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1. Introduction

First time such kind of examinations were performed by Béla Gyi-
res. He has proved the following theorem for the randomized blocks de-
signs ([4], p.285, Theorem 2). The expectations of the sample elements
can be decomposed into the sum of two quantities corresponding to the
block-effect and to the treatment-effect, respectively, if and only if the
expectations of the random errors are zero.

After this the author was unable to obtain the corresponding criterion
for the Latin square design employing the Gyires’s method ([5], [6]). But
this method was applied successfully for the fixed effects one-way analysis
of variance model ([7]).

Recently we were able to find a newer method to prove the before-
mentioned criterion for various anova models ([8]). This is founded on a
theorem well-known for the solution of the homogeneous and nonhomoge-
neous linear matrix equation ([3], pp.199-209).

The following theorem may be proved for the various models of the
analysis of variance. If the expectations of the random variables occu-
ring in an anova model can be decomposed into the sum of corresponding
quantities then the expectations of the random errors are zero.

Our aim is to reverse this kind of theorems.
In the present paper we will use the following notations: xjk, ejk, lj ,

mk . . . random variables; x, y1, y2, z . . . matrix-valued random variables
with m rows and n columns, that is matrices of dimension m × n. Their
elements are random variables having expectations; E is identity matrix
of order m or n; O is generally a zero matrix of dimension m × n; S1, S2
are stochastic and idempotent matrices of order m and n, respectively;
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the transpose of A is A∗; its inverse is A−1; W1,W2 orthogonal matrices;
M(xjk) the expectation of xjk; M(x) consists of the expectations of the
elements of x;

A =

(
a11, a12, . . . , a1n
. . .
am1, am2, . . . , amn

)

is a matrix given by its elements; A = ‖ajk‖m×n is a matrix given by
its general element; a0 is an m–dimensional column vector having iden-
tical components 1; b0 is an n–dimensional column vector with identical
components 1; a∗0 is the transpose of a0; 0m×1 is the notation of zero
vector with dimension m; instead of j = 1, 2, . . . ,m we introduce the
shorter notation j = 1, m; if it is necessary, we indicate the dimension of
a vector or a matrix in the following forms: a∗0 = (1, . . . , 1)1×m, a0,m×1,
Am×n, A = ‖ajk‖m×n; γ is a constant, the so-called overall mean; λj is
the effect due to the j–th level of the first systematic factor; µk is the k–th
differential effect of the k–th level of the second nonrandom factor.

We assume that the random variables or matrices have expectations.
We shall denote this in the forms: xjk ∈ M and x ∈ M . We also sup-
pose that the random variables ejk(j = 1,m; k = 1, n) are independent,
identically distributed (i.i.d.) normal random variables with mean 0 and
unknown variance σ2. A notation for the last fact is ejk ∈ N(0, σ2). To ob-
tain unique least-squares estimators for the unkown parameters we require
the usual side conditions

(∗)
m∑

j=1

λj = 0 and
n∑

k=1

µk = 0 .

In this paper we shall deal with the following five models.

1. The fixed effects one-way analysis of variance model with equal
numbers of observations. We suppose that the number of experiments is
n at each level of the single factor. This one-way model is

(1) xjk = γ + λj + ejk (j = 1, m; k = 1, n)

where γ is the common part of the expectations, λj is a quantity corre-
sponding to the j–th level of the systematic factor and ejk ∈ N(0, σ2)
(j = 1, m; k = 1, n). Moreover the random variables ejk(j = 1,m;
k = 1, n) are independent ones. On the basis of our assumptions

(2) M(xjk) = γ + λj and D2(xjk) = σ2 .

In the case of model (1) the task is to obtain the least-squares estimators
of the unknown parameters and test null hypotheses

H0 : λj = 0 (j = 1,m) .



A criterion for various additive models . . . 275

2. The random effects one-way analysis of variance model with equal
numbers of observations. The number of experiments is n at each level.
This model has the form
(3) xjk = γ + lj + ejk (j = 1,m; k = 1, n) ,

where γ is the overall mean, lj (j = 1,m) is a random variable corre-
sponding to the j–th level of the random factor, lj (j = 1,m) are inde-
pendent and identically distributed with distribution N(0, σ2

l ), where σ2
l

is an unkown parameter. ejk (j = 1,m; k = 1, n) are i.i.d. normal ran-
dom variables with distribution N(0, σ2). In this model lj (j = 1,m) and
ejk (j = 1,m; k = 1, n) are assumed to be jointly independent random
variables. From (3)

(4) M(xjk) = γ and D2(xjk) = σ2
l + σ2 .

Now the unknown parameters are γ, σl and σ. The task is to estimate
them and to test the hypothesis H0 : σl = 0.

3. The unreplicated fixed effects two-way layout with no interaction.
This model is said to be additive. The observations take the form
(5) xjk + γ + λj + µk + ejk (j = 1, m; k = 1, n) .

