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The Chern–Connes character formula
for families of Dirac operators

By FATIMA M. AZMI (Riyadh)

Abstract. A bivariant Chern–Connes character is used, by incorporating the JLO
formula and Bismut’s superconnection formalism, to compute the local cyclic cycle
formula for families of Dirac operator D acting on a fibre bundle M over B. The
fundamental techniques used are, the rescaling of Bismut’s superconnection and the
canonical order calculus.

Introduction

Consider a family of Dirac operators D = {Dy | y ∈ B} parameterized
by a smooth compact manifold B, then index(D) is a well defined element
in K0(B). Atiyah–Singer index theorem for families of Dirac operator,
gives a cohomological formula for the Chern character of the index bun-
dle. Over the past few years many proofs have appeared concerning the
computation of the index theorem for families of Dirac operators. Some of
these have utilized the heat equation method, and each proof has its own
advantages.

Motivated by the problem of generalizing the heat equation proof of
the index theorem to prove a local index theorem for families, by find-
ing a suitable representative for the Chern character as a differential form,
Quillen [Q1] introduced the concept of superconnection. To avoid analyt-
ical technicalities, he treated the finite dimensional case only. Bismut [Bi]
extended Quillen’s formalism to infinite dimension. He introduced a Levi–
Civita superconnection A associated to families of Dirac operator D, and
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used it to give a heat kernel representation for the Chern character for
families.

Connes [Co1], [Co2] defined a new cohomology theory, cyclic coho-
mology, whose cycles play for a noncommutative algebra the role that
de Rham currents play for smooth manifolds. Cyclic homology was also
introduced by Tsygan [T] and Loday–Quillen [L–Q]. Karoubi [Ka]
constructed Chern character from Quillen’s algebraic K-theory to cyclic
homology. Moreover, he defined noncommutative de Rham homology as-
sociated to an algebra A and showed its relation to cyclic homology.
Connes [Co3] defined Chern character of θ-summable Fredholm module
(H, D) over a unital C∗-algebra A with values in the entire cyclic coho-
mology of A.

Over the past few years, explicit computation of the cyclic cocycle
associated to the Dirac operator have appeared, using different approaches.
Some have utilized asymptotic pseudodifferential operators and Getzler’s
rescaling technique [Bl–F], while others have used heat equation, graph
projection method together with some rescaling techniques (c.f. [Co–M],
[L2]).

The main result of this paper, is the computation of the local cyclic
cocycle formula associated to family of Dirac operators. The fundamental
techniques used are the rescaling of Bismut’s superconnection and the
canonical order calculus.

In the case of families of Dirac operator, we deal with a special class of
θ-summable modules. The Hilbert space H is replaced by a bimodule M
and the Dirac operator by Bismut’s superconnection. Thus, the natural
setting requires Kasparov’s bivariant theory and bivariant Chern Connes
character. There are several different approaches to bivariant character,
some are algebraic while others are topological and analytical. To motivate
our framework, Let us first recall some of these approaches.

Quillen [Q2] presented a new approach to the algebraic formalism
of cyclic cohomology. He defined a Hom complex from differential graded
algebra to another algebra which played the rule of cyclic cochains. Then
using the JLO formula he established a bivariant character. Kassel [K]
introduced a bivariant algebraic k-theory for unital algebras. The bivariant
group K(A,B) is defined as the Grothendieck group of an exact category
of suitable (A−B) bimodules. He established a bivariant Chern character
from the bivariant cyclic group K(A, B) with values in the bivariant cyclic
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theory. Nistor [N1] introduced a bivariant Chern–Connes character for
finitely summable Kasparov kk-bimodules and established the compati-
bility with the periodicity operator in cyclic (co)homology and with Kas-
parov’s product. Furthermore, in [N2], he made a connection between the
superconnection formalism of Quillen and cyclic cohomology. Moreover he
extended Quillen’s superconnection formalism to arbitrary operators and
established the coincidence of the Connes–Karoubi character of the graph
projection with the Chern character of superconnection whenever some
sort of pseudodifferential calculus exists.

Giving up the compatibility with the periodicity operator and Kas-
parov’s product, Wu [W] constructed a bivariant Chern–Connes character
for (a special class) of θ summable modules, by incorporating the JLO for-
mula and the superconnectiom formalism of Quillen. His construction is
influenced by the work of Connes (c.f. [Co2], [Co4], see also [Q2]). In
fact when (H, D) is the dual Dirac on a locally symmetric space, then the
Chern character is essentially the bivariant character of Connes (c.f. [Co4]
page 336–337).

Wu’s bivariant character takes values in the bivariant cyclic theory
described by Lott [L1], who constructed it as a combination of entire
cyclic (co)homology and non commutative de Rham homology of graded
differential algebra (Ω, d). Hence by adopting Wu’s method and employing
Bismut’s superconnection together with the canonical order calculus, we
express the local formula for families in terms of differential forms on the
base and the Chern roots of the fibration M/B.

In our forth coming paper [Az2], we construct an equivariant bivariant
Chern Connes character, in the presence of a compact lie group which acts
by automorphism on algebras. In the future, we hope to compute a local
equivariant formula for families of invariant Dirac operators.

Let us summarize the contents of this article:
Consider a fibre bundle π : M → B, where M and B are compact

connected smooth manifolds, and a smooth family of Dirac operators D =
{Dy}, one for each fibre My = π−1(y). π defines the fibration M/B of M

where M/B = {My 3 y ∈ B}.
Denote by E the spinor bundle over M . This bundle gives rise to an

infinite dimensional superbundle W over B with a C∞(B) valued inner
product. Let H = L2(Γ(B,W)) be Hilbert space, then (H, D) is a θ-
summable Fredholm module over the algebra C(M). Let M = ∧(B)⊗H,
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then M is a V −C∞(B) bimodule, where V = C∞(B)⊗C1(M). Bismut’s
superconnection A is an operator on M whose term of exterior degree zero
is D, i.e. A = D + ∇̃ + E, where ∇̃ is a connection on ∧(B) ⊗ Γ(B,W)
defined in a certain way and E ∈ ∧

(B) ⊗ End(W). Moreover A satisfies
the following:

A(ws) = (dBw)s + (−1)|w|wAs, where w ∈ ∧(B), s ∈ ∧(B)⊗ Γ(B,W).

