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On some special Finsler immersions in a Minkowski space

By AUREL BEJANCU (Safat) and HANI REDA FARRAN (Safat)

Abstract. We prove that totally umbilical proper Finsler submanifolds of a Min-
kowski space are totally geodesic. We also prove that minimal proper Finsler surfaces
with respect to the Finsler connection induced by the Berwald connection of a Minkow-
ski space must be totally geodesic.

1. Introduction

Studying the geometry of Finsler submanifolds is one of the most dif-
ficult aspects of Finsler geometry. This is because, in general, the induced
Finsler connection on the submanifold does not necessarily coincide with
its intrinsic Finsler connection. For the latest results on the theory of
Finsler submanifolds we refer the reader to our recent monograph
(A. Bejancu and H. R. Farran [3]).

One natural approach to this theory is to consider some “nice” Finsler
immersions (see for example L. M. Abatangelo [1], A. Bejancu [2],
S. Dragomir [4] and M. Matsumoto [5]). The present paper is a step
in this direction. Here we investigate totally umbilical and minimal Finsler
immersions. We deal with proper Finsler immersions which are character-
ized by the property that their Cartan tensor field is nowhere zero. First,
we prove that totally umbilical proper Finsler submanifolds of a Minkowski
space must be totally geodesic (Theorems 3.3 and 3.4). We should stress
that this result is true for both the Berwald and Cartan connections of a
Minkowski space. Minimal Finsler submanifolds are introduced by using
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the h-second fundamental form induced by the Berwald connection of the
ambient Minkowski space. Then we prove that minimal proper Finsler
surfaces of a Minkowski space are totally geodesic (Theorem 4.1). The
question whether this result is true for submanifolds of arbitrary dimen-
sion is still open.

2. Induced geometric objects on a Finsler submanifold

Let F̃m+n = (M̃, F̃ ) be a real (m + n)-dimensional Finsler manifold,
where F̃ is the fundamental function of F̃m+n. Denote by θ the zero
section of the tangent bundle TM̃ of M̃ and set TM̃0 = TM̃\θ(M̃). We
take (xi, yi), iε{1, . . . , m + n} as local coordinates on TM̃0, where (xi) are
the local coordinates on M̃ . Then there exists a Riemannian metric g̃ on
the vertical vector bundle V TM̃0 over TM̃0 whose local components are
given by

g̃ij(x, y) = g̃

(
∂

∂yi
,

∂

∂yj

)
=

1
2

∂2F̃ 2

∂yi∂yj
.

When M̃ = Rm+n, and F̃ is a function that depends on (y1, . . . , ym+n)
alone, we say that F̃m+n = (Rm+n, F̃ ) is a Minkowski space.

Throughout the paper we use the following ranges for indices,
i, j, k, . . . ∈ {1, . . . , m+n}; α, β, γ, . . . ∈{1, . . . , m}; a, b, c, . . . ∈{m+ 1, . . .

. . . , m+n}. We also use the Einstein convention, that is, repeated indices
with one upper index and one lower index denote summation over their
range. We denote the algebra of smooth functions on M̃ by F(M̃), and the
F(M̃)-module of smooth sections of a vector bundle E over M̃ by Γ(E).
Similar notations will be used for any other manifold. For terminology in
general, notations and basic results see A. Bejancu and H. R. Farran [3].

Now, we consider a real m-dimensional submanifold M of M̃ given
locally by the equations:

(2.1) xi = xi(u1, . . . , um); rank[Bi
α] = m; Bi

α =
∂xi

∂uα
.

Then the differential of the immersion of M in M̃ carries a point (uα, vα)
of TM0 into a point (xi(u), yi(u, v)) of TM̃0, where we set

(2.2) yi(u, v) = Bi
αvα.
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In order to simplify the equations involved in the study we use the nota-
tions:

Bij...
αβ... = Bi

αBj
β...; Bi

αβ =
∂2xi

∂uα∂uβ
; Bi

α0 = Bi
αβvβ .

As a consequence of (2.1) and (2.2) we obtain

(2.3) (a)
∂

∂uα
= Bi

α

∂

∂xi
+ Bi

α0

∂

∂yi
; (b)

∂

∂vα
= Bi

α

∂

∂yi
,

where {∂/∂uα, ∂/∂vα} and {∂/∂xi, ∂/∂yi} are the natural frame fields on
TM0 and TM̃0 respectively. From (2.3b) we deduce that the vertical vector
bundle V TM0 over TM0 is a vector subbundle of V TM̃0|T M0

. Hence the

Riemannian metric g̃ on V TM̃0 induces a Riemannian metric g on V TM0

whose local components are given by

(2.4) gαβ(u, v) = g

(
∂

∂uα
,

∂

∂vα

)
= g̃ij(x(u), y(u, v))Bij

αβ .

