { or } T_{l}, t_{r} \text { occur in } w\right\} .
\end{aligned}
$$

We thus get $\Omega=\Theta \cup \Pi \cup \Delta$, again a disjoint union. Let

$$
I=\left\{t_{l} K, t_{r} K, K t_{l}, K t_{r}\right\}, \quad \Psi_{e}=\left\{K t_{l} K, K t_{r} K, K t_{l} k, K t_{r} k\right\} .
$$

Hence $\Theta=\Gamma \cup I \cup J \cup \Phi_{e} \cup \Psi_{e}$, also a disjoint union. For $n=1,2, \ldots$, let

$$
\Psi_{n}=\{w \in \Psi \mid l(w)=n\}
$$

so that $\Psi=\bigcup_{n=1}^{\infty} \Psi_{n}$, a disjoint union. Note that $\Psi_{1}=\Gamma, \Psi_{2}=I \cup J$,

$$
\Psi_{3}=\left\{t_{l} K t_{r}, t_{r} K t_{l}, t_{r} K T_{l}, t_{l} K T_{r}\right\} \cup \Phi_{e} \cup \Psi_{e}
$$

$$
\Psi_{4}=\left\{t_{l} K t_{r} K, t_{r} K t_{l} K, t_{l} K t_{r} k, t_{r} K t_{l} k, K t_{l} K t_{r}, K t_{r} K t_{l}, K t_{l} K T_{r}, K t_{r} K T_{l}\right\}
$$

and so on with each Ψ_{n} having eight elements for any $n \geq 4$. Also let

$$
\mathcal{T}_{l}=\left\{T_{l}, t_{l}\right\}, \quad \mathcal{K}=\{K, k\}, \quad \mathcal{T}_{r}=\left\{T_{r}, t_{r}\right\},
$$

and for any $u \in \Gamma$,

$$
\bar{u}= \begin{cases}t_{l} & \text { if } u \in \mathcal{T}_{r} \\ K & \text { if } u \in \mathcal{K} . \\ t_{r} & \text { if } u \in \mathcal{T}_{l}\end{cases}
$$

Elements of Ω are ordered as indicated in Section 1. However, we can write congruences on a Rees matrix semigroup by means of admissible triples, see ([1], Section III.4) and compare them componentwise. This is particularly suitable for elements of Δ, which are constant operators. The partially ordered set of Δ is represented in Diagram 1. With this ordering, we introduce the following product. For $u \in \Delta$ and $v \in\left\{t_{l}, K, t_{r}\right\}$, let
$u \circ v= \begin{cases}\sigma & \text { if } u \geq \mathcal{R} \wedge \sigma, v=t_{l} \text { or } u \not \leq \tau, v=K \text { or } u \geq \mathcal{L} \wedge \sigma, v=t_{r} \\ \tau & \text { otherwise. }\end{cases}$
We generally follow the standard notation and terminology which can be found in books [1] and [3].

3. Constant operators

According to ([5], Lemma 4.1), elements of Δ act on $\mathcal{C}(S)$ as constant functions and thus we refer to them as constant operators. These elements play an important role in our deliberations. We paraphrase this reference as follows.

Lemma 3.1. Elements of Δ act as right zeros of Ω.
Lemma 3.2. The products $(\Gamma \cup \Delta) \Gamma$ in Ω are given in Table 1 .
Proof. This follows by a simple calculation from the relations in Σ. As a sample, we compute

$$
\begin{aligned}
T_{r} k & =T_{r}(K k)=\left(T_{r} K\right) k=\left(T_{l} K\right) k=T_{l}(K k)=T_{l} k=\mathcal{H}, \\
k T_{l} & =k\left(t_{l} T_{l}\right)=\left(k t_{l}\right) T_{l}=\left(t_{r} t_{l}\right) T_{l}=t_{r}\left(t_{l} T_{l}\right)=t_{r} T_{l}=\mathcal{L}, \\
\omega T_{l} & =\left(T_{l} T_{r}\right) T_{l}=\left(T_{r} T_{l}\right) T_{l}=T_{r}\left(T_{l} T_{l}\right)=T_{r} T_{l}=T_{l} T_{r}=\omega, \\
\omega k & =\left(T_{l} T_{r}\right) k=\left(T_{l} K\right) k=T_{l}(K k)=T_{l} k=\mathcal{H} .
\end{aligned}
$$

The remainning cases follow just as easily.
The products $\Delta(\Psi \backslash \Gamma)$ can be expressed by means of the multiplication $u \circ v$ defined in Section 2 and have the following form.

	T_{l}	K	T_{r}	t_{l}	k	t_{r}
T_{l}	T_{l}	ω	ω	t_{l}	\mathcal{H}	$\mathcal{L} \wedge \sigma$
K	$K T_{l}$	K	$K T_{r}$	$K t_{l}$	k	$K t_{r}$
T_{r}	ω	ω	T_{r}	$\mathcal{R} \wedge \sigma$	\mathcal{H}	t_{r}
t_{l}	T_{l}	$t_{l} K$	\mathcal{R}	t_{l}	$t_{l} k$	ϵ
k	\mathcal{L}	K	\mathcal{R}	ϵ	k	ϵ
t_{r}	\mathcal{L}	$t_{r} K$	T_{r}	ϵ	$t_{r} k$	t_{r}
ω	ω	ω	ω	$\mathcal{R} \wedge \sigma$	\mathcal{H}	$\mathcal{L} \wedge \sigma$
$\mathcal{L} \vee \tau$	$\mathcal{L} \vee \tau$	ω	ω	$\mathcal{R} \wedge \tau$	\mathcal{H}	$\mathcal{L} \wedge \sigma$
$\mathcal{R} \vee \tau$	ω	ω	$\mathcal{R} \vee \tau$	$\mathcal{R} \wedge \sigma$	\mathcal{H}	$\mathcal{L} \wedge \tau$
\mathcal{L}	\mathcal{L}	ω	ω	ϵ	\mathcal{H}	$\mathcal{L} \wedge \tau$
\mathcal{R}	ω	ω	\mathcal{R}	$\mathcal{R} \wedge \sigma$	\mathcal{H}	ϵ
\mathcal{H}	\mathcal{L}	ω	\mathcal{R}	ϵ	\mathcal{H}	ϵ
σ	ω	σ	ω	$\mathcal{R} \wedge \sigma$	$\mathcal{H} \wedge \sigma$	$\mathcal{L} \wedge \sigma$
$\mathcal{L} \wedge \sigma$	\mathcal{L}	σ	ω	ϵ	$\mathcal{H} \wedge \sigma$	$\mathcal{L} \wedge \sigma$
$\mathcal{R} \wedge \sigma$	ω	σ	\mathcal{R}	$\mathcal{R} \wedge \sigma$	$\mathcal{H} \wedge \sigma$	ϵ
$\mathcal{H} \wedge \sigma$	\mathcal{L}	σ	\mathcal{R}	ϵ	$\mathcal{H} \wedge \sigma$	ϵ
τ	$\mathcal{L} \vee \tau$	τ	$\mathcal{R} \vee \tau$	$\mathcal{R} \wedge \tau$	ϵ	$\mathcal{L} \wedge \tau$
$\mathcal{L} \wedge \tau$	\mathcal{L}	τ	$\mathcal{R} \vee \tau$	ϵ	ϵ	$\mathcal{L} \wedge \tau$
$\mathcal{R} \wedge \tau$	$\mathcal{L} \vee \tau$	τ	\mathcal{R}	$\mathcal{R} \wedge \tau$	ϵ	ϵ
ϵ	\mathcal{L}	τ	\mathcal{R}	ϵ	ϵ	ϵ

Table 1
Lemma 3.3. For $u \in \Delta$ and $v \in \Psi \backslash \Gamma$, we have in Ω, $u v=(u \circ h(v)) t(v)$.

Proof. We consider several cases in which we make repeated use of Diagram 1 and Table 1.

Case: $u \geq \mathcal{R} \wedge \sigma, h(v)=t_{l}$. Then $u t_{l} \mu \mathcal{R} \wedge \sigma$ and the elements of the sequence

$$
u t_{l} K, u t_{l} K t_{r}, u t_{l} K t_{r} K, u t_{l} K t_{r} K t_{l}, u t_{l} K t_{r} K t_{l} K, \ldots
$$

are μ-related to

$$
\sigma, \mathcal{L} \wedge \sigma,, \sigma, \mathcal{R} \wedge \sigma, \sigma, \ldots
$$

and we see that these are μ-related to

$$
\sigma K, \sigma t_{r}, \sigma K, \sigma t_{l}, \sigma K, \ldots
$$

Diagram 1

which evidently implies the assertion of the lemma for the cases $t(v) \in$ $\left\{t_{l}, K, t_{r}\right\}$. Using this, we obtain

$$
\begin{aligned}
& u t_{l} K t_{r} \ldots K T_{l} \mu \sigma T_{l}, \\
& u t_{l} K t_{r} \ldots t_{l} k \mu(\mathcal{R} \wedge \sigma) k \mu \mathcal{H} \wedge \sigma \mu \sigma k, \\
& u t_{l} K t_{r} \ldots t_{r} k \mu(\mathcal{L} \wedge \sigma) k \mu \mathcal{H} \wedge \sigma \mu \sigma k, \\
& u t_{l} K t_{r} \ldots K T_{r} \mu \sigma T_{r} .
\end{aligned}
$$

Case: $u \nsupseteq \mathcal{R} \wedge \sigma, h(v)=t_{l}$. Then

$$
u t_{l} \mu \begin{cases}\mathcal{R} \wedge \tau & \text { if } \mathcal{R} \wedge \tau \leq u \leq \mathcal{L} \vee \tau \\ \epsilon & \text { if } u \leq \mathcal{L}\end{cases}
$$

and thus $u t_{l} K \mu \tau$. From now on, the argument is the same as in the preceding case if we substitute each σ by τ.

Case: $u \not \leq \tau, h(v)=K$. Then

$$
u K \mu \begin{cases}\sigma & \text { if } \mathcal{H} \wedge \sigma \leq u \leq \sigma \\ \omega & \text { if } u \geq \mathcal{H}\end{cases}
$$

and thus the elements of the sequence

$$
u K t_{l}, u K t_{l} K, u K t_{l} K t_{r}, u K t_{l} K t_{r} K, \ldots
$$

are μ-related to

$$
\mathcal{R} \wedge \sigma, \sigma, \mathcal{L} \wedge \sigma, \sigma, \ldots
$$

and we see that these are μ-related to

$$
\sigma t_{l}, \sigma K, \sigma t_{r}, \sigma K, \ldots
$$

which evidently implies the assertion of the lemma for the cases $t(v) \in$ $\left\{t_{l}, K, t_{r}\right\}$. Using this, we obtain the assertion of the lemma for the cases $t(v) \in\left\{T_{l}, k, T_{r}\right\}$ exactly as in the first case above.