The square of A is the curvature operator F . The bivariant Chern–Connes
character Chn(M,A) over V is defined by

Chn(M,A)
(
v0, v1, . . . , vn

)
(1)

=
∫

∆2k

Trs

(
v0e

−t1F [A, v1]e−(t2−t1)F . . . [A, vn]e−(1−tn)F
)
dt1 . . . dtn

where the supertrace Trs is the trivial extension of the operator supertrace
on H to a

∧
(B)-valued map. The total bivariant character

Ch(M,A) = {Ch0(M,A), Ch1(M,A), . . . , Chn(M,A), . . . }

sends the entire cyclic cycle of V to de Rham cocycle in ∧(B), i.e. the
bivariant character is a homomorphism from the entire cyclic homology
HE∗(V) of V to the de Rham cohomology H∗

dR(B) of B.
Consider the asymptotic expansion of the heat kernel. The key obser-

vation is the relation between the number of Clifford variables and powers
of t. In fact each Clifford variable corresponds to 1/2 power of t. This
relation plays an important role in our computation.

On one hand, the supertrace takes care of the singular part in the
asymptotic expansion of the heat kernels in (1), since it vanishes on ele-
ments in which the number of Clifford variables is less than the dimension
of the manifold. On the other hand, to keep track of powers of t in the
asymptotic expansion we use the canonical order calculus which is due to
Simon ([C–F–K–S], Chapter 12). This calculus provides information on
the integral kernel of an operator, in the sense of how fast it blows up or
decays as t tends to zero.

The use of canonical order calculus and its relation to the Clifford
variables is the main technique of this article. In [Az1] we have used
similar techniques to compute the equivariant cyclic cocycle associated
with the Dirac operator.
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The explicit expression of A involves vertical and horizontal Clifford
variables, which follows from the fact that TM is decomposed into ver-
tical and horizontal tangent spaces. The horizontal Clifford variables fα

are replaced by their dual dyα, the Grassmannian. Therefore, to take into
account these Clifford variables a rescaling operator ϕt is introduced which
multiplies each dyα by 1/

√
t. Replace A by the rescaled Bismut’s super-

connection At =
√

tϕt(A) in (1), then use the canonical order calculus
and its interplay with the Clifford variable. Thus the bivariant character
in (1) is simplified into a single heat operator composed with a collection
of commutators.

The localization property of the heat operator allows us to work lo-
cally. Therefore, employing the explicit formula for the rescaled curvature
A2

t (which is a generalization of the Lichnerowicz formula) and then apply-
ing our techniques, the heat kernel for A2

t is approximated by the rescaled
heat kernel for the harmonic oscillator type operator which in turn is given
by Mehler’s formula. Using this, the local cyclic cycle formula is expressed
in terms of the Chern roots of the fibration M/B and differential forms
on B.

The paper is organized as follows: Section 1 starts with prelimi-
nary and background material. In Section 2, following Wu’s method, we
construct the bivariant Chern–Connes character map associated with the
rescaled Bismut’s superconnection. In an attempt to make the paper self-
contained, we briefly review the canonical order calculus that was devel-
oped by B. Simon. Most of the computations are carried out in Section 3.
The main result is in Section 4, where we express the bivariant Chern
character in terms of the Chern roots of M/B and differential forms on
the base B.

1. Preliminary and background material

1.1. Fibration of manifolds and connections

Let B be an m dimensional connected compact smooth Riemannian
manifold and M is a 2n+m dimensional compact connected smooth mani-
fold. Let π : M → B be a fibration where the fibres {My = π−1(y) | y ∈ B}
are family of connected compact Riemannian manifolds of dimension 2n.
This family will be denoted by M/B and T (M/B) will denote the bundle
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of vertical tangent vectors, i.e. Tx(M/B) is the tangent space at x to the
fibre Mπ(x).

Taking the orthogonal bundle of T (M/B) in TM with respect to any
Riemannian metric, determines a smooth horizontal subbundle THM , i.e.
TM = THM ⊕ T (M/B). Vector fields X ∈ TB will be identified with
their horizontal lifts X ∈ THM , moreover TH

x M is isomorphic to Tπ(x)B

via π∗.
Let ∇B denote the Levi–Civita connection on TB. The metric of

TB lifts to a smooth inner product on THM . Assume that T (M/B)
is endowed with a smooth inner product, these inner products can be
extended to TM by assuming that THM and T (M/B) are orthogonal.
Now M is a Riemannian manifold. Let ∇L be the corresponding Levi–
Civita connection on M . This connection need not preserve the splitting of
TM into horizontal and vertical subspaces. Therefore we define a second
connection ∇ on TM . As in [Bi] there is a unique natural connection ∇
on TM satisfying the following:

1. Y ∈ TB, Z ∈ TB, ∇Y Z = ∇B
Y Z

2. Y ∈ T (M/B), Z ∈ TB, ∇Y Z = 0

3. Y ∈ M, Z ∈ T (M/B), ∇Y Z = ∇M/B
Y Z = PM/B(∇L

Y Z)
where PM/B is the projection operator from TM onto T (M/B). Clearly ∇
preserves the metric and the splitting TM = THM ⊕T (M/B). Moreover,
for y ∈ B the restriction of ∇ to T (My) coincides with the Levi–Civita
connection of the Riemannian submanifold My. The restriction of ∇ to
T (M/B) will be denoted by ∇M/B .

From now on we assume that the tangent bundle T (M/B) over M is
oriented and spin. Denote by E the superbundle of spinors associated with
the Clifford bundle Cl(T (M/B)). This is a Z2 graded Hermitian bundle
over M whose fibre Ex at a point x ∈ M is the space of vertical spinors.

The connection ∇ defines naturally a unitary connection on E which
is still denoted by ∇. Let RM/B be the curvature tensor of ∇ restricted
to T (M/B) which lifts naturally as the curvature tensor of E .

The spinor bundle E over M gives rise to an infinite dimensional su-
perbundle W over B, whose fibre at y ∈ B is the infinite dimensional
space of sections Wy = Γ(My, Ey), here Ey = E|My . We define Γ(B,W) as
Γ(M, E) (note that Γ(−,−) will always mean smooth sections).
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The Hermitian structure on E and the natural volume form on the
fibres {My | y ∈ B} gives rise to a C∞(B)-valued inner product on W,
which is defined by integration along the fibres;

〈s1, s2〉(y) =
∫

My

〈s1(x), s2(x)〉dx, s1, s2 ∈ Γ(B,W).

Thus, each fibreWy has a pre Hilbert space structure, letH=L2(Γ(B,W))
be the Hilbert space.

The smooth family D = {Dy | y ∈ B} of Dirac operators can be
considered as an odd endomorphism of the infinite dimensional bundle W,
where each Dy acts fibrewise on W± = Γ(My, E±). Moreover, each Dy is
a self adjoint elliptic operator, thus the index bundle of the family D is
well defined.

Atiyah and Singer in [At-S], showed that the difference bundle
KerD+,y −KerD−,y over B, is well defined in the sense of K-theory.

