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On some special Finsler immersions in a Minkowski space

By AUREL BEJANCU (Safat) and HANI REDA FARRAN (Safat)

Abstract. We prove that totally umbilical proper Finsler submanifolds of a Min-
kowski space are totally geodesic. We also prove that minimal proper Finsler surfaces
with respect to the Finsler connection induced by the Berwald connection of a Minkow-
ski space must be totally geodesic.

1. Introduction

Studying the geometry of Finsler submanifolds is one of the most dif-
ficult aspects of Finsler geometry. This is because, in general, the induced
Finsler connection on the submanifold does not necessarily coincide with
its intrinsic Finsler connection. For the latest results on the theory of
Finsler submanifolds we refer the reader to our recent monograph
(A. BEJANCU and H. R. FARRAN [3]).

One natural approach to this theory is to consider some “nice” Finsler
immersions (see for example L. M. ABATANGELO [1], A. BEJANCU [2],
S. DRAGOMIR [4] and M. MATSUMOTO [5]). The present paper is a step
in this direction. Here we investigate totally umbilical and minimal Finsler
immersions. We deal with proper Finsler immersions which are character-
ized by the property that their Cartan tensor field is nowhere zero. First,
we prove that totally umbilical proper Finsler submanifolds of a Minkowski
space must be totally geodesic (Theorems 3.3 and 3.4). We should stress
that this result is true for both the Berwald and Cartan connections of a
Minkowski space. Minimal Finsler submanifolds are introduced by using
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the h-second fundamental form induced by the Berwald connection of the
ambient Minkowski space. Then we prove that minimal proper Finsler
surfaces of a Minkowski space are totally geodesic (Theorem 4.1). The
question whether this result is true for submanifolds of arbitrary dimen-
sion is still open.

2. Induced geometric objects on a Finsler submanifold

Let F™+n = (M, F) be a real (m + n)-dimensional Finsler manifold,
where F is the fundamental function of F™+". Denote by 6 the zero
section of the tangent bundle TM of M and set TMy = TM\H(M) We
take (z%,y%),ie{l,...,m+n} as local coordinates on TMO, where (z°) are
the local coordinates on M. Then there exists a Riemannian metric g on
the vertical vector bundle VT ]\70 over TMO whose local components are

given by

) a> 1 92F2

gij(z,y) =9 (W’ayf = §8yi8y7'

When M = R™ " and F is a function that depends on (Y, ..., ymtn)
alone, we say that F ™ = (R™+" F) is a Minkowski space.
Throughout the paper we use the following ranges for indices,
i, k,...€{l,...om+n}k o, B,7,... €{1,....,m};a,b,c,... e{m+1,...
...,m+n}. We also use the Einstein convention, that is, repeated indices
with one upper index and one lower index denote summation over their
range. We denote the algebra of smooth functions on M by F (]Tj ), and the
F (M )-module of smooth sections of a vector bundle E over M by I'(E).
Similar notations will be used for any other manifold. For terminology in
general, notations and basic results see A. BEJANCU and H. R. FARRAN [3].
Now, we consider a real m-dimensional submanifold M of M given
locally by the equations:

‘ i ; ; oz’
(2.1) 2t = xz(u17 o um); rank[Bé] =m; Bé — S

Then the differential of the immersion of M in M carries a point (u®, v®)
of TMjy into a point (z%(u), y*(u,v)) of T My, where we set

(2.2) y'(u,v) = B v™.
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In order to simplify the equations involved in the study we use the nota-
tions:

Bl — Rgipgl . i >z’ . B — B8
afB... T Tap.0 af — auaauﬁv ald — aﬁv .
As a consequence of (2.1) and (2.2) we obtain
0 . 0 ;0 0 .0
2.3 — =B, — + Bly=; b) — = B! —
( ) (a) S aaxz + a0 8:1/1, ( ) e aayz7

where {9/0u®,0/0v*} and {9/0x",0/0y"} are the natural frame fields on
T My and T My respectively. From (2.3b) we deduce that the vertical vector
bundle VT M, over T'Mj is a vector subbundle of VTMO‘ Ty Hence the

Riemannian metric g on VT Mj induces a Riemannian metric g on VT M,
whose local components are given by

24 gna) =9 (o o ) = Falolu) vl o) By

On the other hand, the fundamental function F of F™*" induces on T My
the function F' locally given by

F(u,v) = F(z(u),y(u,v)).

