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Derivations and co-radical extensions of rings

By TSIU-KWEN LEE (Taipei) and CHING-YUEH PAN (Taipei)

Abstract. A ring R is said to be co-radical over a subring A if for each x ∈ R
there exists a polynomial gx(t) (depending on x) having integral coefficients so that
x − x2gx(x) ∈ A. Herstein proved that a ring which is co-radical over its center must
be commutative. In this paper we give a generalization of Herstein’s theorem for the
prime case in terms of derivations with assumptions on one-sided ideals.

§1. Introduction and main results

Throughout this paper all rings are associative, not necessarily with
unity. We denote by Z[t] the polynomial ring with indeterminate t over
Z, the ring of integers. A ring R is called co-radical over a subring A if
for each x ∈ R there exists a polynomial gx(t) ∈ Z[t] (depending on x)
so that x − x2gx(x) ∈ A. In [8] Herstein proved that a ring which is
co-radical over its center must be commutative. In [4] Chacron gave a
generalization of Herstein’s theorem for the semiprime case by the use of
the cohypercenter T (R) of a ring R. An element a ∈ R belongs to T (R)
if for each x ∈ R there exists a polynomial gx(t) ∈ Z[t] (depending on x)
so that [a, x − x2gx(x)] = 0. Chacron proved that if R is a semiprime
ring, then T (R) coincides with the center of R. In terms of derivations
he just proved that if d is an inner derivation of the semiprime ring R
satisfying d(x − x2gx(x)) = 0 for all x ∈ R, then d = 0. For the general
case of derivations, in a recent paper [3] Bell proved the theorem: Let R
be a prime ring with charR 6= 2, and let d be a derivation of R such that
d3 6= 0. If there exists a fixed integer n > 1 such that d(x − xn) ∈ Z(R),
the center of R, for all x ∈ R, then R is commutative. The goal of this
paper is to extend these results by proving the following theorems.
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Theorem 1. Let R be a noncommutative prime ring and a, b ∈ R.
Suppose that for each x ∈ R, there is a polynomial gx(t) ∈ Z[t] (depending
on x) so that a(x− x2gx(x))b = 0. Then either a = 0 or b = 0.

Theorem 2. Let R be a noncommutative prime ring, ρ a right ideal
of R and a, b ∈ R. Suppose that for each x ∈ ρ, there is a polynomial
gx(t) ∈ Z[t] (depending on x) so that a

(
x− x2gx(x)

)
b = 0. Then aρb = 0

unless ρ = eR, where e = e2 ∈ R, such that eRe is a field.

Theorem 3. Let R be a prime ring, ρ a nonzero right ideal of R
and d a nonzero derivation of R. Suppose that for each x ∈ ρ, there is
a polynomial gx(t) ∈ Z[t] (depending on x) so that d(x − x2gx(x)) = 0.
Then R is commutative except when ρ = eR, where e = e2 ∈ R, such that
eRe is a field, and d = ad(b) and bρ = 0 for some b ∈ Q, the symmetric
Martindale quotient ring of R.

As an immediate consequence of Theorem 3 we have the following

Theorem 4. Let R be a prime ring and let d be a nonzero derivation
of R. Suppose that for each x ∈ R, there is a polynomial gx(t) ∈ Z[t]
(depending on x) so that d(x− x2gx(x)) = 0. Then R is commutative.

Finally we will extend Theorem 4 to the central case. However, we
cannot conclude the commutativity of the prime ring R. The following
provides counterexamples.

Examples. Let R = M2(C), the 2 by 2 matrix ring over a field C,
b ∈ [R,R] \C and d the inner derivation of R defined by the element b. If
C is algebraic over GF(2), the Galois field of two elements, then for each
x ∈ R, there is a positive integer q = q(x) > 1 (depending on x) so that
d(x− xq) ∈ C.

Proof. We denote by F the algebraic closure of C and let S =
M2(F ). Then R ⊆ S. Let x, y ∈ [R, R]. A direct computation proves that
xy + yx = (x + y)2 − x2 − y2 ∈ C. Since char R = 2, we have [x, y] ∈ C.
That is,

[
[R, R], [R, R]

] ⊆ C. In particular, [b, [R, R]] ⊆ C. Let x ∈ R.
Then there exists an invertible matrix u ∈ S such that uxu−1 is an upper
triangular matrix in S. Since F is algebraic over GF(2), there exists a
positive integer q = q(x) > 1 such that uxu−1−uxqu−1 is a strictly upper
triangular matrix in S. In particular, the trace of x − xq ∈ R is zero.
Therefore, x− xq ∈ [R, R] and so [b, x− xq] ∈ [

b, [R,R]
] ⊆ C, as desired.