Bismut [Bi] constructed a superconnection A (which is defined inde-
pendent of the metric gB) acting on ∧(B)⊗ Γ(B,W), we will refer to this
superconnection as Bismut’s superconnection. Its curvature is an elliptic
second order differential operator F = A2. Denote by Fy the restriction
of F to My.

For each t > 0, the heat operator e−tFy

is given by a smooth kernel
e−tFy

(x, x′) which is C∞ in (t, x, x′, y), here x, x′ ∈ My (c.f. [Bi] Proposi-
tion 2.8). This kernel is a linear mapping from Ex′ into ∧y(B) ⊗̂ Ex which
is even. In particular, for x ∈ My, trse

−tFy

(x, x) is an even element in
∧y(B), here ∧(B) denotes the exterior algebra of T ∗B.

Theorem 1.1 ([Bi] Theorem 3.4). The C∞ form over B

(2) Trs(e−tFy

) =
∫

My

trs(e−tFy

(x, x))dx

is closed and is a representative in cohomology of ch(kerD+,y − kerD−,y)

As in [Q1], we change the normalization constant in the definition of
the Chern character. Namely, for a vector bundle V with connection µ

and curvature C, we set Ch(V ) = Tr exp(−C).
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2. The bivariant Chern–Connes character

Wu [W] constructed a bivariant Chern–Connes character by incor-
porating the JLO formula and the superconnection formalism of Quillen
with values in the bivariant cyclic theory of Lott. Following Wu’s method,
we define the bivariant Chern character associated with Bismut’s super-
connection.

Let C1(M) be the Banach algebra which is the completion of C∞(M)
with respect to the norm |f | := ‖f‖ + ‖[D, f ]‖, for f ∈ C∞(M). The
commutator [D, f ] extends to a bounded operator on H. The algebra
C1(M) acts on L(H) (bounded operators on H) by multiplication. Thus,
(H, D) defines a θ-summable Fredholm module on C(M). Denote by V
the projective tensor product of the Banach algebras C1(M) and C∞(B),
i.e. V = C∞(B) ⊗̂C1(M), with the projective tensor product norm.

Let M = ∧(B)⊗H be a V − C∞(B) bimodule, where V acts on the
left of M by letting C∞(B) act on ∧(B) by multiplication by left and
C1(M) acts on H while ∧(B) acts on M by multiplication from right.
And there is a continuous C∞(B) valued inner product on M.

Convention: By T , a bounded operator (or trace class operator) on
M, we mean that T ∈ ∧(B)⊗ L(H) or (T ∈ ∧(B)⊗ L1(H)).

Before defining the bivariant Chern–Connes character, we briefly re-
call the bivariant cyclic theory which is discussed in Lott (c.f. [L1] also
[Q2]).

2.1. Bivariant Cyclic homology

Let Cn(V) = V ⊗ V̄⊗n, where V̄ = V/C and ⊗ means the completed
projective tensor product. There is a certain norm defined on the space
⊕n≥0Cn(V). Denote by Cr

∗(V) the completion of ⊕n≥0Cn(V) with respect
to that norm, and CE∗(V) =

⋃
r>0 Cr

∗(V). Thus, CE∗(V) is a Z2 graded
Fréchet space with boundary operator b + B of degree −1, where b and
B are Connes cyclic boundary operator. The homology of the complex
(CE∗(V), b + B) is the entire cyclic homology of V, which we denote it
by HE∗(V) (c.f. [Co3], [G-S]). The (noncommutative) de Rham homology
HdR
∗ (C∞(B)) of the differential graded algebra (∧(B), dB) over the algebra

C∞(B) is in fact the de Rham cohomology H∗
dR(B, dB) of B (c.f. [Ka]).

Consider the Z2 graded Hom complex CE(V,∧(B))) of continuous
linear maps from CE∗(V) to ∧(B) with boundary operator ∂ defined by

(∂φ)(Z) = d(φ(Z)) + (−1)|φ|φ((b + B)(Z))
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One can easily show that ∂2 = 0 which follows from the properties of b

and B. The bivariant cyclic homology HE((V,∧(B)), ∂) is the homology
of the complex CE(V,∧(B)) and any class [τ ] ∈ HE((V,∧(B)), ∂) defines
a homomorphism τ : HE(V) → HdR

∗ (B).

2.2. The bivariant character

For bounded operators Ai on M, i = 1, . . . , 2k. Define

(3)

〈〈A0, A1, . . . , A2k〉〉

:=
∫

∆2k

Trs

(
A0e

−t1FA1e
−(t2−t1)F . . . A2ke−(1−t2k)F

)
dt1 . . . dt2k

where ∆2k is the standard 2k simplex. The above integral is conver-
gent in ∧(B) ⊗ L1(H), since it is composition of trace class operators
e−(ti+1−ti)F ∈ ∧(B)⊗L1(H) and bounded operators A′js ( c.f. [W]). Thus,
〈〈A0, A1, . . . , A2k〉〉 ∈ ∧(B).

Let |Ai| denote the degree of Ai. The next proposition is a general-
ization of Lemma 2.2 of [G-S].

Proposition 2.1. For Ai bounded operators on M, i = 1, . . . , 2k, and

εi = (|A0|+ · · ·+ |Ai−1|)(|Ai|+ · · ·+ |A2k|). Then we have

1. 〈〈A0, . . . , A2k〉〉 = (−1)ε〈〈Ai, . . . , A2k, A0, . . . , Ai−1〉〉
2. 〈〈A0, . . . , A2k〉〉 =

∑
i(−1)ε〈〈1, Ai, . . . , A2k, A0, . . . , Ai−1〉〉

3.
∑

i(−1)|A0|+···+|Ai−1|〈〈A0, . . . , [A, Ai], . . . , A2k〉〉 = 0

4. 〈〈A0, . . . , [F , Ai], . . . , A2k〉〉
= 〈〈A0, . . . , Ai−1Ai, . . . , A2k〉〉 − 〈〈A0, . . . , AiAi+1, . . . , A2k〉〉.

Proof. The proof of this proposition is the same as that of Lem-
ma 2.2 of [G-S] together with the fact TrS [A, e−F ] = 0 (see also [B-G-V]
Chapter 9). ¤

The Dirac operator D extends trivially to V. Thus, for h ⊗ f ∈ V,
then h⊗ f ∈ C∞(B)⊗L(H) and the commutator [D, h⊗ f ] = h⊗ [D, f ].
Bismut’s superconnection A acts on M. Hence, the graded commutator
[A, h⊗ f ] ∈ ∧(B)⊗ L(H). Furthermore,

(4) [A, h⊗ f ] = dB(h⊗ f) + h⊗ [D, f ]

which follows from the definition of A (see Section 3.1).
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Definition 2.2. The bivariant Chern–Connes character of the module
(M,A) over the algebra V is given by

Ch2k(M,A)
(
h0 ⊗ f0, . . . , h2k ⊗ f2k

)

:= 〈〈h0 ⊗ f0, [A, h1 ⊗ f1], . . . , [A, h2k ⊗ f2k]〉〉.