Then it is easy to check that F™ = (M, F') is a Finsler manifold whose
Riemannian metric on VIT'M is exactly g = (gap) given by (2.4). Thus

we are entitled to say that F™ is a Finsler submanifold of Fmtn, .
The orthogonal complementary vector bundle to VI'Mq in VI'Mp ., Mo

is denoted by VT Mg- and called the Finsler normal bundle of the Finsler
submanifold F™. Thus we may consider a local field of orthonormal frames
{N, = N!0/0y'} in VT Mg~ with respect to g, i.e., we have:

(2.5) (a) GyBLNJ=0; (b)) GiyNiN] = Gap-

Then we denote by [Ef‘ﬁf] the inverse of the matrix [Bf,N/].

A complementary vector bundle HT' Mg to VT Mg in T TMO is called a
non-linear connection on F” 1" It is noteworthy that on F™+" there exists
a non-linear connection GT'Mg = (G}) constructed from the fundamental

function F as follows

oGt~ 1%(82152 ; aﬁ?)_

2. Gi= 27 Gi=- i
(2:6) G Oy’ ¢ 47 8yh6x3y oxh



128 A. Bejancu and H. R. Farran

We call GTMO the canonical non-linear connection of F™+n. The induced
non-linear connection on F™ by GT My is HT My = (F?), where we set

(2.7) F} = B! (Bi + GiBL).
Then according to the decomposition
TTMy= HTMy® VTM,,

we obtain a local frame field {6/0u®,d/0v*} where 6/0u® € I'(HT M),
and it is given by
s 0 b 0

(2:8) ou®  Ou® s A

It is important to note that HT M is a vector subbundle of H TMO‘T o P
VT Mjg-. More precisely, we have

1) )
2. — =B*— + H*N,
(2.9) Jue > ot + HalNa,
where we set
5 o ~. 0 ~ A o~
(210) (0) gr=gn-Glgs  (0) Hi=N: (Bl +BiG)

Also, we stress that, in general, the induced non-linear connection does not
coincide with the canonical non-linear connection GMTy = (G?) of F™.
Actually, we have

B8 _ B B8 a
Gy =Fy + 9.7 HV,
where we set
1 05
2 Oyk”

9o 0 =g" gijkN;B£Z§ Gijk =
This is going to be the main difficulty in studying the geometry of a Finsler
immersion. The tensor field g;;; is known as the Cartan tensor field of
Frtn,
Now, we consider a Finsler connection FC = (V, GTMO) =
(F%;,C%;,GY), where V is a linear connection on VT M, whose local
coefficients are defined by

0 ~

S 0 ~ 5} ~
k
v5/6a:j 8yZ = Fl Jaiyk and Va/ayji = C’l .

oy’
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In the literature, we frequently meet one of the following well known con-
nections (cf. A. BEJANCU and H. R. FARRAN [3], pp. 39, 41).

— the Cartan connection (F 7, Gi ],Gk)

— the Berwald connection (lej, 0,GF)

— the Rund connection (F;*;,0, Gh),
where we set

~ —h (OGni | Ogn;  6Gij
Bk = Lghh i_ %9ij ).
2.11) (a) 1= 99 ((5301 TS e )’
‘ h ne ~ . OGk
®) 3% = 3" Gnis; (c) Gi¥j= By

The Finsler connection FC induces on F™ a Finsler connection I FC =
(V,HTMy) = (Fy"3,Co7 3, F)), where V is a linear connection on V1" M
with local coefficients (F,,73,C,"3) given by

o1 (@) Fu?p = B] (Bl + Fy'x Bl + Cyh BLHSNE )
(b) Cu."s=B]C;',BY,

We call IFC the induced Finsler connection by FC. Also, FC induces
two vectorial Finsler connections:

m: (v7 HTMO) = (Fikaaéika7Fg) on VTMO\TMO
FOt = (V5 HT M) = (Fbo, Cubu, FP) on VTME,

where V and V* are linear connections on the vector bundles VTMOlT Mo
and VT Mg whose local coefficients are given by