Here γ is the overall mean, λj is the j–th differential (or main) effect of
the first systematic factor, µk is the effect due to the k–th level of the
second nonrandom factor. ejk (j = 1,m; k = 1, n) are independent and
identically distributed with distribution N(0, σ2). For λj (j = 1,m) and
µk (k = 1, n) (∗) is true. In this model

(6) M(xjk) = γ and D2(xjk) = σ2 .

4. The unreplicated mixed two-way layout with no interaction. This
is the unreplicated randomized blocks design, where the first factor has
fixed effects and the second one has random effects on the results of the
experiment and the factors have no common effect. In this case

(7) xjk = γ + λj + mk + ejk (j = 1,m; k = 1, n) ,

where γ is a constant, λj shows the effect of the j–th level of the sys-
tematic factor, mk is a random variable corresponding to the k–th level
of the random factor, mk represents the k–th block-effect, they are i.i.d.
random variables and mk ∈ N(0, σ2

m) (k = 1, n), ejk ∈ N(0, σ2) (j = 1,m;
k = 1, n) and these are also i.i.d. random variables, moreover mk (k = 1, n)
and ejk (j = 1,m; k = 1, n) are jointly independent. So

(8) M(xjk) = γ + λj and D2(xjk) = σ2
m + σ2 .

We require the assumption
m∑

j=1

λj = 0.
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5. The unreplicated random effects two-way layout with no interaction.
The additive model is
(9) xjk = γ + lj + mk + ejk (j = 1,m; k = 1, n) ,

where γ is a constant — overall mean — , lj is a random variable due to the
j–th level of the first random factor, mk is also a random variable corre-
sponding to the k–th level of the second random factor and ejk ∈ N(0, σ2)
as at the above-mentioned models. Here lj ∈ N(0, σ2

l ) (j = 1, m)
mk ∈ N(0, σ2

m) (k = 1, n) and they are i.i.d. random variables. In this
model all random variables are assumed to be jointly independent. From (9)

(10) M(xjk) = γ and D2(xjk) = σ2
l + σ2

m + σ2 .

Further details in connection with these models can be found in the
special literature, for example in B. J. Winer, “Statistical principles in ex-
perimental design” (McGraw–Hill, New York San Francisco Toronto Lon-
don, 1962).

The following theorems are valid for these models.

Theorem 1. If the model has the form (1), xjk ∈ M (j = 1,m ;

k = 1, n) and
m∑

j=1

λj = 0 then

(11) M(xjk − x̄j·) = 0 ,

where

(12) x̄j· =
1
n

n∑

k=1

xjk

is one of the marginal means.

Remark 1. The left side of (11) is the expectation of the random error
and (12) is a marginal mean.

Theorem 2. If (3) is valid and xjk ∈ M (j = 1,m; k = 1, n) then the
expectation of the random error is zero.

Theorem 3. If (5) is true, xjk ∈ M (j = 1,m; k = 1, n) and (∗) is
valid for λj (j = 1,m) and µk (k = 1, n) then

(13) M(xjk − x̄j· − x̄·k + x̄) = 0 .

Remark 2. According to (13) the expectation of the random error is
zero under certain conditions in model (5). The means are defined by (12)
and the following formulae:

(14) x̄·k =
1
m

m∑

j=1

xjk and x̄ =
1

mn

m∑

j=1

n∑

k=1

xjk .
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Theorem 4. If (7) is given, xjk ∈ M (j = 1,m; k = 1, n) and
m∑

j=1

λj=0
then (13) is true.

Theorem 5. If xjk is defined by (9) and xjk ∈ M (j = 1,m; k = 1, n)
then (13) is valid.

Remark 3. The above-mentioned theorems can be proved by the help
of the corresponding model taking into account the side conditions. Similar
theorems are valid — not only in the additive case — for the other anova
models having more than two factors.

In this paper we deal with the proofs of the converse statements of
the Theorems 1–5. For that purpose we shall give a matrix generalization
of the former models and prove the suitable criterions in the generalized
models. From these theorems can be obtained the reversed theorems for
the special models. In the second section we give the Jordan normal form
of a special idempotent metrix. This will be applied in the next sections
at the solutions of the homogeneous and nonhomogeneous linear matrix
equations. The third section contains the generalized forms of the fixed and
random effects one-way analysis of variance models having equal numbers
of the observations in each cell. The fourth section treats the unreplicated
two-way layouts with no interaction.

2. The Jordan normal form of an idempotent matrix

The Jordan normal form of a special idempotent matrix will be applied
at the solution of the homogeneous and nonhomogeneous linear matrix
equations. In the solutions of these equations S1 and S2 will play an
important role. Since they are similar to one another therefore we deal
only with S1.