Case: $u \geq \tau, h(v)=K$. Then $u K \mu \tau$ and the rest of the argument is the same as in the preceding case if we subtitute each σ by τ.

The two cases concerning the instance $h(v)=t_{r}$ are dual to the first two cases above.

The next lemma gives the first inkling into the structure of Ω.
Lemma 3.4. Both Δ and $\Pi \cup \Delta$ are ideals of Ω.
Proof. By Lemma 3.1, elements of Δ are right zeros of Ω and hence Δ is a left ideal of Ω. By Lemmas 3.2 and 3.3, or by repeated application of Lemma 3.2 alone, we deduce that Δ is also a right ideal of Ω.

Next let $u \in \Omega$ and $v \in \Pi$ be such that $u v \notin \Delta$. Since $v \in \Pi$, either both t_{l} and t_{r} or both t_{l} and T_{r} or both T_{l} and t_{r} occur as letters in v. Table 2 and its dual obtained by interchanging l and r show that after the reductions made due to taking the product $u v$ at least one of the listed pairs occurs in $u v$. Therefore $u v \in \Pi$ showing that $\Pi \cup \Delta$ is a left ideal of Ω. The same type of argument shows that $\Pi \cup \Delta$ is also a right ideal of Ω.

The next lemma identifies elements of Δ by the behavior of pairs of their adjacent letters.

Lemma 3.5. Let $w=x_{1} x_{2} \ldots x_{n} \in \Omega, n \geq 2$. Then $x_{i} x_{i+1} \notin \Delta$ for $i=1,2, \ldots, n-1$ if and only if $w \notin \Delta$.

Proof. Necessity. The argument is by induction on n. If $n=2$, there is nothing to prove. Assume the statement valid for $n-1$ where

	$t_{l} K$	$t_{l} k$	$t_{l} K t_{l}$	$t_{l} K T_{l}$	$K t_{l}$	$K T_{l}$	$K t_{l} K$
$t_{l} K$	$t_{l} K$	$t_{l} k$	$t_{l} K t_{l}$	$t_{l} K T_{l}$	$t_{l} K t_{l}$	$t_{l} K T_{l}$	$t_{l} K$
$K t_{l} K$	$K t_{l} K$	$K t_{l} k$	$K t_{l}$	$K T_{l}$	$K t_{l}$	$K T_{l}$	$K t_{l} K$
$t_{r} K$	$t_{r} K t_{l} K$	$t_{r} K t_{l} k$	$t_{r} K t_{l}$	$t_{r} K T_{l}$	$t_{r} K t_{l}$	$t_{r} K T_{l}$	$t_{r} K t_{l} K$
$K t_{l}$	$K t_{l} K$	$K t_{l} k$	$K t_{l}$	$K T_{l}$	$K t_{l}$	$K T_{l}$	$K t_{l} K$
$t_{l} K t_{l}$	$t_{l} K$	$t_{l} k$	$t_{l} K t_{l}$	$t_{l} K T_{l}$	$t_{l} K t_{l}$	$t_{l} K T_{l}$	$t_{l} K$
$t_{l} k$					$t_{l} K t_{l}$	$t_{l} K T_{l}$	$t_{l} K$
$K t_{l} k$					$K t_{l}$	$K T_{l}$	$K t_{l} K$
$t_{r} k$					$t_{r} K t_{l}$	$t_{r} K T_{l}$	$t_{r} K t_{l} K$
$K t_{r} k$					$K t_{r} K t_{l}$	$K t_{r} K T_{l}$	$K t_{r} K t_{l} K$

Table 2

$n>2$ and consider w with $l(w)=n$. Then $w=u x$ for some $u \in \Omega$ with $l(w)=n-1$ and $x \in \Gamma$. By the induction hypothesis, we have that $u \notin \Delta$. The problem reduces to showing that

$$
u \in \Psi \backslash \Gamma, \quad x \in \Gamma, \quad t(u) x \in \Psi \backslash \Gamma \Longrightarrow u x \notin \Delta .
$$

Assume the antecedent of this implication. Hence $t(u) x \in I \cup J$. We distinguish several cases.

Case: $t(u)=t_{l}$. Then

$$
u \in\left\{K t_{l}, t_{l} K t_{l}, t_{r} K t_{l}\right\} \cup\left\{v t_{r} K t_{l} \in \Psi \mid v \in \Phi^{\prime}\right\}
$$

and hence for $x \in\{K, k\}$, we get

$$
u x \in\left\{K t_{l} x, t_{l} x, t_{r} K t_{l} x\right\} \cup\left\{v t_{r} K t_{l} k \mid v \in \Phi^{\prime}, t(v)=K\right\}
$$

which shows that $u x \notin \Delta$.
Case: $t(u)=K$. Then

$$
u \in\left\{t_{l} K, t_{r} K\right\} \cup\left\{v t_{l} K \in \Psi \mid v \in \Phi^{\prime}\right\} \cup\left\{v t_{r} K \in \Psi \mid v \in \Phi^{\prime}\right\}
$$

and hence for $x=t_{l}$ we obtain

$$
u x \in\left\{t_{l} K t_{l}, t_{r} K t_{l}\right\} \cup\left\{v t_{l} \in \Psi \mid v \in \Phi^{\prime}\right\} \cup\left\{v t_{r} K t_{l} \in \Psi \mid v \in \Phi^{\prime}\right\}
$$

and analogously for $x=t_{r}$; for $x=T_{r}$, we get

$$
u x \in\left\{t_{l} K T_{l}, t_{r} K T_{l}\right\} \cup\left\{v T_{l} \in \Psi \mid v \in \Phi^{\prime}\right\} \cup\left\{v t_{r} K T_{l} \in \Psi \mid v \in \Phi^{\prime}\right\}
$$

and analogously for $x=T_{l}$. Thus again $u x \notin \Delta$.
The case when $t(u)=t_{r}$ is dual to the case $t(u)=t_{l}$. This exhausts all the choices for $t(u) x$ in $I \cup J$.

Sufficiency. By contrapositive, assume that $x_{i} x_{i+1} \in \Delta$ for some i. By Lemma 3.1, we have $x_{1} x_{2} \ldots x_{i} x_{i+1}=x_{i} x_{i+1}$ and by Lemmas 3.2 and 3.3, we conclude that $x_{i} x_{i+1} \ldots x_{n} \in \Delta$ and thus $w=x_{1} x_{2} \ldots x_{n} \in \Delta$ where all these products are taken in Ω.

Lemma 3.5 will now be used to establish a lemma which will find many applications in the next two sections.

Lemma 3.6. Let $u, v \in \Psi$. Then $u v \notin \Delta$ if and only if $t(u) h(v) \notin \Delta$.
Proof. Necessity. If no contraction occurs in the forming of the product $u v$, then $t(u) h(v) \notin \Delta$ follows directly from Lemma 3.5. Hence assume that some contraction takes place in $u v$.

Case: $l(u)=1$. Then $u \in \Gamma$ and the possible contractions are:

$$
\begin{aligned}
& t_{p}\left(K t_{p} K\right)=t_{p} K, \quad t_{p}\left(K t_{p} k\right)=t_{p} k, \\
& K\left(t_{p} K t_{p}\right)=K t_{p}, \quad K\left(t_{p} K T_{p}\right)=K T_{p}
\end{aligned}
$$

for $p \in\{l, r\}$ and $u h(v)=h(v)$. In all these cases $t(u) h(v) \notin \Delta$.
Case: $l(v)=1$. Then $v \in \Gamma$ and the only possible contractions are

$$
\begin{aligned}
& \left(t_{p} K t_{p}\right) K=t_{p} K, \quad\left(t_{p} K t_{p}\right) k=t_{p} k, \\
& \left(K t_{p} K\right) t_{p}=K t_{p}, \quad\left(K t_{p} K\right) T_{p}=K T_{p}
\end{aligned}
$$

for $p \in\{l, r\}$ and $t(u) v=v$. In all these cases $t(u) h(v) \notin \Delta$.
Case: $l(u), l(v)>1$. Table 2 and its dual obtained by interchanging l and r show all the contractions that may occur when forming the product $u v$. Suppose that the end of u appears in the first column of Table 2 and denote it by u^{\prime}. Similarly, assume that the beginning of v appears in the first row of Table 2 and denote it by v^{\prime}. From Table 2 we see that $u^{\prime} v^{\prime} \notin \Delta$ if and only if the conjunction of $t(u)=k$ and $h(v)=t_{l}$ fails. It follows
from Lemma 3.5 that the hypothesis implies that $u^{\prime} v^{\prime} \notin \Delta$ and hence from Table 2 that $t(u) h(v) \notin \Delta$.

Sufficiency. In view of Lemma 3.5, the cases $l(u)=1$ or $l(v)=1$ follow similarly as above. Hence assume that $l(u), l(v) \geq 2$. Again we use Table 2: the argument for its dual is obtained by interchanging the roles of l and r. By Table 2, we conclude that the hypothesis implies that the case $t(u)=k$ and $h(v)=t_{l}$ does not occur. The other instances yield the product $u^{\prime} v^{\prime}$, defined as above, where the product of adjacent letters does not fall into Δ. From the hypothesis that $u, v \notin \Delta$, this also holds for the remaining pairs of adjacent factors in $u v$. Now Lemma 3.5 implies that $u v \notin \Delta$.

We shall use Lemma 3.6 without express reference.

4. A structure theorem

By Lemma 3.4, Δ is an ideal of Ω and by Lemma 3.1, its elements are right zeros of Ω. Hence Δ is the kernel of Ω. In Lemmas 3.2 and 3.3, we have the products $\Delta \Psi$. Therefore we have all the products $\Omega \Delta$ and $\Delta \Omega$ in a sufficiently explicit form. It remains to find the structure of the semigroup Ω / Δ and to find the product of any two elements of Ψ which falls into Δ.

Our structure theorem is based on the observation that any element of $\Psi \backslash \Gamma$, considered as a word over Γ, is uniquely determined by (the product of) its first two letters, its length and (the product of) its last two letters. This can be seen easily from the disjoint union

$$
\Psi=\Gamma \cup J \cup \Phi_{0} \cup \Phi_{l} \cup \Phi_{k} \cup \Phi_{r} \cup \Phi_{e},
$$

see (1) and (2). Hence to each element of $\Psi \backslash \Gamma$ we can uniquely assign a triple consisting of a word in I, an integer greater than 1 and a word in $I \cup J$. We can extend this representation to Γ by assigning to each element x of Γ the triple $(x, 1, x)$. This establishes a one-to-one correspondence of the set Ψ with the set of triples whose form carries the obvious resemblance with the triples appearing in the construction of a Rees matrix semigroup! There remains the problem of characterizing these triples, describing their multiplication and determining their product with elements of Δ.