On the other hand, the fundamental function F̃ of F̃m+n induces on TM0

the function F locally given by

F (u, v) = F̃ (x(u), y(u, v)).

Then it is easy to check that Fm = (M, F ) is a Finsler manifold whose
Riemannian metric on V TM0 is exactly g = (gαβ) given by (2.4). Thus
we are entitled to say that Fm is a Finsler submanifold of F̃m+n.

The orthogonal complementary vector bundle to V TM0 in V TM̃0|T M0

is denoted by V TM⊥
0 and called the Finsler normal bundle of the Finsler

submanifold Fm. Thus we may consider a local field of orthonormal frames
{Na = N i

a∂/∂yi} in V TM⊥
0 with respect to g̃, i.e., we have:

(2.5) (a) g̃ijB
i
αN j

a = 0; (b) g̃ijN
i
aN j

b = δab.

Then we denote by [B̃α
i Ña

i ] the inverse of the matrix [Bi
αN i

a].
A complementary vector bundle HTM̃0 to V TM̃0 in TTM̃0 is called a

non-linear connection on F̃m+n. It is noteworthy that on F̃m+n there exists
a non-linear connection GTM̃0 = (G̃i

j) constructed from the fundamental
function F̃ as follows

(2.6) G̃i
j =

∂G̃i

∂yj
; G̃i =

1
4
g̃ih

(
∂2F̃ 2

∂yh∂xj
yj − ∂F̃ 2

∂xh

)
.
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We call GTM̃0 the canonical non-linear connection of F̃m+n. The induced
non-linear connection on Fm by GTM̃0 is HTM0 = (F β

α ), where we set

(2.7) F β
α = B̃β

i

(
Bi

α0 + G̃i
jB

j
α

)
.

Then according to the decomposition

TTM0 = HTM0 ⊕ V TM0,

we obtain a local frame field {δ/δuα, ∂/∂vα} where δ/δuα ∈ Γ(HTM0),
and it is given by

(2.8)
δ

δuα
=

∂

∂uα
− F β

α

∂

∂vβ
.

It is important to note that HTM0 is a vector subbundle of HTM̃0|T M0
⊕

V TM⊥
0 . More precisely, we have

(2.9)
δ

δuα
= Bi

α

δ

δxi
+ Ha

αNa,

where we set

(2.10) (a)
δ

δxi
=

∂

∂xi
− G̃j

i

∂

∂yj
; (b) Ha

α = Ña
i

(
Bi

α◦ + Bj
αG̃i

j

)
.

Also, we stress that, in general, the induced non-linear connection does not
coincide with the canonical non-linear connection GMT0 = (Gβ

α) of Fm.
Actually, we have

Gβ
α = F β

α + ga
β

αHa
γ vγ ,

where we set

ga
β

α = gβγ g̃ijkN i
aBjk

γα; g̃ijk =
1
2

∂g̃ij

∂yk
.

This is going to be the main difficulty in studying the geometry of a Finsler
immersion. The tensor field g̃ijk is known as the Cartan tensor field of
F̃m+n.

Now, we consider a Finsler connection F̃C = (∇̃, GTM̃0) =
(F̃i

k
j , C̃i

k
j , G̃

k
i ), where ∇̃ is a linear connection on V TM̃0 whose local

coefficients are defined by

∇̃δ/δxj

∂

∂yi
= F̃ k

i j

∂

∂yk
and ∇̃∂/∂yj

∂

∂yi
= C̃ k

i j

∂

∂yk
.
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In the literature, we frequently meet one of the following well known con-
nections (cf. A. Bejancu and H. R. Farran [3], pp. 39, 41).

– the Cartan connection (F̃i
kj, g̃i

k
j , G̃

k
i )

– the Berwald connection (G̃i
k

j , 0, G̃k
i )

– the Rund connection (F̃i
k

j , 0, G̃k
i ),

where we set

(2.11)

(a) F̃i
k

j =
1
2
g̃kh

(
δg̃hi

δxj
+

δg̃hj

δxi
− δg̃ij

δxh

)
;

(b) g̃i
k

j = g̃khg̃hij ; (c) G̃i
kj =

∂Gk
i

∂yj
.

