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On the Terai–Jeśmanowicz conjecture

ZHENFU CAO and XIAOLEI DONG (Shanghai)

Abstract. Let a, b, c ∈ N be fixed satisfying a2 + b2 = cr with gcd(a, b) = 1 and
r odd ≥ 3. In this paper, we prove that (A) if b ≡ 3 (mod 4), 2‖a and b ≥ 25.1a,
then the Diophantine equation (1) ax + by = cz has only the positive integer solution
(x, y, z) = (2, 2, r); (B) if a = |Vr|, b = |Ur|, c = m2 + 1, where the integers Ur, Vr

satisfy (m +
√−1)r = Vr + Ur

√−1, and b ≡ 3 (mod 4), 2‖a and b is a prime, then
equation (1) has only the positive integer solution (x, y, z) = (2, 2, r).

§1. Introduction

Let Z and N be the sets of integers and positive integers respectively.
In [16], [17], N. Terai conjectured that if a, b, c, p, q, r ∈ N are fixed, and
ap + bq = cr, where p, q, r ≥ 2, and gcd(a, b) = 1, then the Diophantine
equation

(1) ax + by = cz, x, y, z ∈ N

has only the solution (x, y, z) = (p, q, r). In [2], we point out that the
condition max(a, b, c) > 7 should be added to the hypotheses of the con-
jecture. In fact, we see that the equation (2n − 1)x + 2y = (2n + 1)z has
two solutions (x, y, z) = (1, 1, 1) and (2, n + 2, 2) for any 1 < n ∈ N. So,
we suggest that the conjecture should be modified as follows.
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Conjecture. If a, b, c, p, q, r ∈ N with ap + bq = cr, a, b, c, p, q, r ≥ 2
and gcd(a, b) = 1, then Diophantine equation (1) has only the solution

(x, y, z) = (p, q, r) with x, y, z > 1.

For p = q = r = 2 the above statement was conjectured previously by
Jeśmanowicz [6]. We shall use the term Terai–Jeśmanowicz conjecture
for the above conjecture. Some recent results on the Terai–Jeśmanowicz
conjecture are as follows:

(A) Terai [16], Le [8] and the authors [2], [5] considered the case
p = q = 2, r = 3, and for

(2) a = m3 − 3m, b = 3m2 − 1, c = m2 + 1,

where 2 | m ∈ N, they proved that

(A1) if b is an odd prime, and there is a prime l such that m2− 3 ≡ 0
(mod l) and e ≡ 0 (mod 3), where e is the order of 2 modulo l, then the
Terai–Jeśmanowicz conjecture holds (see [16]).

(A2) if b is an odd prime and 4 - m, then the Terai–Jeśmanowicz
conjecture holds (see [8]).

(A3) if b is an odd prime, then the Terai–Jeśmanowicz conjecture holds
(see [5]). And if c is a prime, then the Terai–Jeśmanowicz conjecture also
holds (see [2], [5]).

(B) Terai [17] and the authors [2], [5] also considered the case p =
q = 2, r = 5, and for

(3) a = m|m4 − 10m2 + 5|, b = 5m4 − 10m2 + 1, c = m2 + 1,

where 2 | m ∈ N, they proved that

(B1) if b is an odd prime and there is an odd prime l such that ab ≡ 0
(mod l) and e ≡ 0 (mod 5), where e is the order of c modulo l, then the
Terai–Jeśmanowicz conjecture holds (see [17]).

(B2) if b is an odd prime, then the Terai–Jeśmanowicz conjecture holds
(see [5]). And if c is a prime, then the Terai–Jeśmanowicz conjecture holds
(see [2], [5]).