And the total bivariant character is

Ch(M,A) = {Ch0(M,A), Ch1(M,A), . . . , Ch2k(M,A), . . . }.

The bivariant character Ch(M,A) is a linear map Ch(M,A) :
⊕j≥0Cj(V) → ∧(B), which extends continuously to a map [W];

Ch(M,A) : CE(V) → ∧(B).

Hence, Ch(M,A) ∈ CE(V,∧(B)).

Theorem 2.3. The bivariant Chern–Connes character Ch∗(M,A) is

closed and hence defines a homology class in HEev(V,∧(B)), i.e. Ch∗(M,A)
is a homomorphism from the entire cyclic homology HE(V) to the de

Rham cohomology H∗
dR(B).

Proof. This follows from the above observations, Proposition 2.1,
and Theorem 1.1, see also [W]. ¤

2.3. Rescaling Bismut’s superconnection

As in [Bi-F] for t > 0, let ϕt be the rescaling operator on ∧(B),
which multiplies differential forms of degree p by t−p/2. More explicitly,
for y ∈ B consider a fixed submanifold My. Then for x, x′ ∈ My, ϕt is the
homomorphism

ϕt : ∧y(B) ⊗̂Hom(Ex′ , Ex) → ∧y(B) ⊗̂Hom(Ex′ , Ex)(5)

ϕt : dyαh 7→ 1√
t
dyαh, h ∈ Hom(Ex′ , Ex).(6)

Let At =
√

t ϕt(A) be the rescaled Bismut’s superconnection with
rescaled curvature Ft = A2

t = tϕt(F).
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In [Bi] Bismut proved that the cohomology class of Ch(At) =
Trs(e−F

y
t ) is closed and independent of t and showed that the limit

limt→0 Ch(At) exists. Furthermore

Trs(e−F
y
t ) =

∫

My

trs(e−F
y
t (x, x))dx = Trs e−tϕt(A2)(7)

= Trs(ϕte
−tA2

) = ϕt

∫

My

trs(e−tF (x, x))dx.(8)

This leads to the following proposition (c.f. [Z] also [B–G–V] Chap-
ter 10).

Proposition 2.4. For all t > 0,

Trs(e−F
y
t ) =

∫

My

ϕt trs

(
e−tFy

(x, x)
)

dx

is a representative of Ch(kerD+,y − kerD−,y).

Theorem 2.5. For t > 0, the Chern character Ch2k(M,At) is closed

and defines a homology class which is independent of t, moreover

limt→0 Ch∗(M,At) exists.

Proof. An easy consequence of Theorem 2.3 and Proposition 2.4,
see also [G-S]. ¤

Replace Bismut’s superconnection A and curvature F in (3) by their
rescaled At and Ft. Then using [ϕt(A), hi ⊗ fi] = ϕt[A, hi ⊗ fi] and the
relation in (4), Ch2k(M,At) becomes;

Ch2k(M,At)
�
h0 ⊗ f0, h1 ⊗ f1, . . . , h2k ⊗ f2k

�
=

Z
∆2k

Trs

�
h0 ⊗ f0e−t1Ft . . . [At, h2k ⊗ f2k]e−(1−t2k)Ft

�
dt1 . . . dt2k

= tk
Z
∆2k

Trs

�
h0⊗f0ϕt(e

−t1tF ) . . . [ϕt(A), h2k⊗f2k]ϕt(e
−(1−t2k)tF )

�
dt1 . . . dt2k

=
1

tk

Z
∆2k,t

ϕt

h
Trs

�
h0⊗f0e−s0F [A, h1⊗f1]e−s1F . . . [A, h2k ⊗ f2k]e−s2kF

�i
ds(9)

=
1

tk

2kX
q=0

Z
∆2k,t

ϕt

h
Trs

�
T0e−s0FT1e−s1F . . . T2ke−s2kF

�i
ds1 . . . ds2k,(10)

where Ti is either dB(hi ⊗ fi) or hi ⊗ [D, fi] for i = 1, . . . , 2k, and T0 =
h0 ⊗ f0. Here q is the number of times the operator dB(hi ⊗ fi) appears
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in (10). In (9) we did a change of variables:

s0 = t1t, sj = (tj+1 − tj)t for j = 1, . . . 2k − 1, and s2k = (1− t2k)t.

Thus,
∑2k

i=1 si ≤ t and s0 = t − s1 · · · − s2k, and we are integrating over
the ∆2k,t simplex

∆2k,t =
{

s = (s1, . . . , s2k) 3
2k∑

i=1

si ≤ t with 0 ≤ si ≤ t
}

.

The rest of the paper deals with simplifying the above formula, and
then expressing the bivariant character in terms of the chern roots and
differential form.

As heat operator e−sjF does not commute with Ti, thus we can write
it as

(11) e−sjFTi = Tie
−sjF + [e−sjF , Ti].

Therefore in (10) start from the far right and then apply (11) repeatedly.
Continue this process until all the operators Ti are moved to the left while
the heat operators to the right. At every step of this process some extra
terms are produced these will be considered as error terms. Hence we have
the following proposition.

Proposition 2.6.

(12)
1
tk

2k∑
q=0

∫

∆2k,t

ϕt

[
Trs

(
T0e

−s0FT1e
−s1F . . . T2ke−s2kF

)]
ds1 . . . ds2k

=
tk

(2k)!

2k∑
q=0

ϕt Trs

(
T0T1 . . . T2ke−tF

)
+ ϕt(RT1) · · ·+ ϕt(RT2k),

where

RT2k−j =
1
tk

∑
q

∫

∆2k,t

Trs

(
T0e

−s0F . . . T2k−j−1(B2k−j)

· e−s2k−jF . . . e−s2kF
)

ds1 . . . ds2k
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for j = 0, 1, . . . , 2k − 1, and

B2k−j =
[
e−s2k−j−1F , T2k−jT2k−j+1 . . . T2k

]
.

Next, we claim that the error terms ϕt(RTj ) vanish as t tends to zero.
The claim will be proved using canonical order calculus. For completeness
we briefly define this calculus and mention some of its properties without
any proof. The main reference is ([C-F-K-S] Chapter 12).

2.4. Canonical order calculus

Definition 2.7. A family of operators {Pt}t>0 on L2(R2n, dx) [or on
L2(N, dx) with N a compact Riemannian 2n dimensional manifold] is said
to have canonical order r ∈ R if and only if:

1. for each t > 0, Pt maps H−∞ to H∞, here H−∞ =
⋃

sHs, H∞ =⋂
sHs, where Hs is the s-Sobolev space.

