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The octahedron and cube functional equations revisited

By LASZLO SZEKELYHIDI (Debrecen)

Abstract. In [5] we considered the problem of equivalence of the n-dimen-
sional octahedron and cube equations which was conjectured by D. Z. DJOKOVIC
and H. HARUKI. Here we prove this conjecture using results of M. LEFRANC on
spectral synthesis for Z*. Our method leads to the proof of another conjecture
which states that the solutions of these functional equations are polynomials of
degree at most 2n — 1.

In [5] we studied the functional equations of mean-value type

(1) [En:(fg + Tit)] f=2nf,

=1

and

@) [H (it Tit)] f=2,
1=1

where an Abelian group G is given, n is a positive integer, f : G" — C
is a function and 7} denotes the partial translation operator in the i-th
variable with increment £, that is,

Tgf('xlax?a""xn) = f('xlaw?""ami—lami +ta$i+1a"'axn)

holds for i = 1,2,...,n and for all z1,z9,...,z,,t in G. Equation (1),
respectively (2) is called octahedron, respectively cube equation. For n =1
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they coincide and they are equivalent to the Jensen-equation. For the
history of equations of the above and similar type we refer to [5]. It has
been proved (see [3], [4]) that (1) implies (2) for any n, and (2) implies (1)
for n < 4. It has been conjectured by D. Z. DJOKOVIC and H. HARUKI (see
[4]) that (1) and (2) are equivalent for all n. In [5], Section 14. we studied
this conjecture. Unfortunately, our method was based on a theorem of
a result in [1], which states that spectral synthesis holds for any discrete
Abelian group, however, there is a gap in the proof of that theorem, as
Z. Gajda pointed out in 1990 in our personal conversation: the “proof”
is incomplete and actually does not prove the statement. Despite several
efforts of the present author and Z. Gajda the gap has not been filled
yet. Some recent considerations on this problem encourage the conjecture
that even spectral analysis (a considerably weaker statement) does not
hold for any discrete Abelian group. It is not the purpose of this paper
to go into these details on spectral synthesis and analysis. Here we give
a correct proof for the equivalence of the two functional equations, which
is based on spectral synthesis for Z* proved in [2]. Our present proof
can also be applied in several similar cases. In [5] we also considered the
characterization problem concerning the solutions of (1) and (2) in the case
G = R We were able to prove a representation theorem for the locally
integrable solutions of (1) and (2), which states that all locally integrable
solutions of (1) and (2) are linear combinations of the partial derivatives
of a special polynomial, which is of degree at most 2n — 1 in each variable.
Our method applied in this paper allows us to generalize this theorem by
proving that on an arbitrary Abelian group any solution of (1) or (2) is
a polynomial of degree at most 2n — 1 in each variable. The idea is to
reduce the problem to the case G = Z* and to study polynomial ideals of
differential operators.

In this paper Z, R and C denotes the set of integers, the set of re-
als, and the set of complex numbers, respectively, and n > 2 is a fixed
integer. If G is an Abelian group then homomorphisms of G into the addi-
tive group of complex numbers, resp. the multiplicative group of nonzero
complex numbers are called additive functions, resp. complex exponentials.
Complex polynomials of additive functions are called complex polynomials,
or simply polynomials on G. Finally, the product of a polynomial and a
complex exponential on G is called an exponential monomial.

In the sequel we shall need the following simple results, the first of
which is proved in [5] and the second follows easily by induction.
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Theorem 1. Let G be an Abelian group. Then any nonzero complex
exponential on G is an extremal point of the convex hull of all nonzero
complex exponentials on G. (see [5], Lemma 14.1, p. 119.).

Theorem 2. Let 41,19,-..,%, be nonnegative integers. Then we have
Yoo Elep e = (14 (1)) (14 (=1)2) ... (14 (=1)™).
ee{-1,1}"
(Here we used the notation € = (1,¢€9,...,&p).)

We note that the above statement can be reformulated as follows: the
given sum is different from zero if and only if all the exponents 41,9, . ..,y
are even, and in this case it is equal to 2".

In the sequel we shall use multi-index notation. Multi-indices of the
same dimension are added component-wise and ordered lexicographically.
Similarly, we order vectors of same dimensional multi-indices lexicograph-
ically, corresponding to the ordering of their components. It is clear that
both the ordering of multi-indices and that of the vectors of multi-indices
are linear.