(C) One of the authors [2] also proved that if p = q = 2, 2 - r,
c ≡ 5 (mod 8), b ≡ 3 (mod 4) and c is a prime power, then the Terai–
Jeśmanowicz conjecture holds. In a recent paper of Le [9], we see that Le
only got a special case of the result of [2].
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Recently, Terai [18] also considered the case p = q = 2, 2 - r≥ 3, he
proved that if b ≡ 3 (mod 8), 2‖a, (a

l )= − 1 and b≥ 30a, where l > 1
is a divisor of b and (∗∗ ) denotes the Jacobi symbol, then the Terai–
Jeśmanowicz conjecture holds.

In this paper, we prove the following further results.

Theorem 1. Let p = q = 2 and r odd ≥ 3. Suppose that b ≡ 3
(mod 4), 2‖a and b ≥ 25.1a, then the Terai–Jeśmanowicz conjecture holds.

This is an improvement of Theorem 1 of Terai [18].
From Lemma 1 of [16], we know that a = n(3m2 − n2), b = m ×

(m2 − 3n2), c = m2 + n2 are all primitive solutions of a2 + b2 = c3, where
m,n ∈ N with gcd(m,n) = 1.

Corollary to Theorem 1. Suppose that a = n(3m2 − n2), b = m ×
(m2 − 3n2), c = m2 + n2, where m,n ∈ N with gcd(m,n) = 1. If m ≡ 3
(mod 4), 2‖n and m > 71.68n, then equation (1) has only the solution

(x, y, z) = (2, 2, 3).

Theorem 2. Let m, r ∈ N with 2 - r, r > 1, define the integers Ur,

Vr by (m +
√−1)r = Vr + Ur

√−1. If a = |Vr|, b = |Ur|, c = m2 + 1 and

if m ≡ 2 (mod 4), b ≡ 3 (mod 4) and b is a prime, then equation (1) has

only the solution (x, y, z) = (2, 2, r).

In Theorem 2, taking r = 3, we obtain the result of Le [8]. If r = 7,
then we have from Theorem 2 that

Corollary to Theorem 2. Let

a = m |m6 − 21m4 + 35m2 − 7|,
b = 7m6 − 35m4 + 21m2 − 1, c = m2 + 1,

where 2 < m ∈ N. If m ≡ 2 (mod 4) and b is a prime, then equation (1)
has only the solution (x, y, z) = (2, 2, 7).

In addition, we have also the following two results.

Theorem 3. If m ∈ N with m > 1, then the Diophantine equation

(4) A2m + B2 = C4, A, B, C ∈ Z, gcd(A,B) = 1, 2 | A

has no solution with AB 6= 0.
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Theorem 4. If m ∈ N with m > 3, then the Diophantine equation

(5) A2m + B4 = C2, A, B,C ∈ Z, gcd(A, B) = 1, 2 | B

has no solution with AB 6= 0.

Clearly, Theorems 3 and 4 can be applied to Terai–Jesmanowicz con-
jecture.

§2. Proof of Theorem 1 and its corollary

We will use the following lemmas to prove Theorem 1 and its corollary.

Lemma 1. Let a, b, c, p, q, r ∈ N satisfy the hypotheses of the Terai–

Jeśmanowicz conjecture. If p = q = 2, 2 - r, c ≡ 5 (mod 8) and b ≡ 3
(mod 4), then 2 | x, 2 | y in equation (1).

Proof. See [2]. ¤

Lemma 2. Let a, b, c ∈ N be fixed satisfying a2 + b2 = cr with

gcd(a, b) = 1 and r odd ≥ 3. Suppose that b ≡ 3 (mod 4), 2‖a. If

equation (1) has solutions (x, y, z), then x = 2, 2 | y, 2 - z.

Proof. Lemma 2 uses Theorem 3 and 4, whose proofs will be given
in the last Section.

From b ≡ 3 (mod 4), 2‖a, a2 + b2 = cr and r odd, we see that c ≡
5 (mod 8). So, if equation (1) has solutions (x, y, z) then we get from
Lemma 1 that 2 | x, 2 | y.

Case (i): z is odd. Then, by arguing mod 8, we have from (1) that
ax + 1 ≡ 5 (mod 8), and so x = 2 since 2‖a.