Recall the notation from Section 2. Below $p, q \in\{l, r\}, \tau_{p} \in \mathcal{T}_{p}$, $\tau_{q} \in \mathcal{T}_{q}, \kappa \in \mathcal{K}$ for all choices. Let

$$
\begin{aligned}
& M_{1}=\{(u, 1, u) \mid u \in \Gamma\} \\
& M_{2}=\{(u v, 2, u v) \mid u v \in I \cup J\} \\
& M_{3}=\left\{\left(K t_{p}, 3, t_{p} \kappa\right),\left(t_{p} K, 3, K \tau_{q}\right)\right\}
\end{aligned}
$$

and for $n \geq 1$,

$$
\begin{aligned}
& M_{4 n}=\left\{\left(t_{p} K, 4 n, t_{q} \kappa\right),\left(K t_{p}, 4 n, K \tau_{q}\right) \mid p \neq q\right\}, \\
& M_{4 n+1}=\left\{\left(K t_{p}, 4 n+1, t_{q} \kappa\right),\left(t_{p} K, 4 n+1, K \tau_{q}\right) \mid p \neq q\right\}, \\
& M_{4 n+2}=\left\{\left(t_{p} K, 4 n+2, t_{p} \kappa\right),\left(K t_{p}, 4 n+2, K \tau_{q}\right)\right\}, \\
& M_{4 n+3}=\left\{\left(K t_{p}, 4 n+3, t_{p} \kappa\right),\left(t_{p} K, 4 n+3, K \tau_{q}\right) \mid p \neq q\right\},
\end{aligned}
$$

finally set

$$
M=\left(\bigcup_{n=1}^{\infty} M_{n}\right) \cup \Delta .
$$

We now proceed to define a product in M. For this we need the following symbolism. Generally, we denote the product in Ω by juxtaposition to avoid cumbersome notation. As an exception to this rule, we let $w \in \Gamma^{+}$ and denote by \bar{w} its representative in Ω, that is w reduced according to the relations Σ. With this setting, define

$$
[w]=l(\bar{w})-l(w) .
$$

Hence $[w]$ represents the loss of length due to the reduction according to Σ. For any $w \in \Psi$,
$i(w)$, the initial part of w, is equal to w if $l(w)=1$, and is equal to the product of the first two letters of w otherwise,
$f(w)$, the final part of w, is equal to w if $l(w)=1$ and it is equal to the product of the last two letters of w otherwise.
Now let $U_{m} \in M_{m}$ with the notation

$$
U_{m}= \begin{cases}\left(u_{1}, 1, u_{1}\right) & \text { if } m=1 \\ \left(u_{1} u_{2}, 2, u_{1} u_{2}\right) & \text { if } m=2 \\ \left(u_{1} u_{2}, 3, u_{2} u_{3}\right) & \text { if } m=3 \\ \left(u_{1} u_{2}, m, u_{m-1} u_{m}\right) & \text { if } m>3\end{cases}
$$

and $\hat{u}_{m}=u_{1} \ldots u_{m}$ if $m \leq 3$. Also let $V_{n} \in M_{n}$ with the analogous notation v_{i} and \hat{v}_{n}.

Define

$$
\begin{equation*}
U_{m} V_{n}=(a, m+b+n, c) \quad \text { if } u_{m} v_{1} \notin \Delta \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& a= \begin{cases}i\left(\hat{u}_{m} \hat{v}_{n}\right) & \text { if } m, n \leq 3 \\
i\left(\hat{u}_{m} v_{1} v_{2}\right) & \text { if } m \leq 3, n>3, \\
u_{1} u_{2} & \text { if } m>3\end{cases} \\
& b= \begin{cases}{\left[\hat{u}_{m} \hat{v}_{n}\right]} & \text { if } m, n \leq 3 \\
{\left[\hat{u}_{m} v_{1} v_{2} \bar{v}_{1}\right]} & \text { if } m \leq 3, n>3 \\
{\left[\bar{u}_{m} u_{m-1} u_{m} \hat{v}_{n}\right]} & \text { if } m>3, n \leq 3 \\
{\left[u_{m-1} u_{m} v_{1} v_{2} \bar{v}_{1}\right]} & \text { if } m, n>3\end{cases} \\
& c= \begin{cases}u_{1} v_{1} & \text { if } m=n=1 \\
f\left(u_{1} u_{2} v_{1}\right) & \text { if } m=2, n=1 \\
f\left(u_{2} u_{3} v_{1}\right) & \text { if } m=3, n=1, \\
f\left(u_{m-1} u_{m} v_{1}\right) & \text { if } m>3, n=1 \\
v_{n-1} v_{n} & \text { if } n>1\end{cases}
\end{aligned}
$$

where the notation \bar{v}_{1} was defined at the end of Section 2, and if $u_{m} v_{1} \in \Delta$, then

$$
U_{m} V_{n}= \begin{cases}u_{m} v_{1} v_{2} v_{1} v_{n} & \text { if } v_{1} v_{2} \in\left\{K t_{l}, K t_{r}\right\} \\ u_{m} v_{1} v_{2} v_{n} & \text { if } v_{1} v_{2} \in\left\{t_{l} K, t_{r} K\right\} \\ u_{m} v_{1} v_{2} & \text { if } v_{1} v_{2} \in J \\ u_{m} v_{1} & \text { if } n=1\end{cases}
$$

For $\theta, \delta \in \Delta$, we define

$$
U_{m} \theta=\theta, \quad \theta U_{m}=\left\{\begin{array}{ll}
\theta \hat{u}_{m} & \text { if } m \leq 3 \\
\left(\theta \circ u_{1}\right) u_{m} & \text { if } m>3
\end{array}, \quad \theta \delta=\delta\right.
$$

where $\theta \circ u_{1}$ was defined in Section 2 .

This makes M into a groupoid. Note that the arguments of the functions i and f are in Ψ, that is, they are reduced, while the argument of the function [] is an element of Γ^{+}. In the last instance above, $\theta \hat{u}_{m}$ can be obtained by (repeated if $m>1$) application of Table 1 .

We are now ready for the statement of the main theorem of the paper.
Theorem 4.1. The mapping

$$
\varphi: w \longmapsto \begin{cases}(i(w), l(w), f(w)) & \text { if } w \in \Psi \\ w & \text { if } w \in \Delta\end{cases}
$$

is an isomorphism of Ω onto M.
The proof is preceded by seven lemmas. We start with the bijective property of φ.

Lemma 4.2. The mapping φ in Theorem 4.1 is a bijection.
Proof. Recall the notation Ψ_{n} from Section 2. It suffices to show that $\varphi_{n}=\left.\varphi\right|_{\Psi_{n}}$ is a bijection of Ψ_{n} onto M_{n} for $n=1,2, \ldots$.

Now $\Psi_{1}=\Gamma$ and $\Psi_{2}=I \cup J$ so that the statement holds trivially for $n=1,2$. For $n=3$, we list the elements of Ψ_{3} and their images as follows:

$$
\begin{aligned}
& K t_{l} K \longmapsto\left(K t_{l}, 3, t_{l} K\right), \quad t_{l} K T_{l} \longmapsto\left(t_{l} K, 3, K T_{l}\right), \\
& K t_{l} k \longmapsto\left(K t_{l}, 3, t_{l} k\right), \quad t_{l} K t_{r} \longmapsto\left(t_{l} K, 3 t_{r}\right), \\
& t_{l} K t_{l} \longmapsto\left(t_{l} K, 3, K t_{l}\right), \quad t_{l} K T_{r} \longmapsto\left(t_{l} K, 3, K T_{r}\right),
\end{aligned}
$$

and those obtained by interchanging l and r.
For the remaining Ψ_{n}, we first establish a concrete representation of their members. We illustrate the genesis of their form by starting with Ψ_{4} and then affixing letters in front of its elements thereby obtaining $\Psi_{5}, \Psi_{6}, \Psi_{7}, \Psi_{8}, \Psi_{9}$ successively, see Table 3.

It will be convenient to have the following notation. For $u \in \Gamma$, let

$$
\tilde{u}= \begin{cases}t_{l} & \text { if } u \in \mathcal{T}_{l} \\ K & \text { if } u \in \mathcal{K}, \\ t_{r} & \text { if } u \in \mathcal{T}_{r}\end{cases}
$$

Ψ_{9}	Ψ_{8}	Ψ_{7}	Ψ_{6}	Ψ_{5}	Ψ_{4}
K	t_{l}	K	t_{r}	K	$t_{l} K t_{r} K$
K	t_{r}	K	t_{l}	K	$t_{r} K t_{l} K$
K	t_{l}	K	t_{r}	K	$t_{l} K t_{r} k$
K	t_{r}	K	t_{l}	K	$t_{r} K t_{l} k$
t_{r}	K	t_{l}	K	t_{r}	$K t_{l} K t_{r}$
t_{l}	K	t_{r}	K	t_{l}	$K t_{r} K t_{l}$
t_{r}	K	t_{l}	K	t_{r}	$K t_{l} K T_{r}$
t_{l}	K	t_{r}	K	t_{l}	$K t_{r} K T_{l}$

Table 3

u_{1}	u_{2}	u_{3}	v_{1}	v_{2}	$u_{3} v_{1} v_{2}$	$u_{2} u_{3} v_{1} v_{2}$	$u_{1} u_{2} u_{3} v_{1} v_{2}$	v_{3}
K	t_{l}	K	t_{l}	K	$K t_{l} K$	$t_{l} K$	$K t_{l} K$	t_{r}
K	t_{r}	K	t_{l}	K		$t_{r} K t_{l} K$	$K t_{r} K t_{l} K$	t_{r}
K	t_{l}	K	t_{r}	K	$K t_{r} K$	$t_{l} K t_{r} K$	$K t_{l} K t_{r} K$	t_{l}
K	t_{r}	K	t_{r}	K		$t_{r} K$	$K t_{r} K$	t_{l}
t_{l}	K	t_{l}	K	t_{l}	$t_{l} K t_{l}$	$K t_{l}$	$t_{l} K t_{l}$	K
t_{r}	K	t_{l}	K	t_{l}			$t_{r} K t_{l}$	K
t_{l}	K	t_{l}	K	t_{r}	$t_{l} K t_{r}$	$K t_{l} K t_{r}$	$t_{l} K t_{r}$	K
t_{r}	K	t_{l}	K	t_{r}			$t_{r} K t_{l} K t_{r}$	K
t_{l}	K	t_{r}	K	t_{l}	$t_{r} K t_{l}$	$K t_{r} K t_{l}$	$t_{l} K t_{r} K t_{l}$	K
t_{r}	K	t_{r}	K	t_{l}			$t_{r} K t_{l}$	K
t_{l}	K	t_{r}	K	t_{r}	$t_{r} K t_{r}$	$K t_{r}$	$t_{l} K t_{r}$	K
t_{r}	K	t_{r}	K	t_{r}			$t_{r} K t_{r}$	K