Let k be a positive integer and let @ = («a1,a9,...,0¢) be a k-
dimensional multi-index. For the k-dimensional vector u = (u1,ug, ..., ug)
in R¥ we shall write u® = ufuy?...up*. The factorial a! of the multi-

index « is the product of the factorials of its components. The height of
the multi-index « is equal to |a| = a1 + ag + ... + ag. We call a multi-
index even if its height is an even number. For any nonzero k-dimensional
even multi-index « let 'y (a) denote the set of all vectors (81, B2, ..., ;)
with 1 <1 <n, where 81, B2,...,; are nonzero k-dimensional even multi-
indices with 1 > G > ... > Frand f1 + B2+ ... + B = a.

For any nonzero k-dimensional even multi-index « let

a!
a) = Z AT wflwéb : ..:1:5“,

where z1, 9, ..., T, are in R and the summation is extended over all k-
dimensional even multi-indices 51, B2, ..., By, with 1+ 8o +...+ 8, = a. If
any component of some exponent is equal to zero, then the corresponding
factor is considered to be 1.

For an arbitrary positive integer [ with 1 <[ < n and for any nonzero
k-dimensional multi-indices B1,82,...,0; with 81 > B > ... > [; we
denote by @, (81, B2, - - -, F;) the sum of all different monomials of the form
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a:ffa:f ...:CZ’-BII, where i1,19,...,1; are different integers between 1 and n,

and x;,, Ti,, ..., T; are in RE. For instance
n
_ B
i=1

We remark that in the sequel we shall consider the polynomials P, (@)
and @, (51,52, --,0;) mainly as polynomial differential operators in n - k
variables by substituting z; = 0; = (0;,1, 0i 2, - .., 0; %) and by interpreting
addition and multiplication in the obvious way.

It is clear that we have the representation

Pn(Oé) = Z Z Aﬂl,ﬂz,...,ﬂlQn(/Bl’ ﬁQ, s aﬁl)'
=1 (,Bl,ﬁQ,...,ﬁl)EFn(a)

Here the coefficients are positive integers and the coefficient of Q,(«) is 1.
It is also easy to see that if we put z, 11 = 0 in P, () then we get P, («),
and if we put 2,41 =0 in Qn11(51,52,---,0;) then we get 0 for [ =n+1
and Qn(ﬂl,ﬁQ, . ,,Bl) for [ S n.

We have another representation for P, («).

Theorem 3. Let n, k be positive integers and o a k-dimensional
multi-index. Then we have

Py(a)=27" Z (En:em)a

ee{-1,1}» i=1

PROOF. We use the Polynomial Theorem and Theorem 2 in the fol-
lowing computation:

2" Z (i aia:i) "

ee{-1,1}" i=1

— n 1 n 1 n
=2 E E ﬂl!---ﬂn!el e EpMT LTy

66{—1,1}” Bi+...4+Bn=a

— ol B
R P S B

Br+...+frn=a e€{-1,1}»
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_ a!
=2 3 ()P (L ) el
al
=X g = Fale) :

Bi1+...+Bn=a, B; is even

Obviously, any product Qu(81)Qn(B2) .- Qn(By) With (81, Ba. ..., B)
inI';, (@) is a linear combination of the polynomials Q,,(d1, d2, . .., d;) where
1 <j<land(d1,02,...,0;)isinT',(c), and in this combination @, () has
coefficient 1, further any Q, (1,02, ..., d;) with nonzero coefficient has the
property that (d1,d2,...,0;) > (B1,B2,.--,0). We remark, that if j <,
then the vector (d1,02,...,d;) is “shorter” than (B, S2,...,0), hence in
order to compare them we add zero components to it. We do the same
always when ordering vectors with different numbers of components.

Now we fix a nonzero k-dimensional even multi-index a. Let A denote
the linear hull of the polynomials Q, (81, B2, - - ., 0) with (81, B2,...,0;) in
I («). Obviously this set of polynomials is linearly independent, as the
functions Q, (81, B2, - - ., B;) are different monomials in n -k variables of the
same degree for different choices of (81, 52,...,0;)- Let further B denote
the linear hull of the polynomials P, («) and Q. (51)@n(52) - .. Qn(5;) with

l > 2 and (/817:823 s aIBl) in Pn(a)
Theorem 4. With the above notation A = B.