The Jordan normal form of S1 = ‖m−1‖m×m is

(15) S1 = W1




1, 0, . . . , 0
0, 0, . . . , 0
. . .
0, 0, . . . , 0




m×m

W ∗
1 ,

where W1,m×m is the following orthogonal matrix:

(16)




m−1/2, [(m−1)/m]1/2, 0, ..., 0

m−1/2, −[(m−1)m]−1/2, [(m−2)/(m−1)]1/2, ..., 0

m−1/2, −[(m−1)m]−1/2, −[(m−2)(m−1)]−1/2, ..., 0

m−1/2, −[(m−1)m]−1/2, −[(m−2)(m−1)]−1/2, ..., 0

...
...
0

m−1/2, −[(m−1)m]−1/2, −[(m−2)(m−1)]−1/2, ..., 2−1/2

m−1/2, −[(m−1)m]−1/2, −[(m−2)(m−1)]−1/2, ..., −2−1/2




.
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How can one obtain (15)? S1 is singular and idempotent with char-
acteristic roots either unity or zero. Its rank is equal to the trace of S1.
So the rank of S1 is 1. Therefore its minimum dyadical representation —
being an Hermitian matrix — is

(17) S1 =




m−1/2

m−1/2

...
m−1/2




m×1

(
m−1/2,m−1/2, . . . , m−1/2

)
1×m

,

that is S1 = m−1a0a
∗
0, or with the notation w

(1)
1 = m−1/2a0 it may be

written in the form S1 = w
(1)
1 w

(1)∗
1 .

(15) was obtained by the help of the following theorem which gives
the Jordan normal form of an idempotent matrix.

If the idempotent matrix P of dimension m ×m and rank r (1 ≤ r,
r ≤ m) has the minimum dyadical representation

(18) P =
r∑

k=1

ukv∗k = UV ∗ ,

and the so-called complementary idempotent matrix E − P has the mini-
mum dyadical representation

(19) E − P =
m−r∑

l=1

wlz
∗
l = WZ∗ ,

then the Jordan normal form of P with the characteristic vectors of (18)
and (19) is

P = (u1, . . . , ur, w1, . . . , wm−r) ·

·




1 |
. . . | (0)

1 |
− − − − − − −

| 0

(0) | . . .

| 0




m×m




v∗1
...

v∗r

z∗1
...

z∗m−r




,

and here the number of characteristic roots 1 is r.

On the basis of this theorem the rank of E−S1 is m−1 and E−S1 is
also an Hermitian matrix. So it can be decomposed into the sum of m− 1
Hermitian dyads with a minimum dyadical representation.
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The m–dimensional column vectors of Hermitian dyads of E−S1 are
as follows:

w
(1)
2 =




[(m− 1)/m]1/2

−[(m− 1)m]−1/2

...
−[(m− 1)m]−1/2


 , w

(1)
3 =




0
[(m− 2)/(m− 1)]1/2

−[(m− 2)(m− 1)]−1/2

. . .
−[(m− 2)(m− 1)]−1/2


 ,

. . . , w(1)
m =




0
...
0

2−1/2

−2−1/2


 .

Finally — according to the above-formulated theorem — the Jordan nor-
mal form of S1 is (15). (16) can be written in the form

W1;m×m =
(
w

(1)
1 , w

(1)
2 , w

(1)
3 , . . . , w(1)

m

)

with the column vectors w
(1)
j (j = 1,m).

In conformity with an Egerváry’s theorem ([2], X. tétel) the row-
and column vectors of the dyads at a minimum dyadical representation
form a biorthogonal vector system which is not a complete one, but it may
be changed into a complete system by the help of the above-formulated
theorem. So — on the basis of Egerváry’s theorem — W1 is an orthog-
onal matrix.

3. A criterion for the one-way analysis of the variance models
with equal numbers of observations

First we consider the fixed effects anova model (1).

Let x = ‖xjk‖m×n, where xjk (j = 1,m; k = 1, n) is defined by (1)
and xjk ∈ M (j = 1, m; k = 1, n). So a matrixical generalization of (1) is

(20) x = ‖γ‖m×n + ‖λj‖m×n + ‖ejk‖m×n ,

where M(‖ejk‖) = Om×n. From (20) in consequence of (2)

(21) M(x) = γa0b
∗
0 + λb∗0

with λ∗ = (λ1, λ2, . . . , λm), a∗0 = (1, 1, . . . , 1)1×m and b∗0 = (1, 1, . . . , 1)1×n.
Let S1 be a stochastic and idempotent matrix of order m having identi-
cal elements 1

m . Let S2 be a stochastic and projector matrix of order n
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consisting of identical elements 1
n . Then

(22) S1 =
1
m

a0a
∗
0, S2 =

1
n

b0b
∗
0 .

Let us further define the following matrix-valued random variables of di-
mension m× n:

(23) y2 = xS∗2 , z = S1 × S∗2 .

In this case
y2 = ‖x̄j·‖m×n, z = ‖x̄‖m×n .

By the help of these formulae the matrix of the random errors is

x− y2 = ‖x̄jk − x̄j·‖m×n ,

and the matrix of the discrepancies between the effects due to the levels of
the systematic factor is given by

y2 − z = ‖x̄j· − x̄‖m×n .

The following theorem is valid for the last matrix.

Theorem 6. Let (21) be true. In this case M(y2 − z) = Om×n if and
only if λ = ca0, where c is a constant.