Table 4
and for $u=u_{1} u_{2} u_{3} u_{4} \in \Psi_{4}$, write $\tilde{u}=u_{1} u_{2} u_{3} \tilde{u}_{4}$ and let u^{0} be the empty word. From Table 3, we easily deduce the form of elements of Ψ_{n} for $n>3$. For $n \geq 1$, we get, with $u=u_{1} u_{2} u_{3} u_{4}$,

$$
\begin{aligned}
& \Psi_{4 n}=\left\{\tilde{u}^{n-1} u \mid u \in \Psi_{4}\right\} \\
& \Psi_{4 n+1}=\left\{\tilde{u}_{4} \tilde{u}^{n-1} u \mid u \in \Psi_{4}\right\} \\
& \Psi_{4 n+2}=\left\{u_{3} \tilde{u}_{4} \tilde{u}^{n-1} u \mid u \in \Psi_{4}\right\} \\
& \Psi_{4 n+3}=\left\{u_{2} u_{3} \tilde{u}_{4} \tilde{u}^{n-1} u \mid u \in \Psi_{4}\right\}
\end{aligned}
$$

and thus, by the definition of the mapping φ, we have

$$
\begin{aligned}
& \varphi_{4 n} \quad: \tilde{u}^{n-1} u \longmapsto\left(u_{1} u_{2}, 4 n, u_{3} u_{4}\right), \\
& \varphi_{4 n+1}: \tilde{u}_{4} \tilde{u}^{n-1} u \longmapsto\left(\tilde{u}_{4} u_{1}, 4 n+1, u_{3} u_{4}\right), \\
& \varphi_{4 n+2}: u_{3} \tilde{u}_{4} \tilde{u}^{n-1} u \longmapsto\left(u_{3} \tilde{u}_{4}, 4 n+2, u_{3} u_{4}\right), \\
& \varphi_{4 n+3}: u_{2} u_{3} \tilde{u}_{4} \tilde{u}^{n-1} u \longmapsto\left(u_{2} u_{3}, 4 n+3, u_{3} u_{4}\right),
\end{aligned}
$$

where $u=u_{1} u_{2} u_{3} u_{4}$ ranges over all elements of Ψ_{4}. Now a simple comparison of the list of elements in Ψ_{4} in the last column of Table 3 and the definition of $M_{4 n+i}$ shows that $\varphi_{4 n+i}$ is a bijection of $\Psi_{4 n+i}$ onto $M_{4 n+i}$ for $n=1,2, \ldots$ and $i=0,1,2,3$. Therefore φ is a bijection of Ω onto M.

The next two lemmas treat the initial part of $u v$.
Lemma 4.3. Let $u=u_{1} u_{2} \ldots u_{m}, v=v_{1} v_{2} \ldots v_{n} \in \Psi, u v \notin \Delta$, $m \leq 3, n>3$. Then $i(u v)=i\left(u v_{1} v_{2}\right)$.

Proof. We distinguish three cases.
Case: $m=1$. If $u_{1} v_{1}=v_{1}$, then

$$
i(u v)=i(v)=v_{1} v_{2}=i\left(v_{1} v_{2}\right)=i\left(u_{1} v_{1} v_{2}\right)
$$

So suppose that $u_{1} v_{1} \neq v_{1}$. Now writing u_{3} for v_{1}, the third and fourth columns of Table 4 give all choices for the product $u_{3} v_{1}$. The fifth column of Table 4 provides all choices for v_{2}. The sixth column of Table 4 gives the product $u_{3} v_{1} v_{2}$. The last column of Table 4 contains all the choices for v_{3}. Comparing these two columns we see that affixing letters to the back of words in the sixth column does not change the initial part.

Case: $m=2$. If $u_{2} v_{1}=v_{1}$, then by the first case, we get

$$
i(u v)=i\left(u_{1} v\right)=i\left(u_{1} v_{1} v_{2}\right)=i\left(u v_{1} v_{2}\right) .
$$

So suppose that $u_{2} v_{1} \neq v_{1}$. Writing u_{3} for u_{2}, we see that the choices for u_{3}, v_{1}, v_{2} and v_{3} are the same as above. We write u_{2} for u_{1} and observe that the second column of Table 4 lists all the corresponding choices of u_{2}. The seventh column of Table 4 gives the products $u_{2} u_{3} v_{1} v_{2}$. Comparing this column with the last column which gives all choices of v_{3}, we conclude, as
above, that affixing letters to the back of the words in the seventh column does not change their initial part.

Case: $m=3$. If $u_{3} v_{1}=v_{1}$, then by the second case, we get

$$
i(u v)=i\left(u_{1} u_{2} v\right)=i\left(u_{1} u_{2} v_{1} v_{2}\right)=i\left(u v_{1} v_{2}\right) .
$$

So suppose that $u_{3} v_{1} \neq v_{1}$. The choices for $u_{2}, u_{3}, v_{1}, v_{2}, v_{3}$ are the same as above. The first column of Table 4 lists all the corresponding choices of u_{1}. The eighth column of Table 4 gives the products $u_{1} u_{2} u_{3} v_{1} v_{2}$. Comparing this column with the last column which gives all choices of v_{3}, we again conclude that affixing to the back of the words in the eighth column does not change their initial part.

Lemma 4.4. Let $u, v \in \Psi, u v \notin \Delta, l(u)>3$. Then $i(u v)=i(u)$.
Proof. Since $l(u)>3$, we have that u contains as letters at least one of the pairs t_{l}, t_{r} or t_{l}, T_{r} or T_{l}, t_{r}. In forming the product $u v$ the possible contractions that may occur will take place after $h(u)$ for they can not involve the first occurrence of t_{l} or t_{r} because of the second occurrence of one of the letters in the above pairs. Whether $i(u)$ is $K t_{l}$ or $K t_{r}$ or $t_{l} K$ or $t_{r} K$, it follows that the reduction $i(u)$ will not change.

The next lemma takes care of $[u v]$. Recall the notation \bar{v} from Section 2.

Lemma 4.5. Let $u=u_{1} u_{2} \ldots u_{m}, v=v_{1} v_{2} \ldots v_{n} \in \Psi, u v \notin \Delta$. Then

$$
[u v]= \begin{cases}{\left[u v_{1} v_{2} \bar{v}_{1}\right]} & \text { if } m \leq 3, n>3 \\ {\left[\bar{u}_{m} u_{m-1} u_{m} v\right]} & \text { if } m>3, n \leq 3 \\ {\left[\bar{u}_{m} u_{m-1} u_{m} v_{1} v_{2}\right]=\left[u_{m-1} u_{m} v_{1} v_{2} \bar{v}_{1}\right]} & \text { if } m, n>3\end{cases}
$$

Proof. We consider the three cases separately.
Case: $m \leq 3, n>3$. Note that $v_{3}=\bar{v}_{1}$ so that $v=v_{1} v_{2} \bar{v}_{1} v_{4}$ if $n=4$ and $v=v_{1} v_{2} \bar{v}_{1} v_{4} v^{\prime}$ for a suitable v^{\prime} if $n>4$. Forming the product $u v$, we see that v_{4} acts as a barrier to possible reductions since either v_{1} or v_{2} is equal to t_{l} or t_{r}; if v_{1} or v_{2} equals t_{l}, then $v_{4} \in \mathcal{T}_{l}$ and if v_{1} or v_{2} equals t_{r}, then $v_{4} \in \mathcal{T}_{r}$. Hence the possible loss of length already occurs up to \bar{v}_{1}.

Case: $m>3, n \leq 3$. First note that $\bar{u}_{m}=u_{m-2}$. Now the argument here is essentially the same as in the preceding case only in the reverse order and may be omitted.

Case: $m, n>3$. The product of the last three letters of u, namely $\bar{u}_{m} u_{m-1} u_{m}$, with the first two letters of v, namely $v_{1} v_{2}$, as above, are flanked by barriers to any possible reduction when forming the product $u v$. Hence the loss of length is already given in $\left[\bar{u}_{m} u_{m-1} u_{m} v_{1} v_{2}\right]$. Essentially the same argument will show that this loss is also given by $\left[u_{m-1} u_{m} v_{1} v_{2} \bar{v}_{1}\right]$.

The next two lemmas handle the final part of $u v$.
Lemma 4.6. Let $u=u_{1} u_{2} \ldots u_{m} \in \Psi, v_{1} \in \Gamma, u v_{1} \notin \Delta, m>2$. Then $f\left(u v_{1}\right)=f\left(u_{m-1} u_{m} v_{1}\right)$.

Proof. If $u_{m}=v_{1}$, then

$$
f\left(u v_{1}\right)=f(u)=u_{m-1} u_{m}=u_{m-1} u_{m} v_{1}=f\left(u_{m-1} u_{m} v_{1}\right) .
$$

So suppose that $u_{m} \neq v_{1}$. The third and fourth columns of Table 5 show all the choices for $u_{m} v_{1}$. For these choices, the second column of Table 5 gives all the choices for u_{m-1} and then the final column all the choices for u_{m-2}. The fifth and sixth columns of Table 5 give the products $u_{m-1} u_{m} v_{1}$ and $u_{m-2} u_{m-1} u_{m} v_{1}$, respectively. By inspection of the table, we see that $f\left(u_{m-2} u_{m-1} u_{m} v_{1}\right)=f\left(u_{m-1} u_{m} v_{1}\right)$. From the form of the words $u_{m-2} u_{m-1} u_{m} v_{1}$ in the table, we see that affixing letters to the front of these words does not influence their final part.

Lemma 4.7. Let $u, v \in \Psi, u v \notin \Delta, l(v) \geq 2$. Then $f(u v)=f(v)$.
Proof. We consider first the case $v \in I \cup J \cup \Phi_{e} \cup \Psi_{e}$. Table 6 provides the products $u v$ when $u \in \Gamma$. These products show that $f(u v)=$ $f(v)$ for the case $l(u)=1$. For the case $l(u)=2$, in the first column of Table 6, we would have the following substitutions:

$$
\begin{gathered}
T_{l} \rightarrow K T_{l}, K \rightarrow t_{l} K \text { or } K \rightarrow t_{r} K, T_{r} \rightarrow K T_{r}, \\
t_{l} \rightarrow K t_{l}, k \rightarrow t_{l} k \text { or } k \rightarrow t_{r} k, t_{r} \rightarrow K t_{r} .
\end{gathered}
$$

By simple inspection, the effect of these substitutions on the corresponding entries of Table 6 does not change their final part. This takes care of the case $l(u)=2$.