This proves our result. ¤
In fact, the examples above are the only exceptional cases. Indeed,

we will prove the following
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Theorem 5. Let R be a prime ring with center Z(R) and d a nonzero

derivation of R. Suppose that for each x ∈ R, there is a polynomial

gx(t) ∈ Z[t] (depending on x) so that d(x − x2gx(x)) ∈ Z(R). Then R

is commutative except when RC ∼= M2(C) with C algebraic over GF(2),
where C denotes the extended centroid of R.

§2. Proofs of theorems

From now on, R will denote a prime ring with extended centroid C

and symmetric Martindale quotient ring Q. We denote by Z(R) the center
of R and by J(R) the Jacobson radical of R. For p ∈ Q we denote by ad(p)
the inner derivation of Q induced by the element p, that is, ad(p)(x) =
[p, x] = px−xp for x ∈ Q. A derivation d of R is called X-inner if d = ad(p)
for some p ∈ Q. Otherwise, d is called X-outer. It is well-known that each
derivation of R can be uniquely extended to a derivation of Q. We first
state a result due to Chacron [5].

Lemma 1. Let R be a prime ring and a, b ∈ R. Suppose that for

each x ∈ R, there is a polynomial gx(t) ∈ Z[t] (depending on x) so that

a(x− x2gx(x))b = 0. If ab = 0, then either a = 0 or b = 0.

Proof. See the proof of [5, Lemma 3]. ¤

Lemma 2. Let R be a noncommutative prime ring and a ∈ R. Sup-

pose that for each x ∈ R, there is a polynomial gx(t) ∈ Z[t] (depending

on x) so that a(x− x2gx(x)) = 0. Then a = 0.

Proof. Suppose first that J(R) 6= 0. Then, by assumption, for each
x ∈ J(R) there is a polynomial gx(t) ∈ Z[t] (depending on x) so that
a(x−x2gx(x)) = 0. Thus ax(1−xgx(x)) = 0. From the fact that xgx(x) ∈
J(R) it follows that ax = 0. That is, aJ(R) = 0 and so a = 0 by the
primeness of R.

Suppose next that J(R) = 0. We first consider the case that R is
a right primitive ring. By the density theorem, R acts densely on DV ,
where DV is a left vector space over a division ring D. Suppose that
there is a v ∈ V such that va and v are D-independent. Then we can
choose an x ∈ R such that vax = v and vx = 0. Then vax2 = 0 and
so 0 = va(x − x2gx(x)) = vax = v, which is absurd. Therefore, for each
v ∈ V we see that va and v are D-dependent. Now, a standard argument
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proves that a is central in R. We turn next to the general case. Let P be
a right primitive ideal of R. Then R/P is a right primitive ring preserving
our assumptions. Thus a = a + P is central in R/P and so [a,R] ⊆ P .
Since J(R) = 0, the intersection of all right primitive ideals of R is zero.
Therefore we have [a,R] = 0, implying that a ∈ Z(R). If a 6= 0, then for
each x ∈ R, there is a polynomial gx(t) ∈ Z[t] (depending on x) so that
x− x2gx(x) = 0. In view of Herstein’s theorem [8], R is commutative, a
contradiction. This proves the lemma. ¤