Case (ii): z is even. We can assume that x = 2X, y = 2Y , z = 2Z,
where X, Y, Z ∈ N. Then from (1), we have

aX = 2uv, bY = u2 − v2, cZ = u2 + v2,

where u, v ∈ N with gcd(u, v) = 1, 2 - u + v.
Since 2‖a, we have X > 1. If X > 2, then uv ≡ 0 (mod 4) and so cZ ≡

1 (mod 8), we get 2 | Z. Then equation (1) leads to a2X +(bY )2 = (cZ/2)4,
which is impossible by Theorem 3. Hence X = 2, and by Theorem 4, we
get Y ≤ 3.
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If Y = 1, then from (1), we have a4 + b2 = c2Z . So, we get

a2(a2 − 1) = (a4 + b2)− (a2 + b2) = c2Z − cr = cr(c2Z−r − 1).

Hence, we see that cr | a2 − 1 since gcd(a, c) = 1. And so

cr ≤ a2 − 1 < a2 + b2 = cr,

a contradiction.
If Y = 2, then (1) gives a4 + b4 = c2Z , which is impossible (see [14],

p. 37).
If Y = 3, then (1) gives a4 + b6 = c2Z . So, we get

(6) b2(2a2 + b2 − b4) = (a2 + b2)2 − (a4 + b6) = c2r − c2Z .

Clearly, r 6= Z. Hence, if r > Z then we see from (6) that b2 | c2r−2Z − 1.
So, (6) gives

2a2 + b2 − b4 = c2Z · c2r−2Z − 1
b2

≥ c2Z = a4 + b6

which is impossible. If r < Z, then (6) gives

b4 − 2a2 − b2 = c2r · c2Z−2r − 1
b2

≥ c2r > a4 + b4

which is also impossible. The proof is complete. ¤
Lemma 3. Let a, b, c, p, q, r ∈ N satisfy the hypotheses of the Terai–

Jeśmanowicz conjecture, b > a > 1, c ≥ 3 and q ≥ p. Let n be a given
positive integer with p ≤ n ≤ 1722. If b ≥ µap/q and the equation

an + by = cz, y, z ∈ N
has solutions y, z with (y, n) 6= (q, p), then y < n + q − p, where

µ =
{

exp
(

δ
n

log c + M

)
− 1

}−1/q

,

M = 1060.29 + 105.53
(

1
log b

+
1

log c

)
+ 765.39(log b log c)−1/2

+
log 81 + 12.26

log b log c
+

log(log b log c)
log b log c

and δ = 1 or 2 according as ry − qz is odd or even.
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Proof. Using a corollary to a theorem of Laurent–Mignotte–Neste-
renko [12], the lemma follows from the proof of main theorem of Terai [18].

¤

A Lucas pair (resp. a Lehmer pair) is a pair (α, β) of algebraic integers
such that α + β and αβ (resp. (α + β)2 and αβ) are non-zero coprime
rational integers and α/β is not a root of unity. For a given Lucas pair
(α, β), one defines the corresponding sequence of Lucas numbers by

un = un(α, β) =
αn − βn

α− β
(n = 0, 1, 2, . . . ).

For a given Lehmer pair (α, β), one defines the corresponding sequence of
Lehmer numbers by

ũn = ũn(α, β) =





αn − βn

α− β
if n is odd,

αn − βn

α2 − β2
if n is even.

It is clear that every Lucas pair (α, β) is also a Lehmer pair, and

un =
{

ũn if n is odd,

(α + β)ũn if n is even.

Let (α, β) be a Lucas (resp. Lehmer) pair. The prime number p is
a primitive divisor of the Lucas (resp. Lehmer) number un(α, β) (resp.
ũn(α, β)) if p divides un but does not divide (α−β)2u1 · · ·un−1 (resp. if p

divides ũn but does not divide (α2 − β2)2ũ1 · · · ũn−1). Recently, Y. Bilu,

G. Hanrot and P. Voutier [1] proved the following

Lemma 4. For any integer n > 30, every n-th term of any Lucas or

Lehmer sequence has a primitive divisor.