Proof. 1. If λ = ca0 then M(y2 − z) = Om×n.
In consequence of (23) M(y2 − z) = (E − S1)M(x)S∗2 . By (21)

M(y2 − z) = γ(E − S1)a0(S2b0)∗ + (E − S1)λ(S2b0)∗ .

Since (E − S1)a0 = 0m×1 and S2b0 = b0, we get

(24) M(y2 − z) = (E − S1)λb∗0 .

Taking into account λ = ca0 and (E − S1)a0 = 0m×1 we get from (24)

M(y2 − z) = Om×n .

2. If M(y2 − z) = Om×n then λ = ca0.
According to (24)

(E − S1)λb∗0 = Om×n .

But this is possible only in the case (E − S1)λ = 0m×1. The last formula
is true if λ = ca0.

This completes the proof of Theorem 6.

Now we formulate the following theorem for the matrix of the random
errors.
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Theorem 7. The decomposition (21) is valid if and only if

(25) M(x− y2) = Om×n .

The proof of Theorem 7 is given in [8] (pp. 117–119).

Remark 4. The proof of Theorem 7 may be fulfilled a bit simpler
than it was put through in [8]. This method will be applied at the proof
of Theorem 8.

Further we examine the random effects one-way analysis of variance
model (3). At this the differences xjk − x̄j· (j = 1,m; k = 1, n) are also
the so-called random errors. According to Theorem 2 their expectations
are zero.

We introduce the generalized form of model (3) to prove the reverse
of Theorem 2.

Let x be such a matrix of dimension m×n where the general element
xjk (j = 1,m; k = 1, n) is defined by (3). So the generalized model is

(26) x = ‖γ‖m×n + ‖lj‖m×n + ‖ejk‖m×n ,

where M(‖lj‖) = Om×n and M(‖ejk‖) = Om×n. So from (26)

(27) M(x) = ‖γ‖m×n, that is M(x) = γa0b
∗
0 ,

where a∗0 = (1, 1, . . . , 1)1×m and b∗0 = (1, 1, . . . , 1)1×n. Let S1 and S2 be
given by (22). S1 and S2 are stochastic and idempotent matrices of order
m and n, respectively. Then we can also define the matrix-valued random
variables y2 and z with (23). So

y2 = ‖x̄j·‖m×n and z = ‖x̄‖m×n .

Therefore the matrix of the random errors is

x− y2 = ‖xjk − x̄j·‖m×n .

The next theorem corresponds to Theorem 7 at model (26).

Theorem 8. Let us assume that the random variables xjk (j = 1,m;
k = 1, n) have expectations. Then (27) is valid if and only if

(28) M(x− y2) = Om×n .

Proof. 1. From (27) comes (28). The left side of (28) — in conse-
quence of the theorems valid for the expectation — is

M(x)−M(y2) .

So (28) is true if M(x) = M(y2). But M(y2) = M(‖x̄j·‖) and from (27)
M(x̄j·) = γ. Therefore M(y2) = M(x). So

M(x) = M(y2) .
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2. From (28) we get (27). (28) is equivalent to

(29) M(x)−M(x)S2 = Om×n ,

where S2 has a simple structure. Since (29) is a homogeneous linear matrix
equation of form AX − XB = O therefore we can apply a well-known
theorem to solve it ([3], p.202, Satz 1). The Jordan normal form of S2 is
similar to (15). Then

(30) S2 = W2




1, 0, . . . , 0
0, 0, . . . , 0
. . .
0, 0, . . . , 0




n×n

W ∗
2 ,

where W2 is an orthogonal matrix of dimension n×n. W2 can be obtained
from W1 substituting n for m. So to solve (29) we can use the above-
mentioned theorem ([3], p.202, Satz 1). Substituting (30) in (29) we get

(31) M(x)−M(x)W2




1, 0, . . . , 0
0, 0, . . . , 0
. . .
0, 0, . . . , 0




m×n

W ∗
2 = Om×n .

Post-multiplying (31) by W2 and introducing the notation

(32) M̃(x) = M(x)W2

we obtain from (31)

(33) M̃(x)




0, 0, . . . , 0
0, 1, . . . , 0
. . .
0, 0, . . . , 1




m×n

= Om×n .

Let M̃(x) = ‖m̃jk‖m×n. Then on the basis of (33) for the elements of
M̃(x) 


0, m̃12, . . . , m̃1n
0, m̃22, . . . , m̃2n
. . .
0, m̃m2, . . . , m̃mn


 = Om×n .

So

M̃(x)m×n =




m̃11, 0, . . . , 0
m̃21, 0, . . . , 0
. . .

m̃m1, 0, . . . , 0


 .

Hence M̃(x) involves m free parameters which differ from zero. In conse-
quence of (32) taking into account the form of W2 which is similar to (16)

(34) M(x) = n−1/2‖m̃j1‖m×n .
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This means that M(x) consists of identical elements in each row. Let us
introduce the notation

(35) λ̃j = n−1/2m̃j1 (j = 1,m) .

