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Derivations and co-radical extensions of rings

By TSIU-KWEN LEE (Taipei) and CHING-YUEH PAN (Taipei)

Abstract. A ring R is said to be co-radical over a subring A if for each z € R
there exists a polynomial g, (¢) (depending on z) having integral coefficients so that
x — 22g,(x) € A. Herstein proved that a ring which is co-radical over its center must
be commutative. In this paper we give a generalization of Herstein’s theorem for the
prime case in terms of derivations with assumptions on one-sided ideals.

§1. Introduction and main results

Throughout this paper all rings are associative, not necessarily with
unity. We denote by Z[t] the polynomial ring with indeterminate ¢ over
Z, the ring of integers. A ring R is called co-radical over a subring A if
for each € R there exists a polynomial g,(¢) € Z[t] (depending on x)
so that z — 22g,(x) € A. In [8] HERSTEIN proved that a ring which is
co-radical over its center must be commutative. In [4] CHACRON gave a
generalization of Herstein’s theorem for the semiprime case by the use of
the cohypercenter T(R) of a ring R. An element a € R belongs to T(R)
if for each x € R there exists a polynomial g,(t) € Z[t] (depending on x)
so that [a,z — 22g,(z)] = 0. Chacron proved that if R is a semiprime
ring, then T'(R) coincides with the center of R. In terms of derivations
he just proved that if d is an inner derivation of the semiprime ring R
satisfying d(z — 2%g,(z)) = 0 for all x € R, then d = 0. For the general
case of derivations, in a recent paper [3] BELL proved the theorem: Let R
be a prime ring with char R # 2, and let d be a derivation of R such that
d® # 0. If there exists a fixed integer n > 1 such that d(x — 2") € Z(R),
the center of R, for all x € R, then R is commutative. The goal of this
paper is to extend these results by proving the following theorems.
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Theorem 1. Let R be a noncommutative prime ring and a,b € R.
Suppose that for each x € R, there is a polynomial g,,(t) € Z[t] (depending
on x) so that a(z — x2g,(z))b = 0. Then either a =0 or b = 0.

Theorem 2. Let R be a noncommutative prime ring, p a right ideal
of R and a,b € R. Suppose that for each x € p, there is a polynomial
9o(t) € Z[t] (depending on x) so that a(x — 2?g,(x))b = 0. Then apb =0
unless p = eR, where e = e? € R, such that eRe is a field.

Theorem 3. Let R be a prime ring, p a nonzero right ideal of R
and d a nonzero derivation of R. Suppose that for each © € p, there is
a polynomial g,(t) € Z[t] (depending on x) so that d(x — x%g,(x)) = 0.
Then R is commutative except when p = eR, where e = e?> € R, such that
eRe is a field, and d = ad(b) and bp = 0 for some b € @Q, the symmetric
Martindale quotient ring of R.

As an immediate consequence of Theorem 3 we have the following

Theorem 4. Let R be a prime ring and let d be a nonzero derivation
of R. Suppose that for each © € R, there is a polynomial g,(t) € Z][t]
(depending on x) so that d(z — x2g,(z)) = 0. Then R is commutative.

Finally we will extend Theorem 4 to the central case. However, we
cannot conclude the commutativity of the prime ring R. The following
provides counterexamples.

Ezamples. Let R = My(C), the 2 by 2 matrix ring over a field C,
b e [R,R]\ C and d the inner derivation of R defined by the element b. If
C' is algebraic over GF(2), the Galois field of two elements, then for each
x € R, there is a positive integer ¢ = ¢(z) > 1 (depending on x) so that
dlx —x?) € C.