PROOF. By the above remarks it is clear that B C A. For the converse
we observe first that the cardinalities of the two given sets of polynomials
generating A and B are the same, therefore it is enough to prove that the
given polynomials generating B are linearly independent. The polynomi-
als Qn(81)Qn(Bs) - Qu(B) with I > 2 and (B1, B, B) in Tn(a) are
obviously linearly independent, hence it is enough to show that P,(«) is
not a linear combination of them. If we suppose that it is for some 7, then
according to our previous remark, by substituting z,, = 0 we get that it is
also the case for n. Hence it is enough to show that the given polynomi-
als generating B are linearly independent for n = 2. We have seen above
that the polynomials P(a) and Q2(81)Q2(B2) ... Q2(5;) with I > 2 and
(B1,P2,--.,0) in I'y(@) can uniquely be written as linear combinations of
the polynomials Q2(51,02,...,8) with 1 <1 < 2 and (81, 52,---,06;) in
I'y(cr). We show that the quadratic matrix of this linear transformation is
regular. Suppose that the first row contains the coefficients of the linear
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expression for Py(a) in terms of the polynomials Q2(f51, B2, ..., [;) corre-
sponding to the decreasing order of (81, B2, . . ., f;), hence the first row has
the form (1, A1, A2,...,An), where N > 2 is an integer, and A1, Ag,..., AN
are positive integers. The second, third, etc., rows contain the coefficients
of the linear expressions for the polynomials Q2(51)Q2(82) - .. Q2(5;) with
I = 2 corresponding to the decreasing order of (81, 32,-..,0;). We have
two cases. If the multi-index « is not of the form £+ 8 with some (8, ) in

Ta(a), then Q2(f1)Q2(B2) = Qa2(a) + Q2(B1, B2) for any (B1, f2) in 'z(a),

hence any row, which is different from the first has only two nonzero en-

tries, which are equal to 1, namely, the second row is (1,1,0,...,0), the
third is (1,0,1,0,...,0), and the last one is (1,0,...,0,1), where the dots
represent zeros. The determinant of this matrix is 1 — Ay — Ag — ... — Ap,

which is different from zero. In the second case a = 8 + 8 for some /3,
and in this case Q2(8)Q2(8) = Q2(a) + 2Q2(8, 5), which means that in
the corresponding row of the matrix the first entry is 1 and the other
nonzero entry is 2, instead of 1. Multiplying the corresponding column of
the matrix by %, the first row changes to (1,)\1,...,%,...,)\N) and the

determinant to 1— A1 —...— % —...— AN, which is also different from zero.
This means, that the matrix of the linear transformation, which maps a
basis of A to a generating set of B is regular, hence the given generating
set of B is linearly independent and A C B. The theorem is proved. O

For any nonzero k-dimensional multi-index « let I,(«), respectively
Jn(a) denote the ideal generated by all the polynomials @, (3), respectively
P,(p) in the ring of complex polynomials in n - k variables, where 8 < « is
nonzero and even. Obviously I,(8) C I,(a) and J,(8) C J,(«) for 5 < a.

Theorem 5. The ideals I,(«) and J,(«) are identical.

PROOF. If the height of a is 2 then I,(«) is generated by Q,(«),
and Jp () is generated by Pp(«), which are equal, hence I,(a) = J,(a).
Suppose that we have proved the theorem for all nonzero k-dimensional
multi-indices with height less than 2N and let || = 2N. We have seen
above that A C B, hence @, («) is a linear combination of the polynomials
Po(a) and Qn(81)Qn(B2) - - Qn(B) with 2 <1 <n and (B1,ps,...,5) in
Tph(a). As B1 + B2 + ... + By = a, here the height of §; is less than 2N,
hence by our assumption Q,(5;) is in J,(8;) C Ju(«) for 1 = 1,2,... 1.
Since P,(«a) also belongs to J,(a) we infer that Q,(«) belongs to J,(«),
and I,(a) C Jp(a). Conversely, the polynomials Q, (81, fe,...,0;) with
2<l<mnand (£,P2,.-.,0) in I'y(a) are linear combinations of products
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of the form Qn((sl)Qn(ég) e Qn(dj) with 2 < ] <n and ((51, (52, ey 5]) in
I (), which all belong to I, («). Further, P, () is a linear combination of

Qn(a) and Qn(ﬂlaﬁ% s aﬂl) with 2 <7 <n and (51,625 s a/Bl) in Fn(a)a
which all belong to I,(«), which implies J,,(«) C I,(a), and our statement
is proved. O