If there exists an l index (l = 1,m) for wich λ̃l 6= 0, then the minimum
dyadical decomposition of M(x) on the basis of [1] or [6] is as follows:

M(x) =
1
λ̃l




λ̃1
...

λ̃m




(
λ̃l, λ̃l, . . . , λ̃l

)
1×n

,

or in a simplier form we get from (29)

(36) M(x) =




λ̃1
...

λ̃m


 (1, 1, . . . , 1)1×n .

If λ̃j = γ (j = 1,m) then from (36)

M(x) = γa0b
∗
0 ,

that is (27) is valid.
With this the proof of Theorem 8 is finished.
Remark 5. Theorem 8 may be considered as that special case of The-

orem 7 when λ = 0m×1.

Remark 6. The selection λ̃j = γ (j = 1,m) is possible. Then the
elements of the first column of M̃(x)m×n are mn−1/2γ, that is

(37) m̃j1 = mn−1/2γ (j = 1, m) .

Summing over both sides of (37) one can get

(38) γ = n1/2m−2
m∑

j=1

m̃j1 .

The following theorem is valid for the fixed effects one-way analysis of
variance model on the basis of Theorem 7 in the special case m = n = 1.

Criterion 1. Let us assume that (1) is true and xjk ∈ M (j = 1,m;
k = 1, n). Then M(xjk) = γ + λj if and only if M(xjk − x̄j·) = 0.

One can get the next theorem for the random effects one-way analysis
of variance model from Theorem 8 in the case m = n = 1.

Criterion 2. Let us assume that (3) is valid for xjk and xjk ∈ M
(j = 1, m; k = 1, n). Then M(xjk) = γ if and only if M(xjk − x̄j·) = 0.



284 L. Tar

4. A criterion for the unreplicated two-way analysis of
variance models with no interaction

The models with no interaction are the so-called additive models. At
unreplicated case the number of observations is one in each cell.

In the first place we consider the fixed (nonrandom) effects two-way
analysis of variance model (5) for which Theorem 3 is true. Our aim
to prove the reversed statement of Theorem 3 introducing a generalized
model. We shall prove a criterion for this model applying the results valid
for the general solution of the nonhomogeneous linear matrix equation
AX −XB = F ([3], pp.199–209). This criterion contains the statement of
Theorem 3 and its reverse in the special case m = n = 1.

Let us consider the matrix
(39) x = ‖xjk‖m×n

where xjk is given by (5) and xjk ∈ M (j = 1,m; k = 1, n). Then

(40) x = ‖γ‖m×n + ‖λj‖m×n + ‖µk‖+ ‖ejk‖m×n .

So — in consequence of M(‖ejk‖) = Om×n —

(41) M(x) = γa0b
∗
0 + λb∗0 + a0µ

∗ ,

where a∗0 = (1, 1, . . . , 1)1×m, b∗0 = (1, 1, . . . , 1)1×n, λ∗ = (λ1, λ2, . . . , λm)
(λj corresponds to the j–th level of the first factor) and µ∗ = (µ1, . . . , µn)
(µk is the effect due to the k–th level of the second nonrandom factor).
Let S1 and S2 be stochastic and idempotent matrices of order m and n,
respectively. Suppose that S1 has identical elements 1

m and S2 has identical
elements 1

n . It is well-known that they have 1 as a simple eigenvalue ([4],
p.284, Corollary 4). Let y2 and z defined by (23). Let us define a newer
random variable
(42) y1 = S1x .

The marginal and grand means of the sample elements are given by (12)
and (14). Then

y1 = ‖x̄·k‖m×n, y2 = ‖x̄j·‖m×n and z = ‖x̄‖m×n .

The differences x̄j·−x̄ (j = 1,m) and x̄·k−x̄ (k = 1, n) are the discrepancies
between rows and the discrepancies between columns, respectively. The
quantities xjk − x̄j· − x̄·k + x̄ (j = 1,m; k = 1, n) are the random errors.
Since

y1 − z = ‖x̄·k − x̄‖m×n ,

y2 − z = ‖x̄j· − x̄‖m×n and(43)

x− y1 − y2 + z = ‖xjk − x̄j· − x̄·k + x̄‖ ,
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therefore we call the matrix y1− z the matrix of the discrepancies between
columns, the matrix y2 − z the matrix of the discrepancies between rows
and the matrix x− y1 − y2 + z is the so-called random error matrix.

Theorem 9. Let xjk ∈ M (j = 1,m; k = 1, n). Then (41) is true if
and only if

M(x− y1 − y2 + z) = Om×n .

The proof can be found in [8] (pp.121–125).

For the model (40) the following theorems are also valid.

Theorem 10. Let (41) be true. Then

(44) M(y2 − z) = Om×n

if and only if λ = c1a0, where c1 is an arbitrary constant.

Theorem 11. Let us assume that (41) is valid for M(x). Then

M(y1 − z) = Om×n

if and only if µ = c2b0, where c2 is a constant.

Remark 7. The proof of Theorem 10 and Theorem 11 may be com-
pleted in similar way. Therefore we shall deal only with the proof of
Theorem 10.