Proof of Theorem 1. Clearly, we may assume that a = b. Denote
by ρ the right ideal of R generated by a, that is, ρ = aR + Za. Set
ρ = ρ/ρ ∩ `R(ρ), where `R(ρ) is the left annihilator of ρ in R. It is clear
that ρ is still a prime ring. By assumption, for each x ∈ ρ, there is a
polynomial gx(t) ∈ Z[t] (depending on x) so that a(x − x2gx(x)) = 0. In
view of Lemma 2, either a = 0 or [ρ, ρ] = 0. The first case gives a2 = 0,
implying that a = 0 by Lemma 1. The latter case implies that [ρ, ρ]ρ = 0
and hence R is a prime GPI-ring. In view of Martindale’s theorem [14],
RC is a strongly primitive ring, where C is the extended centroid of R. If
RC is a division ring, then there is nothing to prove. Suppose that RC

is not a division ring. Denote by H the socle of RC. Then H is a simple
ring with minimal one-sided ideals and possesses nontrivial idempotents.
Let e be an idempotent in H. Choose a nonzero ideal I of R so that
eI + Ie + eIe ⊆ R. For x ∈ I we have ex(1 − e) ∈ R. Since ex(1 − e) is
an element of square zero, by assumption we have aex(1− e)a = 0. Thus
(1 − e)ae = 0 follows. Analogously, ea(1 − e) = 0 and hence [a, e] = 0.
Denote by E the additive subgroup of H generated by all idempotents
in H. In view of [9, Corollary p. 18], [H, H] ⊆ E. Thus [a, [H, H]] = 0.
By [9, Corollary p. 9], the subring generated by [H, H] is equal to H and
so [a,H] = 0. Thus a is central in R. If a 6= 0, then for each x ∈ R, there
is a polynomial gx(t) ∈ Z[t] (depending on x) so that x− x2gx(x) = 0. In
view of Herstein’s theorem [8], R is a commutative ring, a contradiction.
This proves the theorem. ¤

The following lemma is due to Babkov [1, Lemma 7].

Lemma 3. Let R be a noncommutative prime ring, ρ a nonzero right

ideal of R and a ∈ R. Suppose that for each x ∈ ρ, there is a polynomial

gx(t) ∈ Z[t] (depending on x) so that (x − x2gx(x))a = 0. Then a = 0
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unless R is a primitive ring with nonzero socle and its associated division

ring is a field.

For simplicity, we say that a ring R has the property (∗) if it is a
primitive ring with nonzero socle and its associated division ring is a field.
We are now ready to give the proof of Theorem 2.

Proof of Theorem 2. Suppose that R does not satisfy the prop-
erty (∗). By assumption we have that axb = 0 for each x ∈ ρ with x2 = 0.

We first consider the case that ab = 0. Let x ∈ ρ. We claim that
axb = 0. Suppose not. By assumption, there is a polynomial h(x) =
x+ r2x

2 + · · ·+ rkxk with k ≥ 2 and rkxk 6= 0, where each ri is an integer,
satisfying

(1) a(x + r2x
2 + · · ·+ rkxk)b = 0.

By (1), each element in xbRa(1 + r2x + · · · + rkxk−1) lies in ρ and has
square zero. Thus we have axbRa(1 + r2x + · · ·+ rkxk−1)b = 0, implying
a(1 + r2x + · · · + rkxk−1)b = 0 as axb 6= 0. Since ab = 0, we have
a(r2+r3x+· · ·+rkxk−2)xb = 0. Repeating the same process we eventually
conclude that rkaxb = 0 and so axb = 0 follows, a contradiction. Hence,
aρb = 0 follows, as desired.

We next consider the general case. Let x ∈ ρ; then xa ∈ ρ. By assump-
tion, there is a polynomial gxa(t) ∈ Z[t] so that a(xa− xaxagxa(xa))b = 0
and so

(
ax− (ax)2gxa(ax)

)
(ab) = 0. Since R does not satisfy the property

(∗), applying Lemma 3 to the right ideal aρ we conclude that ab = 0.
Therefore we have aρb = 0 by the first case.

Finally, when aρb 6= 0 we must prove that ρ = eR, where e = e2 ∈ R

is such that eRe is a field. Indeed, suppose that aρb 6= 0; then R has the
property (∗). Denote by H the socle of R. If ρ is a minimal right ideal
of R, then we are done. Thus we may assume that ρ is not minimal, nor is
ρH. Since aρb 6= 0, we have aρHb 6= 0 and so there exists an idempotent
g ∈ ρH such that ag 6= 0. Let r ∈ R; then gr(1 − g) is an element in ρ

with square zero. By assumption, agr(1− g)b = 0. Then agR(1− g)b = 0
and so b = gb ∈ ρ. Let ρH = ρH/ρH ∩ `R(ρH). We claim that ρH is a
noncommutative prime ring. Since ρH is not a minimal right ideal of R,
it contains an idempotent f of rank 2. Then it is clear that fHf can be
canonically embedded in ρH. However, fHf is isomorphic to M2(F ), the
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2 by 2 matrix ring over F , where F is the associated field of R. Thus ρH

is not commutative, as asserted.
Let u, x ∈ ρH and z ∈ H. Then there is a polynomial gx(t) ∈ Z[t]