PROOF. We denote by F' the algebraic closure of C' and let S =
My (F). Then R C S. Let x,y € [R, R]. A direct computation proves that
ry+yr = (z +y)? — 2% —y? € C. Since char R = 2, we have [z,y] € C.
That is, [[R, R],[R,R]] C C. In particular, [b,[R,R]] C C. Let z € R.
Then there exists an invertible matrix v € S such that uazu~! is an upper
triangular matrix in S. Since F is algebraic over GF(2), there exists a
positive integer ¢ = q(x) > 1 such that uru=' —uxrfu~1! is a strictly upper
triangular matrix in S. In particular, the trace of x — x? € R is zero.
Therefore, 2 — 7 € [R, R] and so [b,x — 29] € [b,[R, R]| C C, as desired.
This proves our result. O

In fact, the examples above are the only exceptional cases. Indeed,
we will prove the following
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Theorem 5. Let R be a prime ring with center Z(R) and d a nonzero
derivation of R. Suppose that for each x € R, there is a polynomial
gz(t) € Z[t] (depending on x) so that d(z — x2g,(z)) € Z(R). Then R
is commutative except when RC' = My(C) with C algebraic over GF(2),
where C' denotes the extended centroid of R.

§2. Proofs of theorems

From now on, R will denote a prime ring with extended centroid C
and symmetric Martindale quotient ring ). We denote by Z(R) the center
of R and by J(R) the Jacobson radical of R. For p € ) we denote by ad(p)
the inner derivation of @ induced by the element p, that is, ad(p)(x) =
[p, x] = pr—ap for z € Q. A derivation d of R is called X-inner if d = ad(p)
for some p € Q). Otherwise, d is called X-outer. It is well-known that each
derivation of R can be uniquely extended to a derivation of (). We first
state a result due to CHACRON [5].

Lemma 1. Let R be a prime ring and a,b € R. Suppose that for
each © € R, there is a polynomial ¢,(t) € Z[t| (depending on x) so that
a(z — 229, (2))b = 0. If ab = 0, then either a =0 or b = 0.

PROOF. See the proof of [5, Lemma 3]. O

Lemma 2. Let R be a noncommutative prime ring and a € R. Sup-
pose that for each x € R, there is a polynomial g,(t) € Z[t] (depending
on z) so that a(z — x%g,(z)) = 0. Then a = 0.

PROOF. Suppose first that J(R) # 0. Then, by assumption, for each
x € J(R) there is a polynomial g,(t) € Z[t] (depending on z) so that
a(z—22g.(z)) = 0. Thus az(1—xg,(z)) = 0. From the fact that xg,(z) €
J(R) it follows that ax = 0. That is, aJ(R) = 0 and so a = 0 by the
primeness of R.

Suppose next that J(R) = 0. We first consider the case that R is
a right primitive ring. By the density theorem, R acts densely on pV,
where pV is a left vector space over a division ring D. Suppose that
there is a v € V such that va and v are D-independent. Then we can
choose an x € R such that vaz = v and vz = 0. Then vaz? = 0 and
so 0 = va(x — 2%g, (7)) = vax = v, which is absurd. Therefore, for each
v € V we see that va and v are D-dependent. Now, a standard argument
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proves that a is central in R. We turn next to the general case. Let P be
a right primitive ideal of R. Then R/P is a right primitive ring preserving
our assumptions. Thus @ = a + P is central in R/P and so [a,R] C P.
Since J(R) = 0, the intersection of all right primitive ideals of R is zero.
Therefore we have [a, R] = 0, implying that a € Z(R). If a # 0, then for
each x € R, there is a polynomial g,(t) € Z[t] (depending on z) so that
x —22g,(z) = 0. In view of HERSTEIN’s theorem [8], R is commutative, a
contradiction. This proves the lemma. U