2. for any k ≥ l ∈ {0,±1,±2, . . . } there is a constant c, so that for
0 < t < 1

||Ptu||k ≤ ct−a||u||l, with a =
k − l

2
− r.

Remark 2.8. The definition is such that if Pt has canonical order r,
it has canonical order q for any q ≤ r. From this it follows that if Pt is a
sum of operators, i.e. Pt = B1

t + · · ·+ Br
t , where each Bi

t is an operator of
canonical order pi, then Pt has canonical order p, where p = min1≤j≤r(pj).

The whole point of the canonical order calculus is the information it
yields on integral kernels.

Proposition 2.9. If the operator Pt has canonical order r, then Pt

has an integral kernel Pt(x, y) satisfying

lim
t→0

tb sup
x,y

|Pt(x, y)| = 0, for any b > n− r.

Theorem 2.10. Let ∆ be the Laplacian on R2n or on
∧

(N). Then
(assuming all the operators make sense)

1. e−t∆ has canonical order zero,

2. the operators ∂p

∂xp
i
e−t∆ and e−t∆ ∂p

∂yp
i

have canonical order −p/2, where

p is some non-negative integer.

The next theorem will be used frequently, it deals with composition
of operators.
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Theorem 2.11. Let P 0
t , P 1

t , . . . , P r
t be operators of canonical order

m0,m1, . . . , mr with mj > −1. Then

Pt =
∫
Pr

i=1 si≤t

P 0
s0

P 1
s1

. . . P r
sr

ds1ds2 . . . dsr

is a convergent integral and Pt is an operator of canonical order r +∑r
j=0 mj , here s0 = t− s1 . . .− sr with 0 < si ≤ t.

3. The error term and the harmonic oscillator

Choose a point y ∈ B. From now on all our computations will be
restricted to the fibre My. Now fix a point ξ ∈ My. The asymptotic ex-
pansion of the heat kernel e−tF (ξ, expξ x) in the limit (x, t) → 0 are local,
in the sense that regions of My outside an ε - ball B(ξ, ε) contribute an
exponentially vanishing amount to the heat kernel inside this ball (c.f. [G])
and this fact localizes the computation.

The tangent space TξM is decomposed into vertical and horizontal
spaces as TξM = Tξ(My) ⊕ TyB. Let U = {x ∈ Tξ(My) 3 ‖x‖ < ε}
where ε is small. Then U is identified via the exponential map expξ :
Tξ(My) −→ My; x → expξ x, with the ε ball B(ξ, ε) ⊂ My. Using the
parallel translation map along the geodesic from x ∈ B(ξ, ε) to ξ (which
is defined with respect to the Levi–Civita connection on My) we identify
Tx(My) with Tξ(My).

Let e1, . . . , e2n be a fixed orthonormal base of Tξ(My). Then e1, . . .
. . . , e2n generates the Clifford algebra Cl(TξMy) which acts naturally on
E . We turn the ei’s into local frame Ei’s by parallel translating the ei’s for
all i along geodesics passing through ξ. The parallel translation is defined
with respect to the connection ∇M/B , but restriction to a single fibre My

implies that it is the Levi–Civita connection of My.
The exponential map gives rise to normal coordinates at ξ. Thus for

any x ∈ B(ξ, ε), the normal coordinates (x1, x2, . . . , x2n) are defined by
expξ(x) = x, where x =

∑2n
i=1 xiei.

Let dx1, . . . , dx2n be an oriented orthonormal base of T ∗ξ (My) dual to
e1, . . . , e2n and let f1, . . . fα, . . . , fm be a fixed oriented orthonormal base
of TyB with dual dy1, . . . , dym. We denote by ZI a local orthonormal
frame of TM on U consisting of the union of E1, . . . , E2n and a fixed basis
f1, . . . , fm.

Note that dx1, . . . , dx2n, dy1, . . . , dym satisfies the usual anticommu-
tation rules as elements of the exterior algebra

∧
(M).
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Remark 3.1. In what follows;

• all the summation signs will be omitted

• the subscripts α, β will be used for horizontal variables and the sub-
scripts i, j for the vertical ones, i.e. the variables in T (M/B).

• the subscripts I, J will be used to denote both vertical and horizontal
variables.

• we identify the orthonormal basis f1, . . . , fm of TyB with their lift in
TH

x M (for x ∈ My). Also dy1, . . . , dym are considered as differential
forms on M .

• the Clifford variable ei’s and the differential dyα’s satisfy the relation
eidyα + dyαei = 0.

3.1. Explicit expression of F
In [Bi] Proposition 3.3, Bismut proved that the superconnection A is

independent of the metric gB and showed that

A = D + ∇̃+ E = ei

[
∇Ei +

1
2
Γα

ijej dyα +
1
4
Γβ

iα dyαdyβ

]
(13)

+ dyα

[
∇fα +

1
2
Γβ

αieidyβ

]
.

The ΓK
IJ are the Christoffel symbols defined with respect to the Levi–

Civita connection ∇L on M , i.e. ΓK
IJ = 〈∇L

ZI
ZJ , ZK〉. Here the Dirac

operator D = ei∇Ei , ∇̃ is a connection on ∧(B) ⊗ Γ(B,W) given by
∇̃ = dyα∇fα and E ∈ ∧(B)⊗ End(W).

Thus for w ⊗ s ∈ ∧(B)⊗ Γ(B,W), the connection is defined by

∇̃(w ⊗ s) = (dyα∇B
fα

w)⊗ s + (−1)|w|w ⊗ dyα∇fαs

= (dBw)⊗ s + (−1)|w|w ⊗ dyα∇fαs,

∧(B) ⊗ End(Γ(B,W)) acts naturally on ∧(B) ⊗ Γ(B,W), namely if
s ∈ End(Γ(B,W)), r ∈ Γ(B,W) and w1, w2 ∈ ∧(B). Then we set
(w1s)(w2r) = (−1)|w1| |r|(sr)w1 ∧ w2. This implies that for h ⊗ f ∈ V,
then the commutator

(14) [∇̃, h⊗ f ] = dBh⊗ f + h⊗ dyαfα(f).
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Note that f is a smooth function on M , hence it is a function in y ∈ B

and x ∈ My variables. Thus, by abuse of notation we denote dyαfα(f) by
dBf , and we write [∇̃, h⊗ f ] = dB(h⊗ f).

The commutator of Bismut’s superconnection A with h ⊗ f has the
form

[A, h⊗ f ] = [D, h⊗ f ] + [∇̃, h⊗ f ](15)

= h⊗ [D, f ] + dB(h⊗ f).