(depending on x) so that ua
(
x− x2gx(x)

)
bz = 0 in ρH. In view of Theo-

rem 1, either ua = 0 or bz = 0. That is, either ρHaρH = 0 or bHρH = 0.
So either aρ = 0 or b = 0, a contradiction. This proves the theorem. ¤

We turn next to the proof of Theorem 3. For our proof we need a spe-
cial case of Kharchenko’s theorem [11, Theorem 1]. For the convenience
of reference, we give its statement here.

Lemma 4 (Kharchenko [11]). Let R be a prime ring and let d be an

X-outer derivation of R. Suppose that
∑m

i=1 aid(x)bi+
∑n

j=1 cjxdj =0 for

all x ∈ I, a nonzero ideal of R, where ai, bi, cj , dj ∈ Q. Then
∑m

i=1 aiybi +∑n
j=1 cjxdj = 0 for all x, y ∈ R.

In Lemma 4 we only assume that the linear identity holds on a nonzero
ideal I, not on the whole prime ring R. Indeed, we remark that, applying
the same argument with some minor modifications, [11, Theorem 1] still
remains true even if the linear differential identity considered holds only
on a nonzero ideal (instead of holding on the whole prime ring).

Lemma 5. Let R be a prime ring with a nonzero derivation d and e

a nontrivial idempotent of Q. Suppose that d(ex(1− e)) = 0 for all x ∈ I,

a nonzero ideal of R. Then there exists b ∈ Q such that d = ad(b) and

be = 0.

Proof. By assumption, we have

(2) d(e)x(1− e) + ed(x)(1− e)− exd(e) = 0

for all x ∈ I. Suppose on the contrary that d is X-outer. Applying
Lemma 4 to (2) yields

(3) d(e)x(1− e) + ey(1− e)− exd(e) = 0

for all x, y ∈ R. In particular, eR(1 − e) = 0 and so either e = 0 or
e = 1, which is a contradiction since e is nontrivial. Thus d is X-inner.
Write d = ad(p) for some p ∈ Q. Expanding d(ex(1 − e)) = 0 yields
pex(1−e) = ex(1−e)p for all x ∈ I and hence for all x ∈ R [7, Theorem 2].
It follows from Martindale’s lemma [14] that pe = βe for some β ∈ C.
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We set b = p − β ∈ Q. Then it is clear that d = ad(b) and be = 0. This
proves the lemma. ¤

Proof of Theorem 3. Let A = {x ∈ ρ | d(x) = 0}.Then A is a
subring of the ring ρ and ρ is co-radical over A. Set ρ = ρ/ρ ∩ `R(ρ) and
let A be the canonical image of A in ρ. It is clear that ρ is also co-radical
over A and A is a prime ring [5, Lemma 4]. In view of [1, Theorem 2],
either ρ is commutative, or AA is a dense submodule of ρA.

Suppose that ρ is not commutative. Let x ∈ ρ. Then there exists a
dense right ideal I of A such that xI ⊆ A, where I denotes the preim-
age of I in A. Let a1 ∈ I. There exists an element a2 ∈ A such that
(xa1 − a2)ρ = 0. In particular, (xa1 − a2)A = 0. Since d(A) = 0, we
conclude that d(x)a1A = 0. In particular, ρd(x) I A = 0. Since I A is
still a dense right ideal of A, we conclude that ρd(x) = 0 in ρ. That is,
ρd(x)ρ = 0 for all x ∈ ρ and, hence, d(ρ)ρ = 0 follows. In view of Her-
stein’s theorem [10], there exists b ∈ Q such that d = ad(b) and bρ = 0.
Now, by assumption, for each x ∈ ρ there is a polynomial gx(t) ∈ Z[t]
(depending on x) so that d(x − x2gx(x)) = 0. But bρ = 0, so we have
(x − x2gx(x))b = 0. Choose a nonzero ideal J of R such that bJ ⊆ R.
Then (x − x2gx(x))bJ = 0. In view of Theorem 2, either ρbJ = 0 or
ρ = eR, where e = e2 ∈ R, such that eRe is a field. The latter case implies
that ρ is a field, a contradiction. Thus ρbJ = 0 follows and so b = 0, a
contradiction again.