PROOF of Theorem 1. Clearly, we may assume that a = b. Denote
by p the right ideal of R generated by a, that is, p = aR + Za. Set
p = p/pNLr(p), where £r(p) is the left annihilator of p in R. It is clear
that p is still a prime ring. By assumption, for each * € p, there is a
polynomial gz(t) € Z[t] (depending on ) so that a(z — T2gz(Z)) = 0. In
view of Lemma 2, either @ = 0 or [p,p] = 0. The first case gives a? = 0,
implying that @ = 0 by Lemma 1. The latter case implies that [p, p]p = 0
and hence R is a prime GPI-ring. In view of MARTINDALE’s theorem [14],
RC' is a strongly primitive ring, where C' is the extended centroid of R. If
RC' is a division ring, then there is nothing to prove. Suppose that RC
is not a division ring. Denote by H the socle of RC. Then H is a simple
ring with minimal one-sided ideals and possesses nontrivial idempotents.
Let e be an idempotent in H. Choose a nonzero ideal I of R so that
el + Ie+ele C R. For x € I we have ex(1 —e) € R. Since ex(1 —e) is
an element of square zero, by assumption we have aez(1 — e)a = 0. Thus
(1 — e)ae = 0 follows. Analogously, ea(l — e) = 0 and hence [a,e] = 0.
Denote by E the additive subgroup of H generated by all idempotents
in H. In view of [9, Corollary p. 18|, [H,H] C E. Thus [a,[H, H]] = 0.
By [9, Corollary p. 9], the subring generated by [H, H] is equal to H and
so [a, H] = 0. Thus a is central in R. If a # 0, then for each x € R, there
is a polynomial g, (t) € Z[t] (depending on x) so that x — 22g,(x) = 0. In
view of HERSTEIN’s theorem [§8], R is a commutative ring, a contradiction.
This proves the theorem. O

The following lemma is due to BABKOV [1, Lemma 7).

Lemma 3. Let R be a noncommutative prime ring, p a nonzero right
ideal of R and a € R. Suppose that for each x € p, there is a polynomial
g:(t) € Z[t] (depending on x) so that (x — x2g,(x))a = 0. Then a = 0
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unless R is a primitive ring with nonzero socle and its associated division
ring is a field.

For simplicity, we say that a ring R has the property (x) if it is a
primitive ring with nonzero socle and its associated division ring is a field.
We are now ready to give the proof of Theorem 2.

PROOF of Theorem 2. Suppose that R does not satisfy the prop-
erty (x). By assumption we have that axb = 0 for each x € p with 22 = 0.

We first consider the case that ab = 0. Let x € p. We claim that
axb = 0. Suppose not. By assumption, there is a polynomial h(z) =
r4rox?+ -+ rpaf with & > 2 and ria® # 0, where each r; is an integer,
satisfying

(1) a(x +7rox® + -+ + 12")b = 0.

By (1), each element in zbRa(1l + rox + - -+ + rxz¥~1) lies in p and has
square zero. Thus we have azbRa(1 + rox + - - - + rx*~1)b = 0, implying
a(l +roz + -+ + rpx®1)b = 0 as axb # 0. Since ab = 0, we have
a(ro+ryr+---+rpz*~2)zb = 0. Repeating the same process we eventually
conclude that ryaxb = 0 and so axb = 0 follows, a contradiction. Hence,
apb = 0 follows, as desired.

We next consider the general case. Let « € p; then xza € p. By assump-
tion, there is a polynomial g,,(t) € Z[t] so that a(za — zarag..(xa))b =0
and so (az — (az)?gzq(ax))(ab) = 0. Since R does not satisfy the property
(*), applying Lemma 3 to the right ideal ap we conclude that ab = 0.
Therefore we have apb = 0 by the first case.

Finally, when apb # 0 we must prove that p = eR, where e = €2 € R
is such that eRe is a field. Indeed, suppose that apb # 0; then R has the
property (). Denote by H the socle of R. If p is a minimal right ideal
of R, then we are done. Thus we may assume that p is not minimal, nor is
pH. Since apb # 0, we have apHb # 0 and so there exists an idempotent
g € pH such that ag # 0. Let r € R; then gr(1 — g) is an element in p
with square zero. By assumption, agr(l — g)b = 0. Then agR(1 —g)b =0
and so b = gb € p. Let pH = pH/pH N {r(pH). We claim that pH is a
noncommutative prime ring. Since pH is not a minimal right ideal of R,
it contains an idempotent f of rank 2. Then it is clear that fH f can be
canonically embedded in pH. However, fH f is isomorphic to My(F), the
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2 by 2 matrix ring over F', where F is the associated field of R. Thus pH
is not commutative, as asserted.