The Finsler connection F̃C induces on Fm a Finsler connection IFC =
(∇,HTM0) = (Fα

γ
β , Cα

γ
β , F γ

α ), where ∇ is a linear connection on V TM0

with local coefficients (Fα
γ

β , Cα
γ

β) given by

(2.12)
(a) Fα

γ
β = B̃γ

i

(
Bi

αβ + F̃j
i
kBjk

αβ + C̃j
i
kBj

αHa
βNk

a

)
;

(b) Cα
γ

β = B̃γ
i C̃j

i
kBjk

αβ .

We call IFC the induced Finsler connection by F̃C. Also, F̃C induces
two vectorial Finsler connections:

FC = (∇,HTM0) = (F i
k

α, Ci
k

α, F β
α ) on V TM̃0|T M0

FC⊥ = (∇⊥,HTM0) = (Fa
b
α, Ca

b
α, F β

α ) on V TM⊥
0 ,

where ∇ and ∇⊥ are linear connections on the vector bundles V TM̃0|T M0

and V TM⊥
0 whose local coefficients are given by

(2.13) F i
k

α = F̃i
k

jB
j
α + C̃i

k
jN

j
aHa

α; (b) Ci
k

α = C̃i
k

jB
j
α,

and

(a) Fa
b
α = Ñ b

k

(
δNk

a

δuα
+ N i

aF i
k

α

)
;

(b) Ca
b
α = Ñ b

k

(
∂Nk

a

∂vα
+ N i

aCi
k

α

)
,

respectively.
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Usually, Finsler geometry deals with mixed Finsler tensor fields T

with local components Tαia
βjb satisfying

Tαia
βjb

∂ūµ

∂uα

∂x̄h

∂xi
Ad

a = T
µhd

γkc

∂ūγ

∂uβ

∂x̄k

∂xj
Ac

b,

with respect to the transformations of coordinates uµ = uµ(uα) and xh =
xh(xi) on M and M̃ respectively, and with respect to the transformations
N b = Ac

bNc of orthonormal fields of frames on V TM⊥
0 . Using IFC, FC

and FC⊥ we may define the relative h-covariant derivative and the relative
v-covariant derivative of T as follows:

Tαia
βjb|γ =

δTαia
βjb

δuγ
+ T εia

βjbFε
α

γ + Tαka
βjb F k

iγ + Tαic
βjbFc

a
γ(2.15)

− Tαia
εjb Fβ

ε
γ − Tαia

βkb F j
k

γ − Tαia
βjc Fb

c
γ ,

and

Tαia
βjb‖γ =

∂Tαia
βjb

∂vγ
+ T εia

βjbCε
α

γ + Tαka
βjb Ck

i
γ + Tαic

βjbCc
a

γ

− Tαia
εjb Cβ

ε
γ − Tαia

βkb Cj
k

γ − Tαia
βjc Cb

c
γ ,

respectively.
Finally, F̃C induces two second fundamental forms:

(2.17)
(a) Ha

αβ = Ña
i

(
Bi

αβ + F̃j
i
kBjk

αβ + C̃j
i
kBj

αHb
βNk

b

)

(b) V a
αβ = Ña

i C̃j
i
kBjk

αβ ,

and two shape operators:

(2.18)

(a) H ′β
a α = −B̃β

k

(
δNk

a

δuα
+ N i

aF i
k

α

)

(b) V ′β
a α = −B̃β

k

(
∂Nk

a

∂vα
+ N i

aCi
k

α

)
.

These are related by

(2.19)
(a) H ′

aαβ = Haαβ + g̃ij|βBi
αN j

a ;

(b) V ′
aαβ = Vaαβ + g̃ij‖βBi

αN j
a ,
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where raising and lowering indices is done by using δab, δ
ab, gαβ and gαβ .

By using the above geometric objects we may write down all Gauss–
Codazzi–Ricci equations of the Finsler immersion of Fm in F̃m+n. We
only recall here the equations we need in the next sections. First, from
the B-Codazzi equations we recall (cf. A. Bejancu and H. R. Farran [3],
p. 87).