In [1], for any positive integer n ≤ 30, all Lucas sequences and all
Lehmer sequences whose n-th term has no primitive divisor are explicitely
determined. See Tables 1–4 of [1].

Lemma 5. If 2 - r and r > 1, then all solutions (X, Y, Z) of the

equation

X2 + Y 2 = Zr, X, Y, Z ∈ Z, gcd(X, Y ) = 1
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are given by

X + Y
√−1 = λ1(X1 + λ2Y1

√−1 )r, Z = X2
1 + Y 2

1 ,

where λ1, λ2 ∈ {−1, 1} X1, Y1 ∈ N and gcd(X1, Y1) = 1.

Lemma 5 follows directly from a theorem in book of Mordell [13]
pp. 122–123.

Proof of Theorem 1. From the theorem of [2], we see that if c is a
prime power, then our theorem holds. Hence, we may suppose that c ≥ 85.
It follows from Lemma 2 that x = 2, 2 | y and 2 - z. In Lemma 3, let
p = q = 2, n = 2 and δ = 2. Then by Lemma 3, if equation (1) has
solutions with (y, n) 6= (2, 2), then y < n + q − p = 2 under the condition

(7) b ≥
{

exp
(

2
n

log c + M

)
− 1

}−1/2

a.

Now, we prove that

(8) b ≥ 251.

Using Lemma 5, from a2 + b2 = cr, gcd(a, b) = 1, 2 | a and r odd ≥ 3, we
get

(9) b + a
√−1 = λ1(u + λ2v

√−1 )r, c = u2 + v2,

where λ1, λ2 ∈ {−1, 1}, u, v ∈ N with gcd(u, v) = 1 and 2 - u + v. Let
α = u + v

√−1, β = u− v
√−1. Then (9) gives

(10) a =
∣∣∣∣
αr − βr

α− β

∣∣∣∣v.

Since 2 - αr−βr

α−β and 2‖a, (10) implies that 2‖v. By Lemma 4 and Tables 1

and 3 of [1], we see that αr−βr

α−β has a primitive divisor. Also, if 3 - v and

3 | αr−βr

α−β , then from b2 + a2 = cr we see that c = u2 + v2 ≡ 1 (mod 3)

and so 3 | u. On the other hand, from 3 | αr−βr

α−β we know that 3 - u, a

contradiction. If 3 | v, then a ≥ 18, b > 251, i.e. (8) holds. If 3 - αr−βr

α−β ,
then from (10), we get a ≥ 10 and so b ≥ 251, i.e. (8) also holds.
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From b ≥ 251 and c ≥ 85, we have n
log c < 0.2251n and

M = 1060.29 + 105.53
(

1
log b

+
1

log c

)
+ 765.39(log b log c)−1/2

+
log 81 + 12.26

log b log c
+

log(log b log c)
log b log c

< 1258.434.

Therefore, we get that

{
exp

(
2

n
log c + M

)
− 1

}−1/2

<

{
exp

(
2

0.2251 · 2 + 1258.434

)
− 1

}−1/2

< 25.1.

From this, we have b ≥ 25.1a >
{

exp
(

2
n

log c +M

) − 1
}−1/2

a, i.e. (7) holds.

Hence, y < 2, but which is impossible since 2 | y.
Thus, y = 2, and from cz = ax + by = a2 + b2 = cr, we get z = r.
This proves Theorem 1. ¤
Proof of Corollary to Theorem 1. Clearly, a2 + b2 = c3 and b ≡ 3

(mod 4), 2‖a. Notice that m > 71.68n. We get

23.88
(

3 +
8

(m
n )2 − 3

)
< 71.68 <

m

n
.