Let u,z € pH and z € H. Then there is a polynomial g,(t) € Z[t]
(depending on z) so that wa(z — T2¢gz(T))bz = 0 in pH. In view of Theo-
rem 1, either @wa = 0 or bz = 0. That is, either pHapH = 0 or bHpH = 0.
So either ap = 0 or b = 0, a contradiction. This proves the theorem. [

We turn next to the proof of Theorem 3. For our proof we need a spe-
cial case of KHARCHENKO’s theorem [11, Theorem 1]. For the convenience
of reference, we give its statement here.

Lemma 4 (KHARCHENKO [11]). Let R be a prime ring and let d be an
X-outer derivation of R. Suppose that 37" | a;d(x)bi+ 35, cjxd; =0 for
all x € I, a nonzero ideal of R, where a;,b;,cj,d; € Q. Then Y .| a;yb; +
> iy cjrd; =0 for all z,y € R.

In Lemma 4 we only assume that the linear identity holds on a nonzero
ideal I, not on the whole prime ring R. Indeed, we remark that, applying
the same argument with some minor modifications, [11, Theorem 1] still
remains true even if the linear differential identity considered holds only
on a nonzero ideal (instead of holding on the whole prime ring).

Lemma 5. Let R be a prime ring with a nonzero derivation d and e
a nontrivial idempotent of ). Suppose that d(ex(1 —e)) =0 for all x € I,
a nonzero ideal of R. Then there exists b € @ such that d = ad(b) and
be = 0.

PROOF. By assumption, we have
(2) de)z(l —e)+ed(z)(l —e) —exd(e) =0

for all x € I. Suppose on the contrary that d is X-outer. Applying
Lemma 4 to (2) yields

(3) dle)x(l—e)+ey(l —e) —exd(e) =0

for all z,y € R. In particular, eR(1 —e) = 0 and so either e = 0 or
e = 1, which is a contradiction since e is nontrivial. Thus d is X-inner.
Write d = ad(p) for some p € (. Expanding d(ex(1 —e)) = 0 yields
pex(l—e) = ex(1—e)p for all z € I and hence for all x € R [7, Theorem 2].
It follows from MARTINDALE’s lemma [14] that pe = fe for some g3 € C.
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We set b =p — ( € Q. Then it is clear that d = ad(b) and be = 0. This
proves the lemma. O

PROOF of Theorem 3. Let A = {x € p | d(x) = 0}.Then A is a
subring of the ring p and p is co-radical over A. Set 5 = p/p N lr(p) and
let A be the canonical image of A in p. It is clear that p is also co-radical
over A and A is a prime ring [5, Lemma 4]. In view of [1, Theorem 2],
either p is commutative, or ZX is a dense submodule of py.

Suppose that p is not commutative. Let z € p. Then there exists a
dense right ideal I of A such that I C A, where I denotes the preim-
age of T in A. Let a; € I. There exists an element ay € A such that
(a1 —a2)p = 0. In particular, (za; — az)A = 0. Since d(4) = 0, we
conclude that d(z)a;A = 0. In particular, pd(z) I A = 0. Since T A is
still a dense right ideal of A, we conclude that pd(z) = 0 in p. That is,

pd(z)p = 0 for all z € p and, hence, d(p)p = 0 follows. In view of Her-
stein’s theorem [10], there exists b € @ such that d = ad(b) and bp = 0.
Now, by assumption, for each = € p there is a polynomial g,(t) € Z]t]
(depending on ) so that d(x — 2%g,(z)) = 0. But bp = 0, so we have
(x — 2%g.(x))b = 0. Choose a nonzero ideal J of R such that bJ C R.
Then (x — 22g,(x))bJ = 0. In view of Theorem 2, either pbJ = 0 or
p = eR, where e = €2 € R, such that eRe is a field. The latter case implies
that p is a field, a contradiction. Thus pbJ = 0 follows and so b = 0, a
contradiction again.