Under the identification of T (My) with its dual space T ∗(My), we can
write [D, f ] as [D, f ] = c(d̂f), i.e. Clifford multiplication by d̂f = dxiEi(f).

Lemma 3.2. With respect to the normal coordinates at ξ = 0. The

Christoffel symbols ΓK
IJ ’s have the following Taylor expansion about ξ

ΓK
IJ =

1
2

∑
r

RIrJK(0)xr + o(|x|2).

where RIrJK = −(RM/B(ZI , Er)ZJ , ZK) is the curvature operator defined

with respect to ∇M/B connection.

Proof. This is a standard argument, one can consult for example
[Bo]. We only need to realize that we are restricted to a fixed fibre My

and the normal coordinates are defined with respect to the orthonormal
frame ZI . ¤

Theorem 3.3. With respect to the normal coordinates at ξ and or-

thonormal frame ZI , Bismut’s curvature Fy is given explicitly by

(16) Fy = −∆y + a + b + B,

where

∆y =
2n∑

i=1

∂2

∂xi
2 is the Laplacian along the fibre My of the bundle M/B

a =
1
4
Rijstxi

∂

∂xj
eset +

1
2
Rijsαxi

∂

∂xj
esdyα +

1
4
Rijαβxi

∂

∂xj
dyαdyβ ,
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b =
1
64

xixjRirlkRrjstelekeset +
1
16

xixjRirkαRrjstekesetdyα

+
1
32

xixjRirlkRrjαβelekdyαdyβ +
1
16

xixjRirkαRrjlβekdyαeldyβ

+
1
16

xixjRirlαRrjλµeldyαdyλdyµ+
1
64

xixjRirαβRrjλµdyαdyβdyλdyµ.

And B is of the form φ1 + φ2 + φ3 + φ4 + φ5; where

φ1 = cx4e3dy, φ2 = c
∂

∂xj
x2e2, φ3 = cx3e4

φ4 = cx3edy3, φ5 = cx3dy4.

The notation x3 means
∑

xixjxk similarly dy3 denotes
∑

dyαdyβdyµ, also

the Clifford variable e3 means
∑

ereset and c is some constant.

Proof. This follows from Lemma 3.2 and the generalized Lichnerow-
icz formula given by Bismut in [Bi], Theorem 3.5, see also [Z]. ¤

3.2. The heat kernel of Bismut’s superconnection

The asymptotic of the heat kernel is given by

(17) e−tFy

(ξ, x) =
e−ρ2(ξ,x)/4t

(4πt)n

N∑

j=0

tjUj(ξ, x) + O(tN−n+1).

Where N > n + [m
2 ]. ρ(ξ, x) is the Riemannian distance between ξ and x,

i.e. x ∈ B(ξ, ε) and Uj(ξ, x) : Eξ −→ ∧y(B)⊗Ex are linear transformations
satisfying some properties.

Additionally, each Uj(ξ, x) has rj Clifford variables ei1 . . . eirj
and qj

differential forms dyα1 . . . dyαqj
(c.f. [B-G-V], Chapter 10) such that;

(18) their total sum is rj + qj ≤ 2j.

For any x, x′ ∈ B(ξ, ε), let Ky
t (x′, x) denote the heat kernel e−tFy

(x′, x)
transferred to U by means of parallel translation map, where x = expξ x

and x′ = expξ x′. Moreover, ρ2(x, x′) has the following Taylor expansion
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about ξ (c.f. [D]).

ρ2(x, x′) =
∑

i

(x′i − xi)2(19)

− 1/3
∑

ijkl

Rijkl(ξ)xjxl(x′i − xi)(x′k − xk) + 0(x− x′)3

where the xi’s and x′j ’s are normal coordinates of x and x′ respectively at
ξ = 0. Therefore the asymptotic expansion of the heat kernel Kt(x′,x),
with ρ2(x, x′) replaced by its Taylor expansion, becomes

Ky
t (x′, x) =

e−‖x
′−x‖2/4t

(4πt)n

[
1 + F (t,x′,x)

] N∑

j=0

tjUj(x′, x)(20)

+ O(tN−n+1),

where

F (t,x′, x) = −1/3
∑

ijkl

(
Rijkl(ξ)xjxl(x′i − xi)(x′k − xk)

4t

)
+

(
0(x− x′)3

4t

)
.

3.3. The error term

In this section we show that the error terms vanishes as t tends to
zero. But first we observe the following facts.

Lemma 3.4. Let ϕt be the rescaling operator as in (5) and Uj as in

(17). Then

1. ϕt(Uj) = t−qj/2Uj , ϕtdB(hi ⊗ fi) = t−1/2dB(hi ⊗ fi) and ϕt(hi ⊗
[D, fi]) = hi ⊗ [D, fi],

2. the commutator ϕt ([Uj , T1 . . . Tp]) = t−(qj/2+r/2)[Uj , T1 . . . Tp], where

r is the number of times Ti = dB(hi ⊗ fi) and qj as in (18).

Lemma 3.5. For x, x′ in B(ξ, ε), then

1. the operator (x′i−xi)pe−t∆y

has canonical order p/2, where p is some

non-negative integer,

2. the operator (x′i − xi)p ∂r

∂xr
j
e−t∆y

has canonical order p/2− r/2.

For the proof one can refer to [C-F-K-S] page 280. ¤
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Theorem 3.6. For RT2k−j as in Proposition 2.6. Then

ϕt(RT2k−j ) = o(tε), for some ε > 0 and j = 0, 1, . . . 2k − 1.

Proof. With all the previous assumptions and restricting all the
computation to a fixed fibre My. Let Ky

t,2k−j denote the kernel of the
operator ϕt(RT2k−j ) transferred to U ⊂ Tξ(My). For simplicity we consider
one case only and leave the other cases which follows similarly. Consider
the case q = 2k, i.e. when all the Ti’s are of the form dB(hi⊗ fi). Expand
each heat kernel e−siF as in (20). Thus on the diagonal at the origin ξ = 0,
the heat kernel Ky

t,2k−j(ξ, ξ) becomes;

Ky
t,2k−j(ξ, ξ) ' t−k

∑

i0,...i2k

trs ϕt

(
T0Pi0Ui0T1 . . .