u_{m-2}	u_{m-1}	u_{m}	v_{1}	$u_{m-1} u_{m} v_{1}$	$u_{m-2} u_{m-1} u_{m} v_{1}$
t_{l}	K	T_{l}	t_{l}	$K t_{l}$	$t_{l} K t_{l}$
t_{r}	K	T_{l}	t_{l}	$K t_{l}$	$t_{r} K t_{l}$
K	t_{l}	K	T_{l}	$t_{l} K T_{l}$	$K T_{l}$
K	t_{r}	K	T_{l}	$t_{r} K T_{l}$	$K t_{r} K T_{l}$
K	t_{l}	K	T_{r}	$t_{l} K T_{r}$	$K t_{l} K T_{r}$
K	t_{r}	K	T_{r}	$t_{r} K T_{r}$	$K T_{r}$
K	t_{l}	K	t_{l}	$t_{l} K t_{l}$	$K t_{l}$
K	t_{r}	K	t_{l}	$t_{r} K t_{l}$	$K t_{r} K t_{l}$
K	t_{l}	K	k	$t_{l} k$	$K t_{l} k$
K	t_{r}	K	k	$t_{r} k$	$K t_{r} k$
K	t_{l}	K	t_{r}	$t_{l} K t_{r}$	$K t_{l} K t_{r}$
K	t_{r}	K	t_{r}	$t_{r} K t_{r}$	$K t_{r}$
t_{l}	K	T_{r}	t_{r}	$K t_{r}$	$t_{l} K t_{r}$
t_{r}	K	T_{r}	t_{r}	$K t_{r}$	$t_{r} K t_{r}$
t_{l}	K	t_{l}	T_{l}	$K T_{l}$	$t_{l} K T_{l}$
t_{r}	K	t_{l}	T_{l}	$K T_{l}$	$t_{r} K T_{l}$
t_{l}	K	t_{l}	K	$K t_{l} K$	$t_{l} K$
t_{r}	K	t_{l}	K	$K t_{l} K$	$t_{r} K t_{l} K$
t_{l}	K	t_{l}	k	$K t_{l} k$	$t_{l} k$
t_{r}	K	t_{l}	k	$K t_{l} k$	$t_{r} K t_{l} k$
K	t_{l}	k	K	$t_{l} K$	K
K	t_{r}	k	K	$t_{r} K$	$K t_{l} K$
K	$K t_{r} K$				
t_{l}	K	t_{r}	T_{r}	$K T_{r}$	$t_{l} K T_{r}$
t_{r}	K	t_{r}	T_{r}	$K T_{r}$	$t_{r} K T_{r}$
t_{l}	K	t_{r}	K	$K t_{r} K$	$t_{l} K t_{r} K$
t_{r}	K	t_{r}	K	$K t_{r} K$	$t_{r} K$
t_{l}	K	t_{r}	k	$K t_{r} k$	$t_{l} K t_{r} k$
t_{r}	K	t_{r}	k	$K t_{r} k$	$t_{r} k$

Table 5

For the case $l(u)=3$, we perform further substitutions

$$
\begin{aligned}
K T_{l} & \rightarrow t_{l} K T_{l} \text { or } K T_{l} \rightarrow t_{r} K T_{l}, t_{l} K \rightarrow K t_{l} K, t_{r} K \rightarrow K t_{r} K \\
K T_{r} & \rightarrow t_{l} K T_{r} \text { or } K T_{r} \rightarrow t_{r} K T_{r}, K t_{l} \rightarrow t_{l} K t_{l} \text { or } K t_{l} \rightarrow t_{r} K t_{l} \\
t_{l} k & \rightarrow K t_{l} k, t_{r} k \rightarrow K t_{r} k, K t_{r} \rightarrow t_{l} K t_{r} \text { or } K t_{r} \rightarrow t_{r} K t_{r}
\end{aligned}
$$

	$t_{l} K$	$t_{r} K$	$K t_{l}$	$K t_{r}$	$t_{l} k$	$t_{r} k$	$K T_{l}$	$K T_{r}$
T_{l}	$t_{l} K$				$t_{l} k$			
K	$K t_{l} K$	$K t_{r} K$	$K t_{l}$	$K t_{r}$	$K t_{l} k$	$K t_{r} k$	$K T_{l}$	$K T_{r}$
T_{r}		$t_{r} K$				$t_{r} k$		
t_{l}	$t_{l} K$		$t_{l} K t_{l}$	$t_{l} K t_{r}$	$t_{l} k$		$t_{l} K T_{l}$	$t_{l} K T_{r}$
k			$K t_{l}$	$K t_{r}$			$K T_{l}$	$K T_{r}$
t_{r}		$t_{r} K$	$t_{r} K t_{l}$	$t_{r} K t_{r}$		$t_{r} k$	$t_{r} K T_{l}$	$t_{r} K T_{r}$

	$t_{l} K t_{l}$	$t_{l} K T_{l}$	$t_{r} K t_{r}$	$t_{r} K T_{r}$	$K t_{l} K$	$K t_{l} k$	$K t_{r} K$	$K t_{r} k$
T_{l}	$t_{l} K t_{l}$	$t_{l} K T_{l}$						
K	$K t_{l}$	$K T_{l}$	$K t_{r}$	$K T_{r}$	$K t_{l} K$	$K t_{l} k$	$K t_{r} K$	$K t_{r} k$
T_{r}			$t_{r} K t_{r}$	$t_{r} K T_{r}$				
t_{l}	$t_{l} K t_{l}$	$t_{l} K T_{l}$			$t_{l} K$	$t_{l} k$	$t_{r} K$	$t_{l} K t_{r} k$
k					$K t_{l} K$	$K t_{l} k$	$K t_{r} K$	$K t_{r} k$
t_{r}			$t_{r} K t_{r}$	$t_{r} K T_{r}$	$t_{r} K t_{l} K$	$t_{r} K t_{l} k$	$t_{r} K$	$t_{r} k$

Table 6
and again none of these substitutions changes the final part of the corresponding entries. In the next step, for $l(u)=4$, we reach the words u in which occur pairs of letters of the form: either t_{l}, t_{r} or t_{l}, T_{r} or T_{l}, t_{r} with the final parts still unchanged.

From now on, there is no change in the final part since the last pair of t_{l}, t_{r} or t_{l}, T_{r} or T_{l}, t_{r} blocks the possible reductions if we affix an element of Γ to the front of the word u.

It remains to consider the case $v \in \Pi$. Now v contains a pair of letters of the form: t_{l}, t_{r} or t_{l}, T_{r} or T_{l}, t_{r}. When forming the product $u v$, any reduction that may occur must precede $f(v)$ since the occurrence of first t_{l} or t_{r} preceding $f(v)$ represents the last occasion for a possible reduction. Hence the final part of v remains unchanged.

The final lemma deals with the case $u v \in \Delta$.
Lemma 4.8. Let $u=u_{1} u_{2} \ldots u_{m}, v=v_{1} v_{2} \ldots v_{n} \in \Psi, u v \in \Delta$. Then

$$
u v= \begin{cases}u_{m} v_{1} v_{2} v_{1} v_{n} & \text { if } v_{1} v_{2} \in\left\{K t_{l}, K t_{r}\right\} \\ u_{m} v_{1} v_{2} v_{n} & \text { if } v_{1} v_{2} \in\left\{t_{l} K, t_{r} K\right\} \\ u_{m} v & \text { if } v \in \Gamma \cup J\end{cases}
$$

Proof. In view of Lemma 3.1, we deduce that $u v=u_{m} v$. It suffices to consider the case $v_{1} v_{2} \in I$. To this end, we consider several cases.

Case: $v_{1} v_{2}=K t_{l}$. Then $u_{m} K \in \Delta$ and by Table 1, we get that $u_{m} \in\left\{T_{l}, T_{r}\right\}$, say $u_{m}=T_{p}$. Hence

$$
\begin{equation*}
u_{m} v_{1} v_{2} v_{1}=T_{p} K t_{l} K=\omega t_{l} K=(\mathcal{R} \wedge \sigma) K=\sigma \tag{4}
\end{equation*}
$$

By Lemma 3.3, we have

$$
u_{m} v=\left(\left(u_{m} v_{1}\right) \circ v_{2}\right) v_{n}=\left(\left(T_{p} K\right) \circ t_{l}\right) v_{n}=\left(\omega \circ t_{l}\right) v_{n}=\sigma v_{n}
$$

which together with (4) yields that $u v=u_{m} v=v_{1} v_{2} v_{1} v_{n}$.
The case $v_{1} v_{2}=K t_{r}$ is dual. This proves the first formula.
Case: $v_{1} v_{2}=t_{l} K$. By Table 1, $u_{m} t_{l} \in \Delta$ gives

$$
u_{m} v_{1} v_{2}=\left\{\begin{array}{ll}
(\mathcal{R} \wedge \sigma) K & \text { if } u_{m}=T_{r} \tag{5}\\
\epsilon K & \text { if } u_{m} \in\left\{k, t_{r}\right\}
\end{array}=\left\{\begin{array}{ll}
\sigma & \text { if } u_{m}=T_{r} \\
\tau & \text { if } u_{m} \in\left\{k, t_{r}\right\}
\end{array} .\right.\right.
$$

On the other hand, by Lemma 3.3, we get

$$
\begin{aligned}
u_{m} v=\left(\left(u_{m} v_{1}\right) \circ v_{2}\right) v_{n} & = \begin{cases}((\mathcal{R} \wedge \sigma) \circ K) v_{n} & \text { if } u_{m}=T_{r} \\
(\epsilon \circ K) v_{n} & \text { if } u_{m} \in\left\{k, t_{r}\right\}\end{cases} \\
& = \begin{cases}\sigma v_{n} & \text { if } u_{m}=T_{r} \\
\tau v_{n} & \text { if } u_{m} \in\left\{k, t_{r}\right\}\end{cases}
\end{aligned}
$$

which together with (5) yields that $u v=u_{m} v_{1}=u_{m} v_{1} v_{2} v_{n}$.
The case $v_{1} v_{2}=t_{r} K$ is dual. This proves the second formula.
Proof of Theorem 4.1. By Lemma 4.2, φ is a bijection of Ω onto M. For the homomorphism property, we consider several cases.

Let $u=u_{1} u_{2} \ldots u_{m}, v=v_{1} v_{2} \ldots v_{n} \in \Psi$.
Case: $u v \notin \Delta$. By definition of φ we have

$$
\begin{equation*}
(u v) \varphi=(i(u v), l(u v), f(u v)) \tag{6}
\end{equation*}
$$

and by the definition of the product in M,

$$
\begin{equation*}
(u \varphi)(v \varphi)=(a, m+b+n, c) \tag{7}
\end{equation*}
$$

as in (3) and the notation that follows it.
If $m, n \leq 3$, then $a=i\left(\hat{u}_{m} \hat{v}_{n}\right)=i(u v)$ trivially. If $m \leq 3$ and $n>3$, then by Lemma 4.3, we have $a=i\left(\hat{u}_{m} v_{1} v_{2}\right)=i\left(u v_{1} v_{2}\right)=i(u v)$. If $m>3$, then Lemma 4.4 implies that $a=u_{1} u_{2}=i(u)=i(u v)$.