Thus we may always assume that p is commutative, that is, [p, p]p = 0.
In view of [13, Proposition], pC' = gRC' for some nonzero idempotent g
in the socle of RC. Note that each element in [p, p] has square zero. By
assumption, we have d([p, p]) = 0. Since g € pC, we can choose a nonzero
ideal I of R such that Ig C R and gI C p. Then gI%g+gI*(1—g) C p and
so gI?gI*(1 — g) = [91%g, gI*(1 — g)] C [p, p]. Thus d(gI*gI*(1 - g)) =0
follows. Note that I%gI? is a nonzero ideal of R. If pC = RC, then R
is commutative, as desired. Suppose that pC' # RC and hence g is a
nontrivial idempotent in RC. In view of Lemma 5, we see that d = ad(b)
for some b € @ such that bp = 0. By assumption, for x € p there is a
polynomial g, (t) € Z[t] (depending on x) so that 0 = [z — 2%g,(z),b] =
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(x — 2%g,(2))b. But pb # 0, so, in view of Theorem 2, p = eR, where
e = €% € R, such that eRe is a field, proving the theorem. Il

We turn finally to the proof of Theorem 5. Following the notation
given in [2], we let Alg = {t"—t"*lp(t) |n > 1, n € Z, p(t) € Z[t]}. Aring
R is called a special algebraic extension of its subring A if for each z € R
there is a polynomial f,(t) € Alg, depending on z, such that f,(z) € A.
The following theorem we need is a special case of [2, Theorem 1].

Theorem 6. Let R be a noncommutative domain. Suppose that R is
a special algebraic extension of its subring A. Then the complete rings of
right quotients of R and A coincide.

We need one more lemma in the proof of Theorem 5. Since it is an
easy observation, we only give its statement without proof.

Lemma 6. Let R be a domain of characteristic 0, d a derivation of R
and a € R. Suppose that there is a polynomial f(t) € Z[t] with deg, f(t) >1
such that both d(a) € Z(R) and d(f(a)) € Z(R). Then either d(a) = 0 or
a € Z(R).

PROOF of Theorem 5. We first dispose of two cases.

Case 1. Suppose that R is a domain of characteristic zero. Let
a € R be such that d(a) € Z(R). By assumption, there is a polyno-
mial p(t) € Z[t], depending on a?, such that d(a® — a’p(a?)) € Z(R). In
view of Lemma 6, either d(a) =0 or a € Z(R). Thus we have proved the
conclusion: for a € R if d(a) € Z(R), then either d(a) = 0 or a € Z(R).
Set B ={a € R|d(a) € Z(R)}. Now, B is an additive group and since
d(Z(R)) C Z(R), B is the union of its two additive subgroups: Z(R) and
{a € R|d(a) =0}. Thus either B= Z(R) or B={a € R|d(a) =0}.

Suppose first that B = Z(R). Then, by assumption, for each x €
R there is a polynomial g¢,(t) € Z[t] (depending on z) such that d(z —
22g,(7)) € Z(R) and, hence, z — 22g,(z) € Z(R). Applying Herstein’s
theorem [8] yields that R is commutative. Suppose next that B = {a €
R | d(a) = 0}. Then for each x € R there is a polynomial g,(t) € Z]t]
(depending on z) such that d(x — 2%g,(x)) = 0. In view of Theorem 4, R

is commutative. Case 1 is then proved.