(2.13) Fi*,=F*;B, +C*;NJH;, (b)) Ci*,=CF*;Bi,

and i
(a) Faa—Nk ((;Na JrNZF >;
(b) Colo =N} ONy 'Ck
a o — k 81) a~tr o I

respectively.
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Usually, Finsler geometry deals with mixed Finsler tensor fields T’
with local components Tg‘jg“ satisfying

pevia O ozl —uha 0w 0TF .
Bib gue gt T T TR GuB G TV

with respect to the transformations of coordinates @ = @*(u®) and z" =
z"(x') on M and M respectively, and with respect to the transformations
N, = APN, of orthonormal fields of frames on VTMg. Using IFC,FC
and FC+ we may define the relative h-covariant derivative and the relative
v-covariant derivative of T as follows:

ata

(2 15) - 6Tﬁjb TEia o Ta[caf i Taicp a
: 5 5oy T Asibte y T gy Py T gy ety

Jbly T SuY
- gj%aFBE'y - Té’é?fjkw - Tgy‘ingcw
and
aia 0 gﬁ: + Tsiac e + Ta_kaé % 4 Ta;‘cc a
Bibly T " Hyr Bjb~e Bjb “k Bjb~c v
- Tfjibacﬁaw - Tﬁaligéjk'y - Tg]?gcbcw
respectively.

Finally, FC induces two second Sfundamental forms:

)

217 (a) H%g=Nf (Bfw + Fy' Bl + ajikBéHng)
. o
(0) V%ap = N{'C;"kBj,

and two shape operators:

(@ HPo= B (e 4 NiT,
( ) ouc
2.18
~4 (ONF L
B3 _ b a ik
by V)P, = B, <8va + N, C; a)

These are related by
(a) Hgap = Haap + GijisBaN7;

(2.19) / B o
() Viap = Vaap + GijisBa N2,
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where raising and lowering indices is done by using d,s, 3%, gas and g*°.

By using the above geometric objects we may write down all Gauss—
Codazzi-Ricci equations of the Finsler immersion of F™ in F™t". We
only recall here the equations we need in the next sections. First, from
the B-Codazzi equations we recall (cf. A. BEJANCU and H. R. FARRAN [3],
p. 87).

(2.20) Bé?ihg,yﬁg = Haamh — Vaa,ﬂg +H,, Caty + Vo P! gy,
where we set
(2.21) Pi"gy = P B + 8" NJHG B,

ﬁihjk and §ihjk being the hv-curvature and v-curvature Finsler tensor
fields of F'C respectively. Also, we recall (cf. BEJANCU-FARRAN [3], p. 92)

(2.22) HEy 5+ HICoY g — Hgo = P ogNY,

(2

where we set
(a) Plag=P B+ S NIBEHE;

(b) Pljx= W,f — By (0 Su=Cl -Gy

3. Totally umbilical Finsler immersions in a Minkowski space

In the remaining part of the paper we take a Minkowski space Frin =
(R™*T" F) as ambient space. Then, since F' depends on (yl, co Y™t
only, we deduce from (2.6) and (2.11) that

(3.1) (@) GF=0, () F*;=0, (¢) GF*;=o0.

Suppose that Fm+n is endowed with the Berwald connection, which actu-
ally, in this case, coincides with the Rund connection. Then we have:

851? _ 551hk

oyk dxd
- ~irkérh]’ + éjrkéihr =0

(32) (CL) ﬁih]‘k = + éirjérhk

aCh; oGty

Gh
(b) S ik oyk oyI

+ 5irj6rhk: - 51'Tk6rhj =0.
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Also, taking into account (3.1), from (2.23) we obtain
(3.3) P'op =0.

Next, we consider a Finsler submanifold F™ = (M, F) of F™*". Then
from (2.12b) and (2.17b) we infer that

(3.4) (@) Ca’5=0 and (b) Vis=0,

since @kj = 0. Therefore, by using (3.2)—(3.4) and (2.21) we see that
(2.20) and (2.22) become

(3.5) H .3y =0,
and

(3.6) Hg”/g - Ha,ﬁou
respectively.

Next, as in case of Riemannian immersions we say that F™ is a B-
totally umbilical Finsler submanifold if on any coordinate neighbourhood
U of T' My there exist smooth functions p® such that

(37) Haag = pagag.
If any geodesic of F™ is a geodesic of F™ " then we say that F™ is a totally
geodesic Finsler submanifold. In the sequel we need the following results.

Theorem 3.1 (A. BEJANCU and H. R. FARRAN [3], p. 134). F™ is a
totally geodesic Finsler submanifold of F™*" if and only if

(38) H%p3 =0, foranyaec{m+1,...,m+n} and o, € {1,...,m}.