It implies that m(m2−3n2) > 23.88n(3m2−n2), that is b > 23.88a. Since
n ≥ 2, m > 71.68n > 143, i.e. m ≥ 145. We get

a = n3

(
3
(

m

n

)2

− 1
)

> 8(3 · 71.682 − 1) = 123304.53 · · · ,

i.e. a ≥ 123306. Hence,

(11)
b > 23.88 · 123306 > 2944547 (i.e. b ≥ 2944549),

c ≥ 1452 + 22 = 21029.

By the proof of Theorem 1, it suffices to prove

(12)
{

exp
(

2
n

log c + M

)
− 1

}−1/2

< 23.88.
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From (11), we have n
log c < 0.1004656n and

M = 1060.29 + 105.53
(

1
log b

+
1

log c

)
+ 765.39(log b log c)−1/2

+
log 81 + 12.26

log b log c
+

log(log b log c)
log b log c

< 1141.003342.

From this, we easily get that (12) holds.
The corollary is proved. ¤

Remark 1. Using Terai’s method (see [18]), we can prove that if a =
2(3m2−4), b = m(m2−12), c = m2+4, where m ∈ N with m ≡ 3 (mod 4)
and m > 3, then equation (1) has only the solution (x, y, z) = (2, 2, 3).

§3. Proof of Theorem 2

We need Lemma 2, Lemma 5 and the following result.
Let un be Lucas sequence, i.e. un = αn−βn

α−β , where α, β are two roots
of the equation

x2 − Px + Q = 0, P, Q ∈ Z, P > 0, gcd(P, Q) = 1.

It is well known fact that

Lemma 6. If m, n are odd, then gcd(um, un) = ugcd(m,n).

Proof. For example, see D. H. Lehmer [10]. ¤

Proof of Theorem 2. It is clear that 2‖a when m ≡ 2 (mod 4). Then
from Lemma 2, we get x = 2, y = 2y1 and 2 - z, where y1 ∈ N. If y1 = 1,
then we have from (1) that z = r, that is, Theorem 2 holds. Otherwise,
we assume that y1 > 1.

By Lemma 5, we have from (1) that

(13) a + by1
√−1 = λ1(X + λ2Y

√−1 )z, c = X2 + Y 2,

where λ1, λ2 ∈ {−1, 1}, X,Y ∈ N and gcd(X, Y ) = 1. It follows from (13)
that

(14) λ1λ2b
y1 = Y

((
z

1

)
Xz−1−

(
z

3

)
Xz−3Y 2 + · · ·+(−1)

z−1
2

(
z

z

)
Y z−1

)
.
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Clearly, (14) gives that Y = bl, 0 ≤ l ≤ y1. If l > 0, then m2 + 1 = c =
X2 + Y 2 ≥ b2 + 1 and so

(15) m ≥ b.

On the other hand, let

A =
(

r

1

)
mr−3 −

(
r

3

)
mr−5 + · · ·+ (−1)

r−3
2

(
r

r − 2

)
.

Then b = |Ur| = |m2A + (−1)
r−1
2 |. Therefore, by b is a prime, we see that

A 6= 0. It implies that

b = |Ur| = |m2A + (−1)
r−1
2 | ≥ m2|A| − 1 ≥ m2 − 1 > m,

which contradicts (15). Therefore l = 0, that is, Y = 1. From c = m2+1 =
X2 + 1, we get that X = m. Now, we get from (14) that

(16) λ1λ2b
y1 =

αz − βz

α− β
= Uz,

where α = m +
√−1, β = m − √−1 are two roots of the equation x2 −

2mx+(m2 +1) = 0. By Lemma 6, we get that gcd(b, Uz) = gcd(Ur, Uz) =
Ugcd(r,z). Since b = |Ur| is a prime, Ur | Uz, we get r | z. Let z = rz1,
z1 ∈ N. We have

Vrz1 + Urz1

√−1 = (m +
√−1)rz1 = (Vr + Ur

√−1)z1 .