Derivations and co-radical extensions of rings 83

Case 2. Suppose that R is a domain of characteristic p > 0. Let
x € R. By assumption, there is a polynomial g¢,(¢) € Z[t] (depending
on ) such that d(z — 2%g,(z)) € Z(R) and so d((z — 2%g.(z))?) = p(z —
229, (2))P~Yd(x — 229, (x)) = 0. Thus (z — 2%g,(x))? € ker(d). That is, R
is a special algebraic extension of its subring ker(d). If R is commutative,
we are done in this case. Hence, we assume that R is not commutative.
In view of Theorem 6, ker(d) is a dense submodule of R as right ker(d)-
modules. Let x € R. Choose a dense right ideal p of ker(d) such that
xzp C ker(d). Thus 0 = d(zp) = d(x)p as d(p) = 0. Since R is a domain,
d(xz) = 0 follows. This proves d = 0, a contradiction.

We turn to the general case. By Case 1 and Case 2, we may assume
that R is not a domain. Since R is a prime ring, there is 0 # a¢ € R with
a? = 0. Let x € R; then (aza)? = 0. Thus, by assumption, d(axa) € Z(R)
and so

(4) d(a)za + ad(x)a + azxd(a) € Z(R).

Suppose for the moment that d is X-outer. Applying Lemma 4 yields that
d(a)xa+ aya+ axd(a) € Z(R) for all z,y € R. In particular, aRa C Z(R)
and so a = 0, a contradiction. Thus d must be X-inner. Write d = ad(b)
for some b € Q). We now reduce (4) to

(5) bara — axab € Z(R)
for all x € R. Suppose for the moment that
(6) bara = arab

for all z € R. In view of MARTINDALE’s lemma [14], there exists 5 € C
such that (b—)a = 0. Since d = ad(b) = ad(b—3), replacing b by b— 3 we
may assume that ba = 0. For z € R there exists a polynomial g, (t) € Z]t]
such that

[b,az — (az)?gas(az)] € Z(R)

and so

(7) (az — (ax)?gas(az))b =0
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for all z € R. Applying Lemma 3 to (7) yields that RC is a strongly
primitive ring. Suppose next that baxa — axab # 0 for some = € R.
Applying [6, Theorem 1] we have dimgc RC' = 4. Thus RC is also a strongly
primitive ring.

In either case, RC is a primitive ring with nonzero socle H and H pos-
sesses nontrivial idempotents as R is not a domain. For each idempotent
e € H we choose a nonzero ideal I of R such that el(1—e)+(1—e)le C R.
Thus, by assumption, [b,ex(1 —e)] € Z(R) and [b, (1 — e)ze] € Z(R) and
so [b,[e,z]] € Z(R) for all x € I and hence [b,[e,z]] € C for all z € H
(see [7, Theorem 2]). Also, the additive subgroup of H generated by all
idempotents in H contains [H, H] and, moreover, [[H, H|, H| = [H, H] as
H is a noncommutative simple ring. Therefore, we have [b, [H, H]] C C,
implying that [b, [@Q,Q]] € C by [7, Theorem 2| again. It is clear that
[Q, Q] is a noncentral Lie ideal of the prime ring Q. Since b ¢ C, applying
[12, Lemma 8] we conclude that char R = 2 and dim¢c RC' = 4. But RC
is not a domain, so RC = @Q = My(C). We claim that C is algebraic
over GF(2). Let g € C. By assumption, there is a polynomial g(t) €
Z[t] such that [b, Be1r — (Be11)?g(Be11)] € C, implying [b,y] € C, where
y = (8- 3*g(B))enr. If y ¢ [RC,RC], then Cy + [RC,RC] = RC and
so [b, RC] C C, implying that b € C, a contradiction. Thus y € [RC, RC]|
and so the trace of y is 0. That is, 3 — 3%g(3) = 0. Thus 3 is algebraic
over GF(2), as desired. This proves the theorem. O
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