Theorem 6. The polynomial solutions of (1) and (2) are identical if
G =17k

PROOF. Any polynomial solution of (1) or (2) on Z* is a complex
polynomial in n - k variables. If (1) or (2) holds for a polynomial, then

fixing x1, 22, ..., T, in Z* we have a polynomial identity in the variable ¢
in Z*, which must hold for all 1, zo, . .., z, and ¢t in R¥, too. For any fixed
Z1,%2,...,%, the two polynomials in ¢t = (¢1,t2,...,tx) on the two sides of

(1) and (2) have the same value at ¢t = (0,0, ...,0), hence they are identical
if and only if their derivatives of all order are equal at ¢ = (0,0,...,0),
by the Taylor-formula. Let o be any nonzero k-dimensional multi-index.
Applying the differential operator 0f = 9;;'0;,” ... 0, on both sides of
(1) and then substituting ¢ = 0 we have that a necessary and sufficient
condition for the polynomial f : (Z¥)" — C is a solution of (1) is that

(14 (1)) En:af‘f = 0.
i=1

Here 0f = 07103 8107‘ %, where 0;; denotes partial differentiation with
respect to the j-th component of the i-th variable for i = 1,2,...,n and
7 =1,2,...,k. This means that the polynomial f : (Zk)n — C satisfies
(1) if and only if for any nonzero k-dimensional even multi-index «

(3) Y orf=0, or  Qn@)f=0
=1

holds, where @Q,(c) is the polynomial differential operator, obtained as
above with z; = 0;.

Now we apply the differential operator 95 on both sides of (2) and sub-
stitute ¢ = (0,0,...,0). Then we have that the polynomial f : (Z*¥)* — C
satisfies (2) if and only if for any nonzero k-dimensional even multi-index «

> < 3 5i8i>af20a
1

ee{-1,1}» “i=
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(4) 2"Py(a)f =0

holds, where P,(a) is the polynomial differential operator, obtained as
above with z; = 0;. Here ¢ = (e1,€9,...,&n). By Theorem 5 the ideals
generated by the polynomials @, (a) and P,(a) are identical, that is, the
systems of partial differential equations (3) and (4) are equivalent. Hence
the polynomial solutions of (1) and (2) are identical if G = ZF. O

Theorem 7. The functional equations (1) and (2) are equivalent on
any Abelian group G for any positive integer n.

PRrROOF. By Theorem 8.13 in [5] it is enough to show that the restric-
tions of (1) and (2) to any finitely generated subgroup of G are equivalent,
that is, (1) and (2) are equivalent on any finitely generated Abelian group.
Using the result of Lefranc in [2] on spectral synthesis for Z*¥ we show
that (1) and (2) are equivalent if G = Z*. It is enough to show, that in
this case the exponential monomial solutions of (1) and (2) are identical.
However, if an exponential monomial has the form pm, where p: G™ — C
is a polynomial and m : G™ — C is an exponential and it is a solution
of (1) or (2), then the exponential m is also a solution of (1) or (2), be-
cause the solution space of these equations are translation invariant linear
function spaces closed under pointwise convergence. In this case Lem-
ma 4.2 in [5], p. 40. can be applied. If m : G — C is an exponential

then it has the form m(z1,z9,...,2,) = mi(x1)mo(z2) ... my(x,), where
mi,ma,...,my: G — C are exponentials. Substituting m into (1) or (2)
we get easily by Theorem 1 that m; =mg =--- =m, =1, hence m =1,

that is, any exponential monomial solution of (1) or (2) is a polynomial.
By Theorem 6 the polynomial solutions of (1) and (2) are identical if
G =Z*

Suppose now that G is an arbitrary finitely generated Abelian group
and let ¢ : ZF — G be a surjective homomorphism, where k is some
positive integer. The function @ : (Z’“)n — G" defined by

D(21,22,...,2n) = ((,0(21), o(z2),... ,<P(Zn))

for z1,29,...,2, in ZF is a surjective homomorphism. If f : G* — C is
a solution of (1) on G", then f o & : (Z¥)" — C is obviously a solution
of (1) on (Z*¥)", hence f o ® satisfies (2) on (Z¥)", which implies that
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f: G™ — C is a solution of (2) on G". The converse follows in the same
manner, hence our theorem is proved. O
Theorem 8. If n,k > are integers, then any polynomial solution
f 1 (ZF)" — C of (1) satisties
f=0

for any k-dimensional multi-index o with |a| =2n (i = 1,2,...,n).