It follows from (16) that

by1−1 =
∣∣∣∣
Urz1

Ur

∣∣∣∣

=
∣∣∣∣
(

z1

1

)
V z1−1

r −
(

z1

3

)
V z1−3

r U2
r + · · ·+ (−1)

z1−1
2

(
z1

z1

)
Uz1−1

r

∣∣∣∣.(17)

Clearly, b | z1. Let blj‖( z1
2j+1

)
V

z1−(2j+1)
r U2j

r , 0 ≤ j ≤ z1−1
2 and let

btj‖2j +1. Then we have 2j − tj > 0 for j > 0. So from
(

z1

2j + 1

)
V z1−(2j+1)

r U2j
r =

z1

2j + 1

(
z1 − 1

2j

)
V z1−(2j+1)

r b2j
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we see that l0 < l0 + 2j − tj ≤ lj for j > 0. Hence, we get from (17) that
by1−1 | z1, and so z1 ≥ by1−1. It follows from (1) that

a2 + b2y1 = crz1 = (a2 + b2)z1 ≥ (a2 + b2)by1−1
> a2 + b2y1 ,

a contradiction.
This proves Theorem 2. ¤

Remark 2. In the proof of Theorem 2, not using Lemma 2, we can
also get x = 2, y = 2y1 and 2 - z. In fact, using some results on the equa-
tions x2 − yn = 1, x2 − 2yn = −1 and x2n − 2y2 = −1 (see Chao Ko [7],
Ljunggren [11], Störmer [15] and Zhenfu Cao [3]), we can get an
elementary proof of it.

§4. Proof of Theorems 3 and 4

Proof of Theorems 3 and 4 need two important results on the Dio-
phantine equations

xp + 2yp + zp = 0, x, y, z ∈ Z, xyz 6= 0, p ∈ P,(18)

and

xn + yn = z2, x, y, z ∈ Z, xyz 6= 0, n ∈ N.(19)

Lemma 7. Equation (18) has no solution with x 6= z.

Lemma 8. If n ≥ 4, then equation (19) has no solution.

For the proofs of Lemmas 7 and 8, see Darmon and Merel [4]. Now,
using Lemma 7, we can obtain the proof of Theorem 3.

Proof of Theorem 3. Suppose that equation (4) has a solution with
AB 6= 0. From Ribenboim [14], p. 38, we can assume that 2 - m. There-
fore, we get from (4) that

(20) |A|m = 2uv, C2 = u2 + v2,

where u, v ∈ N with gcd(u, v) = 1, 2 - u+ v. Without loss of generality, we
may assume that 2 | u, 2 - v. Then from the second equality of (20), we
get

(21) u = 2u1v1, v = u2
1 − v2

1 ,
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where u1, v1 ∈ N with gcd(u1, v1) = 1, 2 - u1 + v1. From the first equality
of (20), we have

(22) u = 2m−1Am
1 , v = Am

2 , |A| = 2A1A2,

where A1, A2 ∈ N with gcd(A1, A2) = 1. Hence, we get from (21) and (22)
that

(23) u1v1 = 2m−2Am
1 , u2

1 − v2
1 = Am

2 .

Clearly, the second equality of (23) implies

u1 + v1 = Am
3 , u1 − v1 = Am

4 , A2 = A3A4,

and so

2u1 = Am
3 + Am

4 , 2v1 = Am
3 −Am

4 ,(24)

where A3, A4 ∈ N with gcd(A3, A4) = 1. From the first equality of (23),
we see that u1 = Am

5 or v1 = Am
5 . By Lemma 7, we know that (24) gives

A3 = A4 and so v1 = 0, which is impossible since v1 ∈ N. The theorem is
proved. ¤

Using similar method and Lemma 8, we easily prove that Theorem 4
holds.

Acknowledgements. The authors would like to thank the referee for
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