Proof of Theorem 10. 1. From (44) comes λ = c1a0, where c1 is a
constant. On the basis of (23) (44) may be written in the form

(45) (E − S1)M(x)S∗2 = Om×n .

Substituting M(x) from (41) into (45) our matrix equation is

(46) γ(E−S1)a0(S2b0)∗+(E−S1)λ(S2b0)∗+(E−S1)a0(S2µ)∗ = Om×n .

Since S1 is a stochastic matrix of order m having identical elements 1
m

(47) S1a0 = 1a0 .

For S2

(48) S2b0 = 1b0 .

On the basis of (47) (E − S1)a0 = 0a0. Taking into account this and (48)
we obtain from (46)

γ0m×1b
∗
0 + (E − S1)λb∗0 + 0m×1(S2µ)∗ = Om×n ,

that is

(49) (E − S1)λb∗0 = Om×n .
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This is true only in the case (E − S1)λ = 0m×1, or equivalently S1λ = λ.
Therefore (52) is valid if λ = c1a0.

2. If λ = c1a0 then M(y2−z) = Om×n assuming that (44) is satisfied.
On the basis of (41)

M(y2 − z) = (E − S1)λb∗0 .

If λ = c1a0 then
M(y2 − z) = c1(E − S1)a0b0 .

But in consequence of (47) (E − S1)a0 = 0m×1. So M(y2 − z) = Om×n.

This completes the proof of Theorem 10.

Remark 8. According to Theorem 10 the null hypothesis that the
expectations of the discrepancies between rows are zero is equivalent to
the null hypothesis that the quantities λj (j = 1,m) corresponding to the
row-effects are equal to a constant c1 at each j (j = 1,m).

Remark 9. On the basis of Theorem 11 the null hypothesis that the
expectations of the discrepancies between columns are zero is equivalent to
the one that the quantities µk (k = 1, n) — representing the column-effects
— are equal to a constant c2.

In the second place the author deals with the unreplicated mixed two-
way analysis of additive variance model which is given by (7). For this
model Theorem 4 is true. Model (7) is the random blocks design. We shall
prove the reversed statement of Theorem 4 for a generalization of (7). In
this case we shall also use the results well-known for the general solution of
the nonhomogeneous linear matrix equation AX −XB = F ([3], pp.199-
209). Therefore one can obtain a criterion for this generalized model. From
this it may be seen that Theorem 4 and its reversed statement is true.

Let us now consider the matrix of xjk ∈ M (j = 1,m; k = 1, n) where
xjk is defined by (7)

x = ‖xjk‖m×n

Then

(50) x = ‖γ‖m×n + ‖λj‖m×n + ‖mk‖+ ‖ejk‖m×n .

From this

(51) M(x) = γa0b
∗
0 + λb∗0

according to the assumptions at (7) and on the basis of the theorems valid
for the expectations. Let S1 and S2 be stochastic matrices given by (22).

Let y1, y2 and z be defined by (42) and (23). The formulae of the mar-
ginal and grand means are given by (12) and (14). The random variables
xjk− x̄j·− x̄·k + x̄ (j = 1,m; k = 1, n) are the random errors at model (7).
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Remark 10. According to (51) M(x) is the sum of two dyads. (51)
can be obtained from (41) substituting µ = 0n×1 into it. If (53) is true
then y1 = ‖x̄·k‖m×n, y2 = x̄j·‖m×n and z = ‖x̄‖m×n. From these

y1 − z = ‖x̄·k − x̄‖m×n ,

y2 − z = ‖x̄j· − x̄‖m×n and

x− y1 − y2 + z = ‖xjk − x̄j· − x̄·k + x̄‖m×n .

Here xjk is given by (7). y1 − z is the matrix of the discrepancies between
columns, y2 − z is the matrix of the discrepancies between rows.

For our generalized model (50) the theorem corresponding to Theo-
rem 9 is the next one.

Theorem 12. Let xjk ∈ M (j = 1,m; k = 1, n). Then (51) is fulfilled
if and only if

M(x− y1 − y2 + z) = Om×n .

Proof. 1. If (51) is true then the expectation of the random error
matrix is the zero matrix.

By the help of (23) and (42)

(52) M(x− y1 − y2 + z) = (E − S1)M(x)(E − S2)∗ .

The right side of (52) using (51) is the following expression:

γ(E − S1)a0[(E − S2)b0]∗ + (E − S1)λ[(E − S2)b0]∗ .

So in consequence of (E − S1)a0 = 0m×1 and (E − S1)b0 = 0n×1

M(x− y1 − y2 + z) = Om×n .

2. From M(x − y1 − y2 + z) = Om×n we get M(x) = γa0b
∗
0 + λb∗0.

According to (52) the matrix equation which must be solved

(53) (E − S1)m×mM(x)(E − S2)∗n×n = Om×n .

Let us introduce the notation
(54) M̄(x) = (E − S1)m×mM(x) .

Then (53) may be written in the form

(55) M̄(x)− M̄(x)S2 = Om×n .