Thus we may always assume that ρ is commutative, that is, [ρ, ρ]ρ = 0.
In view of [13, Proposition], ρC = gRC for some nonzero idempotent g

in the socle of RC. Note that each element in [ρ, ρ] has square zero. By
assumption, we have d([ρ, ρ]) = 0. Since g ∈ ρC, we can choose a nonzero
ideal I of R such that Ig ⊆ R and gI ⊆ ρ. Then gI2g+gI2(1−g) ⊆ ρ and
so gI2gI2(1 − g) = [gI2g, gI2(1 − g)] ⊆ [ρ, ρ]. Thus d(gI2gI2(1 − g)) = 0
follows. Note that I2gI2 is a nonzero ideal of R. If ρC = RC, then R

is commutative, as desired. Suppose that ρC 6= RC and hence g is a
nontrivial idempotent in RC. In view of Lemma 5, we see that d = ad(b)
for some b ∈ Q such that bρ = 0. By assumption, for x ∈ ρ there is a
polynomial gx(t) ∈ Z[t] (depending on x) so that 0 = [x − x2gx(x), b] =
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(x − x2gx(x))b. But ρb 6= 0, so, in view of Theorem 2, ρ = eR, where
e = e2 ∈ R, such that eRe is a field, proving the theorem. ¤

We turn finally to the proof of Theorem 5. Following the notation
given in [2], we let Alg = {tn−tn+1p(t) | n ≥ 1, n ∈ Z, p(t) ∈ Z[t]}. A ring
R is called a special algebraic extension of its subring A if for each x ∈ R

there is a polynomial fx(t) ∈ Alg, depending on x, such that fx(x) ∈ A.
The following theorem we need is a special case of [2, Theorem 1].

Theorem 6. Let R be a noncommutative domain. Suppose that R is

a special algebraic extension of its subring A. Then the complete rings of

right quotients of R and A coincide.

We need one more lemma in the proof of Theorem 5. Since it is an
easy observation, we only give its statement without proof.

Lemma 6. Let R be a domain of characteristic 0, d a derivation of R

and a ∈ R. Suppose that there is a polynomial f(t)∈Z[t] with degt f(t)> 1
such that both d(a) ∈ Z(R) and d(f(a)) ∈ Z(R). Then either d(a) = 0 or

a ∈ Z(R).

Proof of Theorem 5. We first dispose of two cases.

Case 1. Suppose that R is a domain of characteristic zero. Let
a ∈ R be such that d(a) ∈ Z(R). By assumption, there is a polyno-
mial p(t) ∈ Z[t], depending on a2, such that d(a2 − a4p(a2)) ∈ Z(R). In
view of Lemma 6, either d(a) = 0 or a ∈ Z(R). Thus we have proved the
conclusion: for a ∈ R if d(a) ∈ Z(R), then either d(a) = 0 or a ∈ Z(R).
Set B = {a ∈ R | d(a) ∈ Z(R)}. Now, B is an additive group and since
d(Z(R)) ⊆ Z(R), B is the union of its two additive subgroups: Z(R) and
{a ∈ R | d(a) = 0}. Thus either B = Z(R) or B = {a ∈ R | d(a) = 0}.

Suppose first that B = Z(R). Then, by assumption, for each x ∈
R there is a polynomial gx(t) ∈ Z[t] (depending on x) such that d(x −
x2gx(x)) ∈ Z(R) and, hence, x − x2gx(x) ∈ Z(R). Applying Herstein’s
theorem [8] yields that R is commutative. Suppose next that B = {a ∈
R | d(a) = 0}. Then for each x ∈ R there is a polynomial gx(t) ∈ Z[t]
(depending on x) such that d(x− x2gx(x)) = 0. In view of Theorem 4, R