. . . Pi2k−j−1

[
Ui2k−j−1 , T2k−j . . . T2k

]
Pi2k−j

Ui2k−j
. . . Pi2k

Ui2k

)
(ξ, ξ)

where each Pik
(x,z) = sik

k e−sk∆(x, z)
[
1 + F (t, x, z)

]
. To have a nonzero

supertrace we need at least 2n (which is the dimension of My) distinct
Clifford variables. Hence a term with at least 2n Clifford variables in the
above expansion will satisfy

(21) ri0 + ri1 + · · ·+ ri2k
= 2n

here rij is the number of Clifford variables in Uij as in (18). Next we
compute its canonical order. Each Pik

has canonical order ik which fol-
lows from Lemma 3.5 and Remark 2.8. Consequently, by Lemma 3.4 and
Theorem 2.11 (since we are integrating the heat kernel over the simplex
∆2k,t), the canonical order of that term is

−2k − (q0/2 + q1/2 · · ·+ q2k/2) + (i0 + i1 + · · ·+ i2k) + 2k

> r0/2 + r1/2 + · · ·+ r2k/2 = n by (21)

the second inequality holds since the commutator term satisfies ri2k−j−1 +
qi2k−j−1 < 2i2k−j−1 (see Lemma 1 in the appendix). Therefore by Propo-
sition 2.8 it vanishes as t tends to zero. ¤
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Indeed we have shown that

Ch2k(My,Ay
t )

(
h0 ⊗ f0, . . . , h2k ⊗ f2k

)

=
tk

(2k)!

∑
q

ϕt Trs

(
T0T1 . . . T2ke−tFy

)
+ o(tε).

3.4. Approximation of The Heat Kernel e−tFy

Replace the xi’s that appear in the local expression of Fy (as in The-
orem 3.3) by bounded smooth functions hi(x) with bounded derivatives,
so that hi(x) = xi in a neighborhood of ξ = 0. We continue using the
notation xi to denote hi(x). Thus, applying Duhamel’s expansion we get

(22)

tk

(2k)!

X
q

n
ϕt trs

�
T0T1 . . . T2ke−tFy

�
− ϕt trs

�
T0T1 . . . T2ke−t∆y

�o
(0, 0)

=
2kX

q=0

tk−q/2

(2k)!
trs

�
T0T1 . . . T2k

Z t

0
e−(t−s1)∆y

ϕt(−a− b+B)e−s1∆y
ds1

�
(0, 0)

+
2kX

q=0

tk−q/2

(2k)!
trs

�
T0T1 . . . T2k

Z t

0

Z s1

0
e−(t−s1−s2)∆y ϕt(−a− b+B)

× e−s1∆y
ϕt(−a− b+B)e−s2∆y

ds1ds2

�
(0, 0) + . . .

When we refer to the canonical order of any operator in the expansion
(22), take for example the operator a, then we actually mean the canonical
order of the operator e−(t−sj1 ...sjl

)∆y

a.

Remarks 3.7. It follows from Lemma 3.5 that:
The canonical order of a is zero, of b is 1, whereas of φ1 is 2, of φ2 is

1/2 and of φi is 3/2 for i = 3, 4, 5.

For operators a and b there is a relation between the number of Clif-
ford variables ei and the number of differentials dyα. In the case of the
operator a, their total number adds up to 2, whereas in the case of b their
total number adds up to 4.

Let us elaborate on our technique of computing the canonical order
and keeping track of Clifford variables. Take for example the operator b,
suppose it appears j times in the expansion (22), this will be denoted by
bj . Each b contains r Clifford variables 0 ≤ r ≤ 4 and q differentials dyα’s
0 ≤ q ≤ 4, such that r+q = 4. Hence the total number of Clifford variables
for bj (operator b appearing j times) is jr and the total number of dyα’s
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is jq. Thus applying the rescaling operator ϕt to bj yields a t−(jq)/2 power
of t. Similar arguments work with the operator a.

The canonical order of the operator bj =
∑j (canonical order of b)+

j = 2j (which follows from Theorem 2.11, note that in this case we are
integrating j times). Therefore after applying the rescaling operator ϕt,
the canonical order of ϕt(bj) = 2j − (jq)/2.

Next, we consider all different combinations of the operators a, b and
B in the expansion (22) that would give us a total of at least 2n Clifford
variables (to have a nonzero supertrace). After rescaling by ϕt, if their
canonical order is greater than n, then by Proposition 2.9 they vanish. We
will work out one case in detail. The rest follows in a similar way.

For simplicity consider the term with q = 2k. The notation (aj , bk, φl
1)

denotes that the operator a appears j times, b appears k times and φ1 ∈ B

appears l times in the expansion (22), here j > 0, k ≥ 0 and l > 0.
Each a has p Clifford variables 0 ≤ p ≤ 2 and s differentials dyα,

0 ≤ s ≤ 2 such that p + s = 2, while b has r Clifford variables 0 ≤ r ≤ 4
and q differentials 0 ≤ q ≤ 4 such that r + q = 4, and φ1 has 3 Clifford
variables and one dyα.

The total number of Clifford variables in (aj , bk, φl
1)(23)

= jp + kr + 3l = 2n.

The rescaled canonical order of ϕt

(
aj , bk, φl

1

)
is

ϕt(aj) + ϕt(bk) + ϕt(φl
1) =

(
j − js

2

)
+

(
2k − kq

2

)
+

(
3l − l

2

)

=
jp

2
+

kr

2
+

5l

2
> n by (23).

Hence it vanishes as t tends to zero. Repeat the same process with
the other terms, hence we have

(24)
2k∑

q=0

tk−q/2

(2k)!
trs

(
T0T1 . . . T2k

[
ϕte

−tFy − ϕte
−t∆y

]
(0, 0)

)
= 0(tε)

for some ε > 0.



68 Fatima M. Azmi

Theorem 3.8. For each 0 ≤ q ≤ 2k, we have

tk−q/2 trs

(
T0 . . . T2kϕt(e−tFy

)
)
(0, 0)−

tk−q/2 trs

(
T0 . . . T2kϕt(e−t(−∆y+b))

)
(0, 0) = 0(tε)

for some ε > 0.

Proof. Using Duhamel’s expansion, expand both operators e−tFy

and e−t(−∆y+b) as perturbations of e−t∆y

. All terms that have the operator
b will cancel out, and what remains are terms having operators a and φi’s
in B. The above computation shows that terms with 2n Clifford variables
have a rescaled canonical order greater than n. Consequently they vanish
as t tends to zero. ¤

4. The main result

Let Ly denote the operator

(25) Ly = −∆y + b = −
2n∑

i=1

∂2

∂xi
2

+
1
16

2n∑

i,j=1

xixjC
2
ij

with C2
ij =

∑
r CirCrj , and each Cir = −1/2

∑
RirIJ (0)hIhJ . Here I, J

etc, denotes the total subscripts i, j, α, etc. i.e. hI is the total notation
for ei and dyα.

Denote by Ω the curvature matrix of two forms over M

ΩM/B
ir = −1/2

∑
RirIJ (0)dzIdzJ

where z = (x, y) and dzI is the total notation for dxi and dyα. Clearly
Ω = (ΩM/B

ij ) is the curvature matrix of two forms for the connection ∇M/B

of the vector bundle T (M/B) over M . Without loss of generality assume
the matrix Ω is of the block diagonal form

ΩM/B =




0 v1

−v1 0
. . .