(2.20) Bi
αP i

h
βγÑa

h = Ha
αβ‖γ − V a

αγ|β + Ha
αµCβ

µ
γ + V a

αµPµ
βγ ,

where we set

(2.21) P i
h

βγ = P̃i
h

jkBjk
βγ + S̃i

h
jkN j

aHa
βBk

γ ,

P̃i
h

jk and S̃i
h

jk being the hv-curvature and v-curvature Finsler tensor
fields of F̃C respectively. Also, we recall (cf. Bejancu–Farran [3], p. 92)

(2.22) Ha
α‖β + Ha

γ Cα
γ

β −Ha
βα = P̄ i

αβÑa
i ,

where we set

(2.23)

(a) P̄ i
αβ = P̃ i

jkBjk
αβ + S̃i

jkN j
aBk

βHa
α;

(b) P̃ i
jk =

∂G̃i
j

∂yk
− F̃j

k
i; (c) S̃i

jk = C̃j
i
k − C̃k

i
j .

3. Totally umbilical Finsler immersions in a Minkowski space

In the remaining part of the paper we take a Minkowski space F̃m+n =
(Rm+n, F̃ ) as ambient space. Then, since F̃ depends on (y1, . . . , ym+n)
only, we deduce from (2.6) and (2.11) that

(3.1) (a) G̃k
i = 0; (b) F̃i

k
j = 0; (c) G̃i

k
j = 0.

Suppose that F̃m+n is endowed with the Berwald connection, which actu-
ally, in this case, coincides with the Rund connection. Then we have:

(a) P̃i
h

jk =
∂G̃i

h
j

∂yk
− δC̃i

h
k

δxj
+ G̃i

r
jC̃r

h
k(3.2)

− C̃i
r
kG̃r

h
j + G̃j

r
kC̃i

h
r = 0

(b) S̃i
h

jk =
∂C̃i

h
j

∂yk
− ∂C̃i

h
k

∂yj
+ C̃i

r
jC̃r

h
k − C̃i

r
kC̃r

h
j = 0.
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Also, taking into account (3.1), from (2.23) we obtain

(3.3) P̄ i
αβ = 0.

Next, we consider a Finsler submanifold Fm = (M, F ) of F̃m+n. Then
from (2.12b) and (2.17b) we infer that

(3.4) (a) Cα
γ

β = 0 and (b) V a
αβ = 0,

since C̃i
k

j = 0. Therefore, by using (3.2)–(3.4) and (2.21) we see that
(2.20) and (2.22) become

Ha
αβ‖γ = 0,(3.5)

and

Ha
α‖β = Ha

βα,(3.6)

respectively.
Next, as in case of Riemannian immersions we say that Fm is a B-

totally umbilical Finsler submanifold if on any coordinate neighbourhood
U of TM0 there exist smooth functions ρa such that

(3.7) Ha
αβ = ρagαβ .

If any geodesic of Fm is a geodesic of F̃m+n then we say that Fm is a totally
geodesic Finsler submanifold . In the sequel we need the following results.

Theorem 3.1 (A. Bejancu and H. R. Farran [3], p. 134). Fm is a

totally geodesic Finsler submanifold of F̃m+n if and only if

(3.8) Ha
αβ = 0, for any a ∈ {m + 1, . . . ,m + n} and α, β ∈ {1, . . . , m}.

Theorem 3.2 (A. Bejancu and H. R. Farran [3], p. 136). Let

Fm = (M, F ) be a totally geodesic Finsler submanifold of a Minkowski

space F̃m+n = (Rm+n, F̃ ). Then M is Rm or an open submanifold of Rm.

A Finsler manifold with nowhere vanishing Cartan tensor field is called
a proper Finsler manifold . Thus a proper Finsler manifold is not a Rie-
mannian manifold. Now, we prove the following
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Theorem 3.3. Any B-totally umbilical proper Finsler submanifold of

a Minkowski space is totally geodesic.