If $m, n \leq 3$, then $b=\left[\hat{u}_{m} \hat{v}_{n}\right]=[u v]$. If $m \leq 3$ and $n>3$, then by Lemma 4.5, we get

$$
b=\left[\hat{u}_{m} v_{1} v_{2} \bar{v}_{1}\right]=\left[u v_{1} v_{2} \bar{v}_{1}\right]=[u v] .
$$

If $m>3$ and $n \leq 3$, then again by Lemma 4.5, we obtain

$$
b=\left[\bar{u}_{m} u_{m-1} u_{m} \hat{v}_{n}\right]=\left[\bar{u}_{m} u_{m-1} u_{m} v\right]=[u v] .
$$

If $m, n>3$, then the same Lemma 4.5 yields that

$$
b=\left[\bar{u}_{m} u_{m-1} u_{m} v_{1} v_{2}\right]=[u v] .
$$

It follows that

$$
m+b+n=l(u)+[u v]+l(v)=l(u v) .
$$

If $m=n=1$, then trivially $c=v_{1} v_{n}=f(u v)$. If $m>1$ and $n=1$, then $c=f(u v)$ in the next three cases for c by Lemma 4.6. If $n>1$, then Lemma 4.7 implies that $c=v_{n-1} v_{n}=f(u v)$.

Now comparing (6) and (7), we see that $(u v) \varphi=(u \varphi)(v \varphi)$ in this case.

Case: $u v \in \Delta$. The required formula $(u \varphi)(v \varphi)=(u v) \varphi$ follows directly from Lemma 4.8.

We now let $\theta \in \Delta$ and consider its product with u. By Lemma 3.1, we immediately obtain that $u \theta=\theta$ so that

$$
(u \varphi)(\theta \varphi)=(u \varphi) \theta=\theta=\theta \varphi=(u \theta) \varphi .
$$

Moreover, $\theta u=\theta \hat{u}_{m}$ and thus, for $m \leq 3$, we get

$$
(\theta \varphi)(u \varphi)=\theta(u \varphi)=\theta \hat{u}_{m}=\theta u=(u \theta) \varphi .
$$

If $m>3$, then by Lemma 3.3, we have $\theta u=\left(\theta \circ u_{1}\right) u_{m}$ whence

$$
(\theta \varphi)(u \varphi)=\theta(u \varphi)=\left(\theta \circ u_{1}\right) u_{m}=\theta u=(\theta u) \varphi .
$$

If $\theta, \delta \in \Delta$, then $\theta \delta=\delta$ whence $(\theta \varphi)(\delta \varphi)=\delta \varphi=(\theta \delta) \varphi$.
Therefore φ is a homomorphism and thus an isomorphism of Ω onto M.

We have seen in the formulas for $i(u v),[u v]$, and $f(u v)$ that these can be obtained by taking the function of the product of a few u_{i} and v_{i}. One might ask if one could do the same task with a fewer number of u_{i} or v_{i}. The following examples show that, except in two trivial cases, this cannot be done.

For the function i we have the following examples:

$$
\begin{aligned}
t_{l}\left(t_{l} k\right) & =t_{l}\left(K t_{l} k\right)=\left(t_{l} K\right) k=\left(t_{l} K\right)\left(t_{l} k\right)=\left(t_{l} K\right)\left(K t_{l} k\right) \\
& =\left(t_{l} K t_{l}\right) k=\left(t_{l} K t_{l}\right)\left(t_{l} k\right)=t_{l} k,
\end{aligned}
$$

where, for example, $t_{l}\left(t_{l} k\right)=t_{l} k$ shows that $i\left(u_{1} v_{1} v_{2}\right)$ cannot be expressed as $i\left(u_{1} v_{1}\right)$, etc.

For the function [], we actually have $\left[u_{1} v_{1} v_{2}\right]=\left[u_{1} v_{1}\right]$ and $\left[u_{1} u_{2} v_{1}\right]=$ $\left[u_{2} v_{1}\right]$, the exceptions mentioned above. Otherwise, we have the following examples:

$$
\begin{aligned}
& K\left(t_{l} K T_{l}\right)=\left(K t_{l}\right)\left(K T_{l}\right)=K T_{l} \\
& \left(t_{l} K\right)\left(t_{l} K t_{r}\right)=t_{l} K t_{r} \text { we cannot omit } u_{1} \\
& \left(K t_{l}\right)\left(t_{l} K t_{l}\right)=K t_{l} \text { we cannot omit } v_{2} \text { or } v_{1} v_{2} \\
& \left(K t_{l} K\right) t_{l}=\left(K t_{l} K\right)\left(K t_{l}\right)=\left(K t_{l} K\right)\left(t_{l} K t_{l}\right)=K t_{l} .
\end{aligned}
$$

For $n>3$, we further have

$$
t_{l}\left(K t_{l} K\right)=\left(t_{l} K\right)\left(K t_{l} K\right)=\left(t_{l} K t_{l}\right)\left(K t_{l} K\right)=t_{l} K
$$

The case $m>3$ is symmetric.
For the function f, it suffices to mention $\left(t_{l} K\right) k=t_{l} k$.

5. An embedding

We can use the triple representation of a part of Ψ to embed it into a Rees matrix semigroup as follows. As we shall see, it is the part Π
of Ψ, with a zero adjoined, that is suitable for this embedding. This depends on the products of the relevant triples since they have to conform to the Rees multiplication. The essential ingredients for this are already in Theorem 4.1. We now provide the necessary details.

Our index sets will be I and $I \cup J$ with ordering of their elements as follows:

$$
t_{l} K, t_{r} K, K t_{l}, K t_{r}, t_{l} k, t_{r} k, K T_{l}, K T_{r} .
$$

We shall see that the following sandwich matrix faithfully reflects the loss of length when forming the corresponding products. Our group will be the additive group of integers \mathbb{Z} with a zero z adjoined. Let

$$
P=\left[\begin{array}{cccc}
-2 & 0 & -3 & -1 \\
0 & -2 & -1 & -3 \\
-1 & z & -2 & 0 \\
z & -1 & 0 & -2 \\
z & z & -3 & -1 \\
z & z & -1 & -1 \\
-1 & z & z & z \\
z & -1 & z & z
\end{array}\right] .
$$

Recall from Lemma 3.4 that both Δ and $\Pi \cup \Delta$ are ideals of Ω.
Theorem 5.1. Let $\Lambda=(\Pi \cup \Delta) / \Delta$. Then the mapping

$$
\varphi_{0}: w \longmapsto \begin{cases}(i(w), l(w), f(w)) & \text { if } w \in \Pi \\ 0 & \text { otherwise }\end{cases}
$$

is an embedding of Λ into $S=\mathcal{M}^{0}(I, \mathbb{Z}, I \cup J ; P)$.
Proof. Let

$$
\Psi_{0}=\left\{t_{l} K t_{r}, t_{r} K t_{l}, t_{l} K T_{r}, t_{r} K T_{l}\right\}
$$

and recall from Section 2 that

$$
\Pi=\Psi_{0} \cup\{w \in \Psi \mid l(w)>3\} .
$$

Hence letting

$$
M_{0}=\left\{\left(t_{l} K, 3, K t_{r}\right),\left(t_{r} K, 3, K t_{l}\right),\left(t_{l} K, 3, K T_{r}\right),\left(t_{r} K, 3, K T_{l}\right)\right\}
$$

	$t_{l} K t_{r}$	$t_{r} K t_{l}$	$K t_{l} K$	$K t_{r} K$
$t_{l} K$	$t_{l} K t_{r}$	$t_{l} K t_{r} K t_{l}$	$t_{l} K$	$t_{l} K t_{r} K$
$t_{r} K$	$t_{r} K t_{l} K t_{r}$	$t_{r} K t_{l}$	$t_{r} K t_{l} K$	$t_{r} K$
$K t_{l}$	$K t_{l} K t_{r}$	$\mathcal{R} \wedge \tau$	$K t_{l} K$	$K t_{l} K t_{r} K$
$K t_{r}$	ϵ	$K t_{r} K t_{l}$	$K t_{r} K t_{l} K$	$K t_{r} K$
$t_{l} k$	ϵ	$\mathcal{R} \wedge \tau$	$t_{l} K$	$t_{l} K t_{r} K$
$t_{r} k$	ϵ	$\mathcal{R} \wedge \tau$	$t_{r} K t_{l} K$	$t_{r} K t_{r} K$
$K T_{l}$	$K t_{l} K t_{r}$	$\mathcal{R} \wedge \sigma$	σ	σ
$K T_{r}$	$\mathcal{L} \wedge \sigma$	$K t_{r} K t_{l}$	σ	σ

Table 7
by the proof of Lemma 4.2, we obtain

$$
\Pi \varphi=M_{0} \cup\left(\bigcup_{n=3}^{\infty} M_{n}\right)
$$

Since φ_{0} and φ in Theorem 4.1 agree on Π, in order to prove the theorem, it suffices to show that the products in $\left(M_{0} \cup\left(\bigcup_{n=3}^{\infty} M_{n}\right) \cup \Delta\right) / \Delta$ and in S coincide.

We first treat the part $N=\bigcup_{n=3}^{\infty} M_{n}$. In the notation of the preceding section, for $U_{m}, V_{n} \in N$ and $u_{m} v_{1} \notin \Delta$, we have

$$
U_{m} V_{n}=\left(u_{1} u_{2}, m+\left[u_{m-1} u_{m} v_{1} v_{2} \bar{v}_{1}\right]+n, v_{n-1} v_{n}\right)
$$

So we must show that

$$
p_{u_{m-1} u_{m}, v_{1} v_{2}}=\left[u_{m-1} u_{m} v_{1} v_{2} \bar{v}_{1}\right]
$$

which we present in the form of Table 7 . For example, in it, $\left(t_{l} K\right)\left(t_{l} K t_{r}\right)=$ $t_{l} K t_{r}$ in the $(1,1)$-position, so the loss in length is 2 and thus in the same position in the matrix P we must have -2 . The remaining entries are checked just as easily. Therefore the two products agree on N.

It remains to check the products $M_{0} M_{0}, N_{0} N$ and $N M_{0}$. With the same notation as above, in view of Theorem 4.1, for $U_{m}, V_{n} \in M_{0} \cup N$ and $u_{m} v_{1} \notin \Delta$, we have

$$
U_{m} V_{n}=\left(a, m+b+n, v_{n-1} v_{n}\right)
$$

where

$$
\begin{aligned}
& a= \begin{cases}i\left(u_{1} u_{2} u_{3} v_{1} v_{2} v_{3}\right) & \text { if } m=n=3 \\
i\left(u_{1} u_{2} u_{3} v_{1} v_{2}\right) & \text { if } m=3, n>3, \\
u_{1} u_{2} & \text { if } m>3, n=3\end{cases} \\
& b= \begin{cases}{\left[u_{1} u_{2} u_{3} v_{1} v_{2} v_{3}\right]} & \text { if } m=n=3 \\
{\left[\hat{u}_{1} u_{2} u_{3} v_{1} v_{2} \bar{v}_{1}\right]} & \text { if } m=3, n>3 . \\
{\left[\bar{u}_{m} u_{m-1} u_{m} v_{1} v_{2} v_{3}\right]} & \text { if } m>3, n=3\end{cases}
\end{aligned}
$$

The product in S of the elements U_{m} and V_{n} has the form

$$
\left(u_{1} u_{2}, m+p_{u_{m-1} u_{m}, v_{1} v_{2}}+n, v_{n-1} v_{n}\right)
$$

where
$p_{u_{m-1} u_{m}, v_{1} v_{2}}=\left[u_{m-1} u_{m} v_{1} v_{2} \bar{v}_{1}\right]= \begin{cases}{\left[u_{2} u_{3} v_{1} v_{2} v_{3}\right]} & \text { if } m=n=3 \\ {\left[u_{2} u_{3} v_{1} v_{2} \bar{v}_{1}\right]} & \text { if } m=3, n>3 \\ {\left[u_{m-1} u_{m} v_{1} v_{2} \bar{v}_{1}\right]} & \text { if } m>3, n=3\end{cases}$
as we have seen above.
That $a=u_{1} u_{2}$ in all cases follows from the form of the elements u of Ψ_{0}. Indeed, each contains a pair of letters of the form t_{l}, t_{r} or t_{l}, T_{r} or T_{l}, t_{r}. When multiplying $u v$ the reductions can not influence the first two letters of u because of the occurrence of either t_{p} or T_{p} as the last letter of u and t_{q} with $p \neq q$ as the first letter of u.