PROOF. We prove the statement for ¢ = 1. First we show by induction
on [ that

lo} epteq epteq —
(5) al( > ...az.n_l>f_o

1<i1 <<t <n

holds for any k-dimensional multi-index « with || = 2] (I = 1,2,...).
Here ep, respectively e, denotes the k-dimensional multi-index, whose
p-th, respectively g-th component is 1 and all the other components are 0.
Ifl=1land 1 =02=---=fn = ep + €4, then

afp+eq< > (95”6"---Bff:eq)f=Qn(ﬁ1,ﬂza---,5n)f=0’

1< <-<ip—1<n

by Theorem 4, which is (5) for [ = 1. Suppose that (5) holds for / and let
B be a k-dimensional multi-index with |3| = 2(I+1). Then § has the form
B = a+ e, + e, with some 1 < p,¢q < k, where |a| = 2[. By Theorem 4 we
have

(6) Qn(517ﬁ2""7ﬁn—l)fzo
with 81 = o =+ = B, = ep + g, that is,

epteq epteq epteq
o ( oo gt -@'n,l) f

1<81 <<y —1 <N

+( oo ot af:j84>f = 0.

1< <<t <N

(Here in the first term we collected all differential operators which contain

0" T as a factor, and the second term is the remaining part.) Applying
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0 on both sides we have

0= af( > arre ...af:*fql) f

1<i1 <<l g1 <0

+ af“( > ortea, ..af:ij>f

1<t < <1 <N

_ aB €pteq epteq
_al( > o ...Bin_l_1>f,

1<i1 << —1<n

hence (5) holds with § in place of a. Finally, by the substitution | = n in
(5) we have our statement. O

Theorem 9. Let G be an Abelian group and n a positive integer.
Then any complex valued solution of (1) or (2) is a polynomial of degree
at most 2n — 1 in each variable.

PROOF. By Theorem 7 equations (1) and (2) are equivalent on any
Abelian group hence it is enough to deal with (1). Let k& be any positive
integer and let f : (Z¥)" — C be a polynomial solution of (1), then by
Theorem 8§

of=0
holds for any k-dimensional multi-index o with |a| = 2n and for
i=1,2,...,n. If A;; denotes the partial difference operator with incre-
ment ¢ in the i-th variable on functions f : (Z*)" — C fori = 1,2,...,n,

then this implies that

(7) AT f(z1, 22, 20) =0
holds for any ¢, z1, 22, ..., 2y in ZF, that is, the function
2> f(21,22y oy Zic1y 2y Zid 1y -3 2n)
is a polynomial of degree at most 2n—1 for fixed 21, 22, ..., 2i—1, 2, Zit1, - - -
ee.yZp in Z* and for i = 1,2,...,n. In other words, f is a polynomial

of degree at most 2n — 1 in each variable. In the proof of Theorem 7
we have seen that any exponential monomial solution of (1) is actually a
polynomial, and now we know that it is of degree at most 2n — 1 in each
variable. It is clear that any pointwise limit of nets of such functions is a
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also polynomial of degree at most 2n — 1 in each variable, hence by the
result of Lefranc in [2] on spectral synthesis for Z* any complex valued
solution of (1) on (Z*)" is a polynomial of degree at most 2n — 1 in each
variable.

The case of finitely generated groups can be treated exactly in the
same way, like in Theorem 7. Let G be any finitely generated Abelian
group and let ¢ : Z¥ — G be a surjective homomorphism, where & is some
positive integer. The function ® : (Z’“)n — G"™ defined by

D(z1,29,-..,2) = ((p(zl), o(z2), ... ,(p(zn))

for z1,z9,...,2, in ZF is a surjective homomorphism. If f : G* — C is a
solution of (1) on G", then f o ® : (Z¥)" — C is obviously a solution of
(1) on (Z*)", hence f o @ satisfies

Af,?(f 0 q))(zlﬂzQa .- ,Zn) =0
foralli =1,2,...,nandt,z2,2,...,2, in Z¥. This implies that f satisfies
A?,';f(xl, Ly« - ,.’L'n) =0

forall 2 =1,2,...,n and s,x1,2,...,%, in G, that is, f is a polynomial
of degree at most 2n — 1 in each variable.

Finally, suppose that G is an arbitrary Abelian group. Let {G} be the
(inductive) set of all finitely generated subgroups of G. For any solution
f : G™ — C of (1) the function f,, which is equal to f on G, and zero
outside, is a solution of (1) on the finitely generated subgroup G, hence
[ is a polynomial of degree at most 2n — 1 in each variable on G.,. As f
is the pointwise limit of the net {f,} we infer, that f is a polynomial of
degree at most 2n — 1 in each variable, and our theorem is proved. O
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