Proof. Take the relative v-covariant derivative of (3.7) and by using
(3.5) obtain

(3.9) ρa‖γgαβ + 2ρagαβγ = 0,

where gαβγ is the Cartan tensor field of Fm. Contracting (3.9) by vα and
taking into account that gβγ are positive homogeneous functions of degree
zero with respect to (y1, . . . , ym+n) we deduce that

ρa‖γgαβvα = 0,

at any point (u, v) ∈ TM0. As the zero section is not in Γ(TM0) we
conclude that ρa‖γ = 0. Thus (3.9) becomes

ρagαβγ = 0,

for any a ∈ {m + 1, . . . ,m + n} and α, β ∈ {1, . . . , m}. But gαβγ is
nowhere zero on a coordinate neighborhood U of TM0. Hence ρa = 0 for
any a ∈ {m + 1, . . . , m + n} and thus (3.7) becomes (3.8). Finally, by
Theorem 3.1 we have the assertion of our theorem. ¤

It is interesting to note that Theorem 3.3 is also true when we take
the Cartan connection on F̃m+n. In this case we denote by Ha

∗αβ the
local components of the h-second fundamental form induced by the Cartan
connection. Then we say that Fm is C-totally umbilical if on any coordinate
neighborhood U of TM0 there exist smooth functions ηa such that

(3.7′) Ha
∗αβ = ηagαβ .

Then we prove the following result.

Theorem 3.4. Any C-totally umbilical Finsler submanifold of a Min-

kowski space is B-totally umbilical.

Proof. By using (2.17a) for both Ha
αβ and Ha

∗αβ and taking into
account (3.1b) and (3.1c) we deduce that

(3.10) Ha
∗αβ = Ha

αβ + Ña
i g̃j

i
kBj

αHb
βNk

b .
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From (3.7′) it follows that Ha
∗αβ are symmetric mixed Finsler tensor fields

with respect to (αβ). Also from (2.17a) it follows that Ha
αβ induced by

the Berwald connection of F̃m+n are symmetric with respect to (αβ). Thus
from (3.10) we obtain

(3.11) Ña
i g̃j

i
kBj

αHb
βNk

b = Ña
i g̃j

i
kBj

βHb
αNk

b .

Then contracting (3.11) by vβ and taking into account that g̃j
i
kyj = 0,

we infer that
Ña

i g̃j
i
kBj

αHb
βvβNk

b = 0.

Hence, by contracting (3.10) by vβ we obtain

(3.12) Ha
∗αβvβ = Ha

αβvβ .

As both Ha
∗αβ and Ha

αβ are symmetric mixed Finsler tensor fields we also
have

(3.13) Ha
∗αβvα = Ha

αβvα.

Now, we take the relative v-covariant derivative of (3.13) induced by the
Berwald connection of F̃m+n, and by using (3.5) we deduce that

(3.14) Ha
∗γβ + vαHa

∗αβ‖γ = Ha
γβ .

By using (3.7′) and taking into account that vαgαβγ = 0, (3.14) becomes

(3.15) Ha
∗γβ + vαgαβηa‖γ = Ha

γβ .

Contracting (3.15) by vβ and taking into account (3.12) we infer that

vαgαβvβηa
‖γ = 0,

which implies that ηa‖γ = 0, since vαgaβvβ = F 2 6= 0 on U . Thus from
(3.15) we obtain that Ha

∗αβ = Ha
αβ . Hence (3.7′) implies (3.7), that is,

Fm is B-totally umbilical. ¤

Next, we recall that the condition (3.7) for a totally umbilical Rie-
mannian submanifold is equivalent to a condition on the shape operators
of the submanifold. We find the same equivalence for Finsler submanfolds
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of a Minkowski space endowed the Cartan connection. Indeed, in this case,
by using (2.15), (2.9), (2.13) and (2.16) we deduce that

g̃ij|∗α =
δg̃ij

δuα
− g̃hjF̄i

h
α − g̃ihF̄j

h
α(3.16)

=
δg̃ij

δxk
Bk

α + Ha
αNk

a g̃ij‖∗k = 0,

since we have
δg̃ij

δxk
= 0 and g̃ij‖∗k = 0.

Here, and in the sequel, all the covariant derivatives induced by the Cartan
connection will have a “ ∗ ” after the corresponding bars. By using (3.16)
in (2.19a) we obtain

H ′
∗a

α
β = gαγδabH

b
∗γβ .

Thus the condition (3.7′) is equivalent to

(3.7′′) H ′
∗a

α
β = ηaδα

β ,

as in case of Riemannian submanifolds.

Finally, we analyse a condition similar to (3.7′′) for the shape opera-
tors induced by the Berwald connection of F̃m+n.

Suppose that the shape operators H
′α
a β induced by the Berwald con-

nection of F̃m+n are proportional to the indentity operator, that is, on any
coordinate neighbourhood U we have

(3.7′′′) H ′α
a β = ρaδα

β .