The same type of argument is valid for b. Indeed, if $m=3$, then for the reasons just expounded above, we get $b=\left[u_{2} u_{3} v_{1} v_{2} v_{3}\right]$ if $n=3$ and $b=\left[u_{2} u_{3} v_{1} v_{2} \bar{v}_{1}\right]$ if $n>3$. Assume that $m>3$ and $n=3$. Then $v_{1} v_{2} v_{3}=v_{1} v_{2} \bar{v}_{1} v_{3}$ so that

$$
b=\left[\bar{u}_{m} u_{m-1} u_{m} v_{1} v_{2} \bar{v}_{1} v_{3}\right]=\left[\bar{u}_{m} u_{m-1} u_{m} v_{1} v_{2} \bar{v}_{1}\right] .
$$

Here $v_{1} v_{2} \in\left\{t_{l} K, t_{r} K\right\}$ so that the possible reductions in the product $\bar{u}_{m} u_{m-1} u_{m} v_{1} v_{2} \bar{v}_{1}$ are independent of \bar{u}_{m} and thus $b=\left[u_{m-1} u_{m} v_{1} v_{2} \bar{v}_{1}\right]$, as required.

We see from the matrix P that $p_{u_{1} u_{2}, v_{1} v_{2}}=z$ if and only if $u_{2} v_{1} \in \Delta$. This completes the proof that the product in $M_{0} \cup N$ coincides with that in S.

6. General Properties

We consider first the regularity and idempotency of elements of Ω. This is followed by a complete description of the \mathcal{D}-structure of Ω. The quotient $\Omega /(\Pi \cup \Delta)$ is finite and regular so completely semisimple. Beside the \mathcal{D}-classes contained in Γ, all three of which are 2 -element right zero semigroups, there are two nonzero classes in this quotient for which we construct the Rees matrix representation.

Proposition 6.1.

(i) Δ coincides with right zeros of Ω.
(ii) $\Theta \backslash J$ consists of idempotents.
(iii) J coincides with regular nonidempotent elements of Ω.
(iv) Π coincides with nonregular elements of Ω.
(v) If $u \in \Pi$, then either $u^{2} \in \Delta$ or u is of infinite order.
(vi) If $u \in J$, then $u^{2} \in \Delta$.

Proof. (i) By Lemma 3.1, every element of Δ is a right zero of Ω. Since Δ is a right zero semigroup and an ideal of Ω, it must be the kernel of Ω. But any right zero lies in the kernel and is thus in Δ.
(ii) This may be checked by direct multiplication.
(iii) For $p \in\{l, r\}$, we have

$$
\left(K T_{p}\right) t_{p}\left(K T_{p}\right)=K T_{p}, \quad\left(t_{p} k\right) K\left(t_{p} k\right)=t_{p}
$$

and thus all elements of J are regular. Since $\left(K T_{p}\right)^{2}=K\left(T_{p} K\right) T_{p}=K \omega T_{p}$ and $\left(t_{p} k\right)^{2}=t_{p}\left(k t_{p}\right) k=t_{p} \epsilon k$, none of them is idempotent. That there are no other regular nonidempotent elements will follow from parts (i), (ii) and the remaining part of the proof of part (iv).
(iv) It remains to show that all elements of Π are nonregular. For this let $u \in \Pi, v \in \Psi$, consider the product $u v u$ and assume that $u v u \notin \Delta$. Since u contains at least one pair of letters t_{l}, t_{r} or t_{l}, T_{r} or T_{l}, t_{r}, in any reduction arising from forming the product $u v u$, some of these letters create barriers so that $u v u$ can never reduce to u. Therefore u is not regular.
(v) Let $u \in \Pi$ be such that $u^{2} \notin \Delta$. Since then $t(u) h(u) \notin \Delta$, we get from Table 1 that

$$
t(u) h(u) \in\left\{K K, t_{l} K, t_{r} K, T_{l} t_{l}, K t_{l}, t_{l} t_{l}, K t_{r}, T_{r} t_{r}, t_{r} t_{r}\right\}
$$

which evidently implies that u, u^{2}, u^{3}, \ldots are all distinct.
(vi) This can be checked directly.

For the description of the \mathcal{D}-structure of Ω, we shall need the following notation. Let

$$
Q_{l}=t_{l} K t_{r} K, \quad Q_{r}=t_{r} K t_{l} K
$$

and let Q_{p}^{0} stand for the empty word, $p \in\{l, r\}$. For $n=1,2, \ldots$ and $P \in\{L, R\},\{p, q\}=\{l, r\}$, we denote by P_{n} the array

$$
\begin{array}{cccc}
Q_{p}^{n} & Q_{p}^{n-1} t_{p} K t_{q} k & Q_{p}^{n-1} t_{p} K t_{q} & Q_{p}^{n-1} t_{p} K T_{q} \\
K Q_{p}^{n} & K Q_{p}^{n-1} t_{p} K t_{q} k & K Q_{p}^{n-1} t_{p} K t_{q} & K Q_{p}^{n-1} t_{p} K T_{q}
\end{array}
$$

and by P_{n}^{\prime} the array

$$
\begin{array}{cccc}
Q_{p}^{n} t_{p} K & Q_{p}^{n} t_{p} k & Q_{p}^{n} t_{p} & Q_{p}^{n} T_{p} \\
K Q_{p}^{n} t_{p} K & K Q_{p}^{n} t_{p} k & K Q_{p}^{n} t_{p} & K Q_{p}^{n} T_{p} .
\end{array}
$$

Theorem 6.2. Diagram 2 represents the \mathcal{D}-structure of Ω.
Proof. Simple verification shows that the elements in the rows of the egg-box pictures in the diagram and in the arrays P_{n} and P_{n}^{\prime} are \mathcal{R}-related and the elements in the columns are \mathcal{L}-related.

That the vertical, lower-left to upper-right and lower-right to upperleft lines indicate the inclusion of \mathcal{J}-clases is seen by observing that some element of the lower array contains some element of the upper array as a (possibly interior) factor. For note that $t_{r} K Q_{l}=Q_{r} t_{r} K$.

Again comparing two arrays, say A and B, such that A is immediately above B, it is easy to see that no element of A can be a factor of any element of B even if the representation of elements of B is expanded using the relations in Σ. This implies that the ideal generated by B is strictly contained in the ideal generated by A. Assume next that A and B are not comparable in the order indicated in the diagram. If they are in the first two rows of the diagram, it is clear that no element of A can be \mathcal{J} related to an element of B. Assume that either $\{A, B\}=\left\{L_{n}, R_{n}\right\}$ or

Diagram 2
$\{A, B\}=\left\{L_{n}^{\prime}, R_{n}^{\prime}\right\}$ for some n. In the first case, it is easy to see that $Q_{p}^{n} \notin J\left(Q_{q}^{n}\right)$ for $\{p, q\}=\{l, r\}$ so the ideals generated by A and B are incomparable. The second case is treated similarly.

Therefore the arrays in the diagram represent \mathcal{J}-classes of Ω so by the first part of the proof also its \mathcal{D}-classes.

From Lemma 3.4, we know that $\Omega /(\Pi \cup \Delta)$ is a finite regular semigroup with five nonzero \mathcal{D}-classes, namely

$$
\mathcal{T}_{l}, \mathcal{K}, \mathcal{T}_{r}, \mathcal{M}_{l}, \mathcal{M}_{r}
$$

where for $p \in\{l, r\}$,

$$
\mathcal{M}_{p}=\left\{t_{p} K, t_{p} k, t_{p} K t_{p}, t_{p} K T_{p}, K t_{p} K, K t_{p} k, K t_{p}, K T_{p}\right\} .
$$

The first three of these \mathcal{D}-classes are right zero semigroups of order two. The last two \mathcal{D}-classes, together with a zero and the undeclared products
equal to that zero, must be completely 0 -simple. We now find a Rees matrix representation for them.

Lemma 6.3. Let $p \in\{l, r\}, \Theta_{p}=\left(\mathcal{M}_{p} \cup \Pi \cup \Delta\right) /(\Pi \cup \Delta)$ and

$$
M_{p}=\mathcal{M}^{0}\left(\left\{K, t_{p}\right\},\{e\},\left\{K, k, T_{p}, t_{p}\right\} ; Q\right),
$$

where

$$
Q=\left[\begin{array}{ll}
e & e \\
e & 0 \\
0 & e \\
e & e
\end{array}\right]
$$

Then the mapping

$$
\chi:\left\{\begin{array}{l}
w \mapsto(h(w), e, t(w)) \quad\left(w \in \mathcal{M}_{p}\right) \\
0 \mapsto 0
\end{array}\right.
$$

is an isomorphism of Θ_{p} onto M_{p}.
Proof. Direct verification shows that

$$
\begin{equation*}
q_{x, y}=e \Longleftrightarrow x y \notin \Delta \Longleftrightarrow x y \notin \Pi \cup \Delta . \tag{8}
\end{equation*}
$$

For any $u, v \in \mathcal{M}_{p}$ we get

$$
\begin{aligned}
(u \chi)(v \chi) & =(h(u), e, t(u))(h(v), e, t(v)) \\
& = \begin{cases}(h(u), e, t(v)) & \text { if } q_{t(u), h(v)}=e \\
0 & \text { otherwise },\end{cases} \\
(u v) \chi & = \begin{cases}(h(u v), e, t(u v)) & \text { if } u v \notin \Delta \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

By Lemma 3.6 and (8), we obtain

$$
u v \notin \Delta \Longleftrightarrow t(u) h(v) \notin \Delta \Longleftrightarrow q_{t(u), h(v)}=e
$$

and if $u v \notin \Delta$, then $h(u)=h(u v), t(v)=t(u v)$. Therefore χ is a homomorphism. Clearly χ is injective and since both Θ_{p} and M_{p} have nine elements, it is also surjective.