Theorem 3.2 (A. BEJjANCU and H. R. FARRAN [3], p. 136). Let
F™ = (M, F) be a totally geodesic Finsler submanifold of a Minkowski
space F" " = (R™*" F). Then M is R™ or an open submanifold of R™.

A Finsler manifold with nowhere vanishing Cartan tensor field is called
a proper Finsler manifold. Thus a proper Finsler manifold is not a Rie-
mannian manifold. Now, we prove the following
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Theorem 3.3. Any B-totally umbilical proper Finsler submanifold of

a Minkowski space is totally geodesic.
PROOF. Take the relative v-covariant derivative of (3.7) and by using

(3.5) obtain

(39) pa||'ygozﬁ + 2pagaﬁ'y = 0,

where gog is the Cartan tensor field of F™. Contracting (3.9) by v® and
taking into account that gg, are positive homogeneous functions of degree
zero with respect to (y!,...,y™*") we deduce that

P |y Gapv™ = 0,
at any point (u,v) € TMy. As the zero section is not in I'(T'My) we
conclude that p%|, = 0. Thus (3.9) becomes
pagaﬁw = 07

for any a € {m+1,....m+n} and o,8 € {1,...,m}. But gopy is
nowhere zero on a coordinate neighborhood U of T'M,. Hence p® = 0 for
any a € {m + 1,...,m + n} and thus (3.7) becomes (3.8). Finally, by
Theorem 3.1 we have the assertion of our theorem. 0

It is interesting to note that Theorem 3.3 is also true when we take
the Cartan connection on F™*". 1In this case we denote by H sap the
local components of the h-second fundamental form induced by the Cartan
connection. Then we say that F™ is C-totally umbilical if on any coordinate
neighborhood U of T'Mj there exist smooth functions n such that

(3.7) Hop = 1" gop-

Then we prove the following result.

Theorem 3.4. Any C-totally umbilical Finsler submanifold of a Min-
kowski space is B-totally umbilical.

PROOF. By using (2.17a) for both H%.5 and H{,; and taking into
account (3.1b) and (3.1c) we deduce that

(3.10) H® 5= H"g+ N9« BLH)NY.
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From (3.7") it follows that H, ; are symmetric mixed Finsler tensor fields
with respect to (o). Also from (2.17a) it follows that H®,z induced by
the Berwald connection of F™+™ are symmetric with respect to (a3). Thus
from (3.10) we obtain

(3.11) N{G; « BLHENF = NG v BLHLN].

Then contracting (3.11) by v” and taking into account that gi'ky? =0,
we infer that
N{g;" v BLHR N = 0.

Hence, by contracting (3.10) by v? we obtain
(3.12) H 0" = H%,50".

As both H{, ;5 and H®,z are symmetric mixed Finsler tensor fields we also
have

(313) Hfaﬂva — Haaﬁ’ua.

Now, we take the relative v-covariant derivative of (3.13) induced by the
Berwald connection of F™*" and by using (3.5) we deduce that

(314) f’Yﬁ + vaHf&B”'Y = Hafyﬁ.

By using (3.7) and taking into account that v*gag, = 0, (3.14) becomes
(3.15) H 5 +v%gapn® |y = Hp.
Contracting (3.15) by v” and taking into account (3.12) we infer that

v gast’ 1y, =0,

which implies that n, = 0, since v¥gapv? = F? # 0 on Y. Thus from
(3.15) we obtain that Hy 5 = H%p. Hence (3.7) implies (3.7), that is,
F™ is B-totally umbilical. O

Next, we recall that the condition (3.7) for a totally umbilical Rie-
mannian submanifold is equivalent to a condition on the shape operators
of the submanifold. We find the same equivalence for Finsler submanfolds
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of a Minkowski space endowed the Cartan connection. Indeed, in this case,
by using (2.15), (2.9), (2.13) and (2.16) we deduce that

B §Gii - - o
(3.16) Gijlea = &Zi — gni B0 — GinFi" s
0Gi; @ nrk~
= 5;; BE + HaNfgz‘jn*k =0,

since we have _

%95 _ 0 and Gyyypp =0

ook an Gij|l.k = U
Here, and in the sequel, all the covariant derivatives induced by the Cartan

14 b

connection will have a “ %

in (2.19a) we obtain

after the corresponding bars. By using (3.16)
Hiaaﬂ = ga’y(sabe»yﬂ‘

Thus the condition (3.7) is equivalent to
(3.77) H.,"5 = 1403,

as in case of Riemannian submanifolds.