This is a homogeneous linear matrix equation. It is similar to (32.) But
in (55) occurs M̄(x) instead of M(x). So the solution (55) using (36) is

(56) M̄(x) =




λ1
...

λm


 (1, 1, . . . , 1)1×n .
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Hence for M(x) can be obtained the following nonhomogeneous linear
matrix equation from (54):

(57) S1M(x)−M(x) = −M̄(x) .

The general solution of (57) is the sum of the general solution of the
corresponding homogeneous linear matrix equation

(58) S1M(x)−M(x) = Om×n

and a particular solution of (57) ([3], pp. 208–209).
Now we give the general solution of (58). The Jordan normal form of

S1 is given by formulae (15) and (16). Substituting them into (58)

(59) W1




1, 0, . . . , 0
0, 0, . . . , 0
. . . . . . . . . . . . . . .
0, 0, . . . , 0




m×m

W ∗
1 M(x)−M(x) = Om×n .

Pre-multiplying (59) by W ∗
1 and considering the orthogonality of W1 we

get

(60)




1, 0, . . . , 0
0, 0, . . . , 0
. . . . . . . . . . . . . . .
0, 0, . . . , 0




m×m

W ∗
1 M(x)−W ∗

1 M(x) = Om×n .

Introducing the notation

M̃(x) = W ∗
1 M(x)

we obtain from (60)

(62)




0, 0, . . . , 0
0, 1, . . . , 0
. . . . . . . . . . . . . . .
0, 0, . . . , 1




m×m

M̃(x) = Om×n .

Let M̃(x) = ‖m̃jk‖m×n. So from (65)

M̃(x)m×n =




m̃11, m̃12, . . . , m̃1n
0, 0, . . . , 0

. . . . . . . . . . . . . . . . . . . . . . .
0, 0, . . . , 0


 ,

that is M̃(x) contains n free parameters. From (61) M(x) = W1M̃(x).
Calculating W1M̃(x)

M(x) = ‖m−1/2m̃1k‖m×n ,
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that is M(x) consists of columnwise identical elements. If we introduce
the notations µ̃k = m−1/2m̃1k then

(63) M(x) = ‖µ̃k‖m×n .

Let us suppose that there is an l for which µ̃l 6= 0 (l = 1, n). Then the
minimum dyadical representation of (63) is

M(x) =
1
µ̃l




µ̃l
...
µ̃l




m×m

(µ̃l, µ̃2, . . . , µ̃n) ,

that is

(64) M(x) =




1
1
...
1




m×m

(µ̃l, µ̃2, . . . , µ̃n) .

From this with the notation µ̃k = γ (k = 1, n)

(65) M(x) = γa0b
∗
0 .

Now we prove that M(x) = λb∗0 is a particular solution of the matrix
equation (57) if M̄(x) is given by the formula (56). Substituting M(x)=λb∗0
and M̄(x) = λb∗0 into (57)

(66) S1λb∗0 − λb∗0 = −λb∗0 .

Since
m∑

j=1

λj = 0 and

S1λ =
1
m




m∑
λj

...
m∑

λj




m×1

hence S1λ = 0m×1. So (66) is true. Finally the general solution of the
nonhomogeneous linear matrix equation (57) is

M(x) = γa0b
∗
0 + λb∗0 .

This completes the proof of theorem.

For the generalization of the unreplicated mixed two-way analysis of
additive variance model is true a criterion corresponding to Theorem 10.
This kind of theorem is valid only for the nonrandom factor of the mixed
models.
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Theorem 13. Let (51) is true for M(x). In this case

(67) M(y2 − z) = Om×n

if and only if λ = ca0, where c is constant.

Proof. The proof of this theorem is similar to that of Theorem 10.
Remark 11. According to Theorem 13 the null hypothesis that the

expectations of the discrepancies between treatments are zero is equivalent
to the hypothesis that the quantities λj (j = 1,m) — representing the j–th
level of the treatment effects — are equal to an identical constant c.

Finally in this section we deal with the unreplicated random effects
two-way analysis of additive variance model. This model is defined by (9)
and for it Theorem 5 is valid. We shall prove a criterion for the general-
ized form of (9). From this theorem — in a special case — one may get
Theorem 5 and the reversed statement of it.

In the proof of the above-mentioned criterion we shall use as earlier
the theorems which are true for the general solution of a nonhomogeneous
linear matrix equation ([3], pp.208–209).

Let us consider the matrix
(68) x = ‖γ + lj + mk + ejk‖m×n ,

where xjk ∈ M (j = 1,m; k = 1, n) and they are defined by (9). So

x = ‖γ‖m×n + ‖lj‖m×n + ‖mk‖m×n + ‖ejk‖m×n .