7. Rectangular groups

By definition, they are semigroups which are isomorphic to the direct product of a rectangular band and a group. Equivalently, they are completely simple semigroups in which idempotents form a subsemigroup. For $S=\mathcal{M}(I, G, \Lambda ; P)$, with P normalized, S is a rectangular group if and only if all entries of P are equal to e, the identity of G. For proofs of these staments and an extensive discussion, we refer to ([3], Section IV.3). We add that S is a rectangular group if and only if $\sigma=\tau$.

Congruences on a Rees matrix semigroup are best represented in terms of admissible triples. This development is explained in ([5], Section 2). For a complete treatment of this subject, we refer to ([1], Section III.4). When $S=\mathcal{M}(I, G, \Lambda ; P)$ with all entries of P equal to e, the identity of G, the admissible triples for S are all $\theta=(r, N, \pi)$ where r and π are partitions of I and Λ, respectively, and N is a normal subgroup of G. In this simple situation, we immediately obtain

$$
\begin{array}{rlrl}
\theta T_{l} & =(\omega, G, \pi), & \theta K=(\omega, N, \omega), & \\
\theta T_{r}=(r, G, \omega) \\
\theta t_{l} & =(\epsilon, e, \pi), & \theta k=(\epsilon, N, \epsilon), & \\
\theta t_{r}=(r, e, \epsilon)
\end{array}
$$

For rectangular groups we have the following result.
Theorem 7.1. The following conditions on a completely simple semigroup S are equivalent.
(i) S is a rectangular group.
(ii) For S we have $t_{l} t_{r}=t_{r} k$.
(iii) Every element of $\Omega \backslash \Gamma$ is μ-related to some element of Δ.
(iv) $\Omega=\Gamma \cup \Delta$.
(v) Ω is a band.

Proof. (i) \Longrightarrow (ii). In view of the above comments, for an admissible triple $\theta=(r, N, \pi)$, we have

$$
\theta t_{r} K=(r, e, \epsilon) k=(\epsilon, e, \epsilon)
$$

and we always have $t_{l} t_{r}=\epsilon$ so that $t_{l} t_{r}=t_{r} k$.
(ii) \Longrightarrow (iii). Using the relations in Σ and the hypothesis we get

$$
\begin{aligned}
\sigma & =T_{l} t_{r} K=T_{l} t_{r}(k K)=T_{l}\left(t_{r} k\right) K=T_{l}\left(t_{l} t_{r}\right) K \\
& =\left(T_{l} t_{l}\right) t_{r} K=t_{l} t_{r} K=\tau .
\end{aligned}
$$

This means that S is E-unitary and thus orthodox so a rectangular group. As above, we can get that also $t_{l} t_{r}=t_{l} K$ holds for S, or by duality. Hence $t_{l} k \mu t_{r} k \mu \epsilon$ which in view of Theorem 6.2 (see Diagram 2) implies the assertion.
(iii) \Longrightarrow (iv). This is trivial.
(iv) $\Longrightarrow(\mathrm{v})$. This is obvious since all elements of Γ and Δ are idempotent.
(v) \Longrightarrow (i). In particular $K T_{l}$ is idempotent which implies that $K T_{l}=$ $K\left(T_{l} K\right) T_{l} \in \Delta$. We may let $S=\mathcal{M}(I, G, \Lambda ; P)$ with P normalized. By ([5], Lemma 2.3), for an admissible triple $\theta=(r, N, \pi)$, we get

$$
\theta K T_{l}=(N \alpha, N, N \gamma) T_{l}=(\omega, G, N \gamma)
$$

and thus $N \gamma$ must be a constant. But then also $N \gamma \delta$ is a constant. By ([5], Lemma 2.4), we obtain $e \gamma \delta=e$ and $G \gamma \delta=\omega \delta=\bar{\omega}$. Therefore $\bar{\omega}=\{e\}$ which evidently implies that all entries of G are equal to e and S is a rectangular group.

It follows from Theorem 7.1 that for a rectangular group S, Ω is a band and hence a right regular band since all its \mathcal{D}-classes are right zero semigroups. From Table 1, we see that, for example, in the natural partial ordering, T_{l} is greater than $\omega, \mathcal{L} \vee \tau$ and \mathcal{L} so that Ω is not a normal band. Its multiplication table is given by Table 1 together with the observation that the elements of Δ are the right zeros of Ω. The partially ordered set Ω for a rectangular group is depicted in Diagram 3 where each vertex is provided with the corresponding admissible triple.

According to Theorem 7.1, $\Sigma \cup\left\{t_{l} t_{r}=t_{r} k\right\}$ provides a system of relations for rectangular groups. We now give a somewhat simpler set of relations for them. Let $\Sigma_{r g}$ denote the set

$$
\begin{aligned}
& \Sigma(i), \Sigma(i i), \Sigma(v) \text { from Section } 2, \\
& (v i) t_{l} t_{r}=t_{l} k=t_{r} k, \\
& \text { (vii) } t_{l} K t_{l}=K t_{l}, t_{r} K t_{r}=K t_{r} .
\end{aligned}
$$

Lemma 7.2. The relations $\Sigma \cup\left\{t_{l} t_{r}=t_{l} k=t_{r} k\right\}$ and $\Sigma_{r g}$ induce the same congruence on Γ^{+}.

Proof. Assuming the former, we obtain

$$
\begin{aligned}
t_{l} K t_{l} & =t_{l}(k K) t_{l}=\left(t_{l} k\right) K t_{l}=\left(k t_{l}\right) K t_{l}=(K k) t_{l} K t_{l} \\
& =K\left(k t_{l}\right) K t_{l}=K\left(t_{l} k\right) K t_{l}=K t_{l}(k K) t_{l}=K t_{l} K t_{l}=K t_{l}
\end{aligned}
$$

and dually for $t_{r} K t_{r}=K t_{r}$.
Conversely, assume $\Sigma_{r g}$. Then

$$
\begin{aligned}
T_{l} t_{r} k & =T_{l}\left(t_{l} k\right)=\left(T_{l} t_{l}\right) k=t_{l} k=t_{r} k=\left(T_{r} t_{r}\right) k=T_{r}\left(t_{r} k\right) \\
& =T_{r}\left(t_{l} k\right)=T_{r} t_{l} k, \\
\left(K t_{l}\right)^{2} & =K t_{l} K t_{l}=K K t_{l}=K t_{l},
\end{aligned}
$$

	T_{l}	K	T_{r}	t_{l}	k	t_{r}	$t_{l} K$	$t_{l} k$	$t_{l} K t_{l}$	$t_{l} K T_{l}$	$K t_{l}$	$K t_{l} K$	$K t_{l} k$	$K T_{l}$	$t_{l} K t_{r}$	Q_{l}
ω	ω	ω	ω	\mathcal{R}	\mathcal{H}	\mathcal{L}	ω	\mathcal{H}	\mathcal{R}	ω	\mathcal{R}	ω	\mathcal{H}	ω	\mathcal{L}	ω
\mathcal{L}	\mathcal{L}	ω	ω	ϵ	\mathcal{H}	\mathcal{L}	ϵ	ϵ	ϵ	\mathcal{L}	\mathcal{R}	ω	\mathcal{H}	ω	ϵ	ϵ
\mathcal{R}	ω	ω	\mathcal{R}	\mathcal{R}	\mathcal{H}	ϵ	ω	\mathcal{H}	\mathcal{R}	ω	\mathcal{R}	ω	\mathcal{H}	ω	\mathcal{L}	ω
\mathcal{H}	\mathcal{L}	ω	\mathcal{R}	ϵ	\mathcal{H}	ϵ	ϵ	ϵ	ϵ	\mathcal{L}	\mathcal{R}	ω	\mathcal{H}	ω	ϵ	ϵ
ϵ	\mathcal{L}	ϵ	\mathcal{R}	ϵ	ϵ	ϵ	ϵ	ϵ	ϵ	\mathcal{L}	ϵ	ϵ	ϵ	\mathcal{L}	ϵ	ϵ

Table 8

$$
\begin{aligned}
\left(t_{l} K\right)^{2} & =t_{l} K t_{l} K=t_{l} K t_{l}(k K)=t_{l} K\left(t_{l} k\right) K=t_{l} K\left(k t_{l}\right) K \\
& =t_{l}(K k) t_{l} K=t_{l} k t_{l} K=t_{l} k K=t_{l} K
\end{aligned}
$$

and dually for t_{r}.
We illustrate the situation for non rectangular groups on the smallest possible example.

Example 7.3. Let $S=\mathcal{M}^{0}\left(\{1,2\}, \mathbb{Z}_{2},\{1,2\} ; P\right)$ where

$$
P=\left[\begin{array}{ll}
\overline{0} & \overline{0} \\
\overline{0} & \overline{1}
\end{array}\right] .
$$

It follows easily that the congruences on S are:

$$
\begin{gathered}
\omega \sim\left(\omega, \mathbb{Z}_{2}, \omega\right), \quad \mathcal{L} \sim\left(\omega, \mathbb{Z}_{2}, \epsilon\right), \quad \mathcal{R} \sim\left(\epsilon, \mathbb{Z}_{2}, \omega\right) \\
\mathcal{H} \sim\left(\epsilon, \mathbb{Z}_{2}, \epsilon\right), \quad \epsilon \sim(\epsilon,\{\overline{0}\}, \epsilon)
\end{gathered}
$$

with $\sigma=\omega$ and $\tau=\epsilon$. From Table 8, we see that $t_{l} K=Q_{l}$ and thus dually also $t_{r} K=Q_{r}$. It follows from Theorem 6.2 (see Diagram 2) that $\Omega=\Delta \cup \Theta$ where

$$
\Delta=\{\omega, \mathcal{L}, \mathcal{R}, \mathcal{H}, \omega\}
$$

and the \mathcal{D}-structure of Θ is as in the general case.

References

[1] J. M. Howie, An introduction to semigroup theory, Academic Press, London, 1976.
[2] F. Pastijn and M. Petrich, Congruences on regular semigroups, Trans. Amer. Math. Soc. 295 (1986), 607-633.
[3] M. Petrich, Introduction to semigroups, Merrill, Columbus, 1973.
[4] M. Petrich, Congruence networks for completely simple semigroups, J. Austral. Math. Soc. 56 (1994), 243-266.
[5] M. Petrich, Two-sided networks for completely simple semigroups, Comm. in Algebra 28 (2000), 3535-3553.
[6] M. Petrich and N. R. Reilly, Semigroups generated by certain operators on varieties of completely regular semigroups, Pacific. J. Math. 132 (1988), 151-175.

```
MARIO PETRICH
DEPARTAMENTO DE ALGEBRA
UNIVERSIDAD DE GRANADA
18071 GRANADA
SPAIN
```

(Received September 26, 2000; revised October 29, 2001; file arrived February 19, 2002)