Finally, we analyse a condition similar to (3.7”) for the shape opera-
tors induced by the Berwald connection of Frmtn,

Suppose that the shape operators H, ;“ 3 induced by the Berwald con-
nection of F™ " are proportional to the indentity operator, that is, on any
coordinate neighbourhood U we have

(3.7 H® 5 = pads.

Then we examine (2.19a). By calculations similar to those performed for
(3.16) we obtain
Gij1s = 2H3NL Gijre,

where, this time, the relative h-covariant derivative from the left side is
induced by the Berwald connection of F™". Hence (2.19a) becomes

(3.17) vop = Haop + 2HN Giju BLN].

Starting with (3.17) instead of (3.10) and following the same steps as in the
proof of Theorem 3.4, we deduce that any Finsler submanifold whose shape
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operators induced by the Berwald connection satisfy (3.7"") is B-totally
umbilical.

The above results enable us to state that any proper Finsler submani-
fold F™ = (M, F') of a Minkowski space F™*" = (R™*+" F) satisfying one
of the conditions (3.7) (3.77), (3.7") or (3.7"") is totally geodesic. Moreover,
by Theorem 3.2 such a submanifold must by R™ or an open submanifold
of R™. This generalizes the results obtained in [3] for hypersufaces.

4. Minimal Finsler immersions in a Minkowski space

Let F™tn = (R™*" F) be a Minkowski space endowed with the
Berwald connection. Suppose F* = (M, F) is a Finsler submanifold whose
h-second fundamental form satisfies

(4.1) H%.59? =0, VYaec{m+1,...,m+n}.

Then, according to the terminology from Riemannian submanifolds we
may say that F" is a B-minimal Finsler submanifold. Clearly, by The-
orem 3.1 it follows that any totally geodesic Finsler submanifold is B-
minimal. In the present section we prove that the converse of the above
assertion is true, provided F™ is a proper Finsler submanifold of lowest
dimension.

When m = 2, we have a Finsler surface F? = (M, F') immersed in a
Minkowski space F2t". The Berwald frame {¢,m} of F? is an orthonormal
basis of I'(VT'My) with respect to the Riemannian metric g = (go3) on the
vertical vector bundle VT'Mj (cf. BEJANCU-FARRAN [3], p. 209). Locally,
we set

0
ai = ai 1 .
5oa and m=m 5o ae{l1,2}

The intrinsic geometry of F? is controled by the main scalar I which is
incorporated in the expression of the Cartan tensor field of F? as follows

=1

I
(4.2) Gapy = FMamaTLy.

The v-covariant derivatives of the two vector fields from the Berwald frame
with respect to the Cartan connection are given by (cf. BEJANCU-FARRAN
[3], p. 211)

1 1

(43) (@) Fps=gmem®  (B) mTyp=—pmal
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Then by direct calculations using (2.16), (3.4a), (4.3) and (4.2) we obtain

1 1

7 mg(l* — Im®),

where in the left part we have the relative v-covariant derivatives induced
on F? by the Berwald connection of F2T". Now we can prove the following

Theorem 4.1. Let F? be a B-minimal proper Finsler surface of a
Minkowski space F?t". Then F? is totally geodesic.

PROOF. Take the relative v-covariant derivative of (4.1) induced by
the Berwald connection of F2™" and by using (3.5) and (2.16) we obtain

(4.5) H5 99 guy =0, Ya€{3,...,2+n}.
By using (4.2) in (4.5) we deduce that
(4.6) H\smm” =0,

since I # 0 and m # 0 on the coordinate neighbourhood U of T'Mj. Next,
take the relative v-covariant derivative of (4.6) and by using (3.5), (4.4b)
and (4.6) we infer that

(4.7) H,5*m" = 0.

Finally, we take the relative v-covariant derivative of (4.7) and by using
(3.5), (4.4), (4.6) and (4.7) we obtain

(4.8) H 5 %0° = 0.

Since {¢,m} is a basis for I'(VT' M), from (4.6)—(4.8) we have H%,3 = 0
for any a € {3,...,2+n} and o, 8 € {1,2}. Hence by Theorem 3.1, F? is
a totally geodesic Finsler submanifold. O

The question whether Theorem 4.1 is true for Finsler submanifolds of

arbitrary dimension is still open.
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