In consequence of the assumptions
(69) M(x) = γa0b

∗
0 ,

where a∗0 = (1, 1, . . . , 1)1×m and b∗0 = (1, 1, . . . , 1)1×n. This means that
M(x) consists of a dyad. S1 and S2 are the earlier defined stochastic and
idempotent matrices having dimensions m × m and n × n, respectively.
The rank of S1 and S2 is 1. The minimum dyadical representation of S1

is given by (17). The minimum dyadical representation of S2 is similar to
(17) but in it m is substituted by n. y1, y2 and z are defined by formulae
(42) and (23). The marginal and total means are given by (12) and (14).
Since

y1 − z = ‖x̄·k − x̄‖m×n ,

y2 − z = ‖x̄j· − x̄‖m×n and

x− y1 − y2 + z = ‖xjk − x̄j· − x̄·k + x̄‖m×n ,

therefore the matrix y1 − z is the matrix of the discrepancies between
columns, the matrix y2− z is the matrix of the discrepancies between rows
and the matrix x− y1 − y2 + z is the random error matrix.

The following theorem is true for the generalization of the unreplicated
random effects two-way analysis of variance model with no interaction.
(The generalized model is given by (68) and (69).)
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Theorem 14. Let xjk ∈ M (j = 1, m; k = 1, n). Then (69) is valid if
and only if M(x− y1 − y2 + z) = Om×n.

Proof. The method is similar to the proof of Theorem 9 and Theo-
rem 12.

1. If (69) is valid then M(x−y1−y2 +z) = 0m×n. Substituting y1, y2

and z on the basis of (42) and (23) into the expectation of the random
error matrix

(70) M(x− y1 − y2 + z) = (E − S1)M(x)(E − S2)∗ .

This is formally identical with (52). Substituting (69) into (70)

M(x− y1 − y2 + z) = γ(E − S1)a0[(E − S2)b0]∗ .

In consequence of (E − S1)a0 = 0m×1 and (E − S2)b0 = 0n×1

M(x− y1 − y2 + z) = γ0m×10∗n×1 ,

that is
M(x− y1 − y2 + z) = Om×n .

With this the first part of Theorem 14 is proved.
2. In the case of M(x−y1−y2 +z) = Om×n (69) is fulfilled for M(x).

Using (70) our matrix equation is

(71) (E − S1)M(x)(E − S2)∗ = Om×n .

Introducing the notation

(72) M̄(x) = (E − S1)m×mM(x)

(71) can be written in the form

(73) M̄(x)− M̄(x)S2 = Om×n .

This is a homogeneous linear matrix equation for unknown M̄(x). (73) is
formally similar to (28). So its solution on the basis of (36) is

(74) M̄(x) =




γ̃1
...

γ̃m


 (1, 1, . . . , 1)1×n .

If γ̃j = γ̃ (j = 1,m) then

(75) M̄(x) = γ̃a0b
∗
0 .

From (72)
M(x)− S1M(x) = M̄(x) ,
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that is

(76) S1M(x)−M(x) = −M̄(x) .

This is similar to the nonhomogeneous linear matrix equation (57). So its
general solution is the sum of the general solution of the corresponding
homogeneous linear matrix equation and a particular solution of (76).

Let the general solution of

(77) S1M(x)−M(x) = Om×n

be

(78) M(x) = γ′a0b
∗
0 ,

where γ′ is an arbitrary constant. Let a particular solution of (76) be

M̂(x) = γ̃a0b
∗
0 .

Substituting M̂(x) into (76) taking into account (75) we get

S1γ̃a0b
∗
0 − γ̃a0b

∗
0 = −γ̃a0b

∗
0 ,

that is S1γ̃a0b
∗
0 = Om×n. Since S1a0 = a0 therefore γ̃a0b

∗
0 = Om×n. From

this γ̃ = 0. So the general solution of (76) is given by (78). If we select as
a particular solution of (76)

M̂(x) = γ1a0b
∗
0

then substituting it into (76) and applying (78) we obtain

γ1S1a0b
∗
0 − γ1a0b

∗
0 = −γ̃a0b

∗
0 .

In consequence of S1a0 = a0 the left side of this equation is a null matrix.
So γ̃a0b

∗
0 = Om×n. From this γ̃ = 0. Finally the general solution of (76)

with the notation γ′ = γ is

(79) M(x) = γa0b
∗
0 .

In the case of particular solution M̂(x) = γ1a0b
∗
0 (76) will be a homoge-

neous equation also having the general solution (79).
The criterions for the three models considered in this section are as

follows.

Criterion 3. Let us assume that (5) is true and xjk ∈ M (j = 1,m;
k = 1, n). Then M(xjk) = γ + λj + µk if and only if

M(xjk − x̄j· − x̄·k + x̄) = 0 .
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Criterion 4. Let (7) be valid and xjk ∈ M (j = 1,m; k = 1, n). So
M(xjk) = γ + λj if and only if

M(xjk − x̄j· − x̄·k + x̄) = 0 .

Criterion 5. Let (9) be true for xjk and xjk ∈ M (j = 1,m; k = 1, n).
So M(xjk) = γ if and only if

M(xjk − x̄j· − x̄·k + x̄) = 0 .

Remark 12. This criterions may be obtained from Theorem 9, Theo-
rem 12 and Theorem 14, respectively. They may be get from the above-
mentioned theorems in the special case m = n = 1.
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