Then we examine (2.19a). By calculations similar to those performed for
(3.16) we obtain

g̃ij|β = 2Hb
βNk

b g̃ijk,

where, this time, the relative h-covariant derivative from the left side is
induced by the Berwald connection of F̃m+n. Hence (2.19a) becomes

(3.17) H ′
aαβ = Haαβ + 2Hb

βNk
b g̃ijkBi

αN j
a .

Starting with (3.17) instead of (3.10) and following the same steps as in the
proof of Theorem 3.4, we deduce that any Finsler submanifold whose shape



136 A. Bejancu and H. R. Farran

operators induced by the Berwald connection satisfy (3.7′′′) is B-totally
umbilical.

The above results enable us to state that any proper Finsler submani-
fold Fm = (M, F ) of a Minkowski space F̃m+n = (Rm+n, F̃ ) satisfying one
of the conditions (3.7) (3.7′), (3.7′′) or (3.7′′′) is totally geodesic. Moreover,
by Theorem 3.2 such a submanifold must by Rm or an open submanifold
of Rm. This generalizes the results obtained in [3] for hypersufaces.

4. Minimal Finsler immersions in a Minkowski space

Let F̃m+n = (Rm+n, F̃ ) be a Minkowski space endowed with the
Berwald connection. Suppose Fm = (M, F ) is a Finsler submanifold whose
h-second fundamental form satisfies

(4.1) Ha
αβgαβ = 0, ∀a ∈ {m + 1, . . . , m + n}.

Then, according to the terminology from Riemannian submanifolds we
may say that Fm is a B-minimal Finsler submanifold . Clearly, by The-
orem 3.1 it follows that any totally geodesic Finsler submanifold is B-
minimal. In the present section we prove that the converse of the above
assertion is true, provided Fm is a proper Finsler submanifold of lowest
dimension.

When m = 2, we have a Finsler surface F2 = (M, F ) immersed in a
Minkowski space F̃2+n. The Berwald frame {`,m} of F2 is an orthonormal
basis of Γ(V TM0) with respect to the Riemannian metric g = (gαβ) on the
vertical vector bundle V TM0 (cf. Bejancu–Farran [3], p. 209). Locally,
we set

` = `α ∂

∂vα
and m = mα ∂

∂vα
, α ∈ {1, 2}.

The intrinsic geometry of F2 is controled by the main scalar I which is
incorporated in the expression of the Cartan tensor field of F2 as follows

(4.2) gαβγ =
I

F
mαmβmγ .

The v-covariant derivatives of the two vector fields from the Berwald frame
with respect to the Cartan connection are given by (cf. Bejancu–Farran
[3], p. 211)

(4.3) (a) `α‖∗β =
1
F

mβmα; (b) mα‖∗β = − 1
F

mβ`α.
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Then by direct calculations using (2.16), (3.4a), (4.3) and (4.2) we obtain

(4.4) (a) `α‖β =
1
F

mβmα; (b) mα
‖β = − 1

F
mβ(`α − Imα),

where in the left part we have the relative v-covariant derivatives induced
on F2 by the Berwald connection of F̃2+n. Now we can prove the following

Theorem 4.1. Let F2 be a B-minimal proper Finsler surface of a

Minkowski space F̃2+n. Then F2 is totally geodesic.

Proof. Take the relative v-covariant derivative of (4.1) induced by
the Berwald connection of F̃2+n, and by using (3.5) and (2.16) we obtain

(4.5) Ha
αβ gαµgβνgµνγ = 0, ∀a ∈ {3, . . . , 2 + n}.

By using (4.2) in (4.5) we deduce that

(4.6) Ha
αβ mαmβ = 0,

since I 6= 0 and m 6= 0 on the coordinate neighbourhood U of TM0. Next,
take the relative v-covariant derivative of (4.6) and by using (3.5), (4.4b)
and (4.6) we infer that

(4.7) Ha
αβ `αmβ = 0.

Finally, we take the relative v-covariant derivative of (4.7) and by using
(3.5), (4.4), (4.6) and (4.7) we obtain

(4.8) Ha
αβ `α`β = 0.

Since {`,m} is a basis for Γ(V TM0), from (4.6)–(4.8) we have Ha
αβ = 0

for any a ∈ {3, . . . , 2 + n} and α, β ∈ {1, 2}. Hence by Theorem 3.1, F2 is
a totally geodesic Finsler submanifold. ¤

The question whether Theorem 4.1 is true for Finsler submanifolds of
arbitrary dimension is still open.
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