0 vn

−vn 0



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where the vj ’s are the 2-form Chern roots. Define

L = −
∑

i

∂2

∂xi
2
− 1

16

2n∑

i,j=1

xixj

(
ΩM/B

ij

)2

= −
∑

i

∂2

∂xi
2

+
1
16

n∑

j=1

(x2
2j−1 + x2

2j)v
2
j .

Then L is a harmonic oscillator type operator; its fundamental solu-
tion e−tL(x, 0) is given by Mehler’s formula in the neighborhood of ξ = 0,
(for details consult [B-G-V]).

e−tL(x, 0)

=
1

(4πt)n

( n∏

j=1

ivjt/2
sinh(ivjt/2)

)
exp

(−ivjt

2
(x2

2j−1 + x2
2j)

4t
coth

(
ivjt

2

))
.

Therefore, on the diagonal at ξ = 0

e−tL(0, 0) =
1

(4πt)n

( n∏

j=1

ivjt/2
sinh(ivjt/2)

)
.

Each vj is a two form, thus ϕt applied to vj will produce either t−1/2,
t−1 or no powers of t. Apply ϕt to the expansion of e−tL(0, 0) and then take
the limit as t tends to zero and use the fact that the complexified Clifford
algebra Cl(TξMy) is identified (as vector space) with the complexified
exterior algebra ∧(TξMy), we get for each q

lim
t→0

tk−q/2

(2k)!
trs

(
T0 . . . T2kϕt(e−tLy

)
)
(0, 0)

= lim
t→0

tk−q/2

(2k)!
(2/i)n

(
T̃0 . . . T̃2kϕt(e−tL(0, 0)

)
2n

=
1

(2k)!
1

(2πi)n
(26)

×
[
T̃0T̃1 . . . T̃2k

[m/2]−[q/2]∑
p=0

( n∏

j=1

ivj/2
sinh(ivj/2)

)
̂(n− k + q/2+ p)

]

2n

where
(

ivj/2
sinh(ivj/2)

)
ˆ(r) is the r-th term in the Taylor series expansion with

respect to t about t = 0. The (2/i)n appears since trs(e1 . . . e2n) = (2/i)n
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and ( )2n stands for terms which are multiples of dx1 . . . dx2n. Also T̃i is
either dB(hi ⊗ fi) or hi ⊗ d̂fi (see Section 3.1).

From Theorems 3.6, 3.8 and (26) it follows that

lim
t→0

(
Ch2k(M,At), (h0 ⊗ f0, h1 ⊗ f1, . . . , h2k ⊗ f2k)

)
(27)

= lim
t→0

2k∑
q=0

tk−q/2

(2k)!
Trs

(
T0T1 . . . T2kϕte

−tF
)

=
2k∑

q=0

∫

M/B

lim
t→0

tk−q/2

(2k)!
trs

(
T0 . . . T2kϕt(e−tLy

)
)
(ξ, ξ)

=
2k∑

q=0

∫

M/B

1
(2k)!

1
(2πi)n

T̃0T̃1 . . . T̃2kÂ(iΩM/B)

where Â(iΩM/B) =
∏n

j=1
ivj/2

sinh(ivj/2) .

Theorem 4.1. The 2k-th component of the bivariant Chern–Connes

character of the module (M,A) over V is given by:

(
Ch2k(M,A), (h0 ⊗ f0, h1 ⊗ f1, . . . , h2k ⊗ f2k)

)

=
1

(2k)!
1

(2πi)n

2k∑
q=0

∫

M/B

T̃0T̃1 . . . T̃2kÂ(iΩM/B),

where hj ⊗ fj ’s ∈ V and q is the number of times the operator T̃i is equal

to dB(hi ⊗ fi) and 2n is the dimension of the fibre My.

Remarks 4.2. Note that when the manifold B is a single point y,
then the fibre My is M and V = C1(M). The Hilbert space becomes
L2(Γ(M, E)), moreover Bismut’s superconnectionA is reduced to the Dirac
operator D. The bivariant Chern–Connes character in Theorem 4.1 be-
comes
(

Ch2k(M, D), (f0, f1, . . . f2k)
)

=
1

(2k)!
1

(2πi)n

∫

M

f0df1 . . . df2kÂ(iΩM )

which is the Chern character formula for the Dirac operator on the spinor
bundle E .
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APPENDIX

A. Clifford algebra and supertrace

Let e1, . . . , e2n be the canonical oriented orthonormal base for the
Euclidean space R2n. The Clifford algebra Cl(R2n) of R2n is the algebra
generated by 1, e1, . . . , e2n subject to these relations

(28) e2
i = −1, eiej = −ejei, i 6= j.

Cl(R2n) carries a natural Z2 grading and as a vector space it is iso-
morphic to the exterior algebra

∧
(R2n).

Let f1 . . . , fα, . . . , fm be an oriented orthonormal base in Rm with
dual dy1, . . . , dyα, . . . , dym. The graded tensor product of the Z2 graded
algebras Cl(R2n) and

∧
(Rm) is denoted by E, i.e. E = Cl(R2n) ⊗̂ ∧(Rm).

Elements of E will be written without the graded tensor sign ⊗̂. For
example eidyα is a well defined element of E, and this relation holds

(29) eidyα + dyαei = 0.

Lemma A.1. Let Qp = ei1 . . . eip , Pr = dyα1 . . . dyαr and Cq =
dyβ1 . . . dyβq , then

1. The commutator [QpPr, Cq] is zero, unless the sum p + r is odd and

q is odd.

2. The number of Clifford variables in the commutator [Qp, Qq] is at

most p + q − 2, where Qq = ej1 . . . ejq .

Proof. Direct computation which follows from (28) and (29). ¤

The complexified Clifford algebra Cl(R2n)⊗ C can be identified with
End(S), where S is the Z2 graded 2n dimensional complex vector space of
spinors.

There is a natural supertrace on the Clifford algebra Cl(R2n) defined
by Trs(a) = Tr(τa), where τ is the grading operator τ = (

√−1 )ne1 . . . e2n.
And the explicit formula for the supertrace Trs ∈ End(S) is given by
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Lemma A.2.

Trs(ei1 . . . eip) = 0, p < 2n

and

Trs(e1e2 . . . e2n) =
(

2√−1

)n

.

The space End(S) of endomorphism of S is a superalgebra. Let K =
End(S) ⊗̂∧

Rm, then K has a natural grading and the supertrace Trs can
be extended to K with values in

∧
(Rm). Thus if ω ∈ ∧

(Rm) and k ∈ K,
then

Trs(ωk) = ω Trs(k).
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