is commutative. Case 1 is then proved.
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Case 2. Suppose that R is a domain of characteristic p > 0. Let
x ∈ R. By assumption, there is a polynomial gx(t) ∈ Z[t] (depending
on x) such that d(x− x2gx(x)) ∈ Z(R) and so d((x− x2gx(x))p) = p(x−
x2gx(x))p−1d(x− x2gx(x)) = 0. Thus (x− x2gx(x))p ∈ ker(d). That is, R

is a special algebraic extension of its subring ker(d). If R is commutative,
we are done in this case. Hence, we assume that R is not commutative.
In view of Theorem 6, ker(d) is a dense submodule of R as right ker(d)-
modules. Let x ∈ R. Choose a dense right ideal ρ of ker(d) such that
xρ ⊆ ker(d). Thus 0 = d(xρ) = d(x)ρ as d(ρ) = 0. Since R is a domain,
d(x) = 0 follows. This proves d = 0, a contradiction.

We turn to the general case. By Case 1 and Case 2, we may assume
that R is not a domain. Since R is a prime ring, there is 0 6= a ∈ R with
a2 = 0. Let x ∈ R; then (axa)2 = 0. Thus, by assumption, d(axa) ∈ Z(R)
and so

(4) d(a)xa + ad(x)a + axd(a) ∈ Z(R).

Suppose for the moment that d is X-outer. Applying Lemma 4 yields that
d(a)xa+aya+axd(a) ∈ Z(R) for all x, y ∈ R. In particular, aRa ⊆ Z(R)
and so a = 0, a contradiction. Thus d must be X-inner. Write d = ad(b)
for some b ∈ Q. We now reduce (4) to

(5) baxa− axab ∈ Z(R)

for all x ∈ R. Suppose for the moment that

(6) baxa = axab

for all x ∈ R. In view of Martindale’s lemma [14], there exists β ∈ C

such that (b−β)a = 0. Since d = ad(b) = ad(b−β), replacing b by b−β we
may assume that ba = 0. For x ∈ R there exists a polynomial gax(t) ∈ Z[t]
such that [

b, ax− (ax)2gax(ax)
] ∈ Z(R)

and so

(7)
(
ax− (ax)2gax(ax)

)
b = 0
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for all x ∈ R. Applying Lemma 3 to (7) yields that RC is a strongly
primitive ring. Suppose next that baxa − axab 6= 0 for some x ∈ R.
Applying [6, Theorem 1] we have dimC RC = 4. Thus RC is also a strongly
primitive ring.

In either case, RC is a primitive ring with nonzero socle H and H pos-
sesses nontrivial idempotents as R is not a domain. For each idempotent
e ∈ H we choose a nonzero ideal I of R such that eI(1−e)+(1−e)Ie ⊆ R.
Thus, by assumption, [b, ex(1− e)] ∈ Z(R) and [b, (1− e)xe] ∈ Z(R) and
so [b, [e, x]] ∈ Z(R) for all x ∈ I and hence [b, [e, x]] ∈ C for all x ∈ H

(see [7, Theorem 2]). Also, the additive subgroup of H generated by all
idempotents in H contains [H, H] and, moreover, [[H, H],H] = [H, H] as
H is a noncommutative simple ring. Therefore, we have [b, [H,H]] ⊆ C,
implying that [b, [Q,Q]] ⊆ C by [7, Theorem 2] again. It is clear that
[Q,Q] is a noncentral Lie ideal of the prime ring Q. Since b /∈ C, applying
[12, Lemma 8] we conclude that char R = 2 and dimC RC = 4. But RC

is not a domain, so RC = Q ∼= M2(C). We claim that C is algebraic
over GF(2). Let β ∈ C. By assumption, there is a polynomial g(t) ∈
Z[t] such that [b, βe11 − (βe11)2g(βe11)] ∈ C, implying [b, y] ∈ C, where
y =

(
β − β2g(β)

)
e11. If y /∈ [RC, RC], then Cy + [RC,RC] = RC and

so [b,RC] ⊆ C, implying that b ∈ C, a contradiction. Thus y ∈ [RC,RC]
and so the trace of y is 0. That is, β − β2g(β) = 0. Thus β is algebraic
over GF(2), as desired. This proves the theorem. ¤

Acknowledgement. The authors would like to express their sincere
thanks to the referee for her/his valuable suggestions and for pointing
out several misprints, which help to clarify the whole paper.
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