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On the Terai—-Jesmanowicz conjecture

ZHENFU CAO and XTAOLEI DONG (Shanghai)

Abstract. Let a,b,c € N be fixed satisfying a? + b2 = ¢" with gcd(a,b) = 1 and
r odd > 3. In this paper, we prove that (A) if b = 3 (mod 4),2||a and b > 25.1a,
then the Diophantine equation (1) a® + bY = ¢® has only the positive integer solution
(x,9,2) = (2,2,7); (B) if a = |V;|, b = |Uy|, ¢ = m? + 1, where the integers Uy, V.
satisfy (m ++/=1)" = Vi + Urv/—1, and b = 3 (mod 4),2||a and b is a prime, then

equation (1) has only the positive integer solution (z,y,z) = (2,2,r).

§1. Introduction

Let Z and N be the sets of integers and positive integers respectively.
In [16], [17], N. TERAI conjectured that if a,b, ¢, p,q,r € N are fixed, and
aP + b? = ", where p,q,7 > 2, and ged(a,b) = 1, then the Diophantine

equation
(1) a®*+b =c*, zy,z€N

has only the solution (z,y,2z) = (p,q,7). In [2], we point out that the
condition max(a,b,c) > 7 should be added to the hypotheses of the con-
jecture. In fact, we see that the equation (2" — 1)* 4+ 2¥ = (2" + 1)* has
two solutions (z,y,z) = (1,1,1) and (2,n + 2,2) for any 1 < n € N. So,
we suggest that the conjecture should be modified as follows.
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Conjecture. If a,b,c,p,q,v € N with a? +b? = ¢", a,b,c,p,q,7 > 2
and ged(a,b) = 1, then Diophantine equation (1) has only the solution
(z,y,2) = (p,q,7) with x,y,z > 1.

For p = ¢ = r = 2 the above statement was conjectured previously by
JESMANOWICZ [6]. We shall use the term Terai-Jesmanowicz conjecture
for the above conjecture. Some recent results on the Terai—JeSmanowicz
conjecture are as follows:

(A) TERAI [16], LE [8] and the authors [2], [5] considered the case
p=q=2,r=23, and for

(2) a=m®—-3m, b=3m*>—-1, c=m*+1,

where 2 | m € N, they proved that

(A1) if b is an odd prime, and there is a prime [ such that m? —3 =0
(mod ) and e = 0 (mod 3), where e is the order of 2 modulo [, then the
Terai-Jesmanowicz conjecture holds (see [16]).

(A2) if b is an odd prime and 4 { m, then the Terai-Jesmanowicz
conjecture holds (see [8]).

(A3) if bis an odd prime, then the Terai-Jesmanowicz conjecture holds
(see [5]). And if ¢ is a prime, then the Terai-JeSmanowicz conjecture also
holds (see [2], [5]).

(B) TERAI [17] and the authors [2], [5] also considered the case p =
q=2,r=2>5, and for

(3) a=mlm*—10m?+5|, b=>5m*—10m*+1, c=m?+1,

where 2 | m € N, they proved that

(B1) if b is an odd prime and there is an odd prime [ such that ab = 0
(mod l) and e = 0 (mod 5), where e is the order of ¢ modulo [, then the
Terai-Je$manowicz conjecture holds (see [17]).

(B2) if b is an odd prime, then the Terai-Jesmanowicz conjecture holds
(see [5]). And if ¢ is a prime, then the Terai-JeSmanowicz conjecture holds
(see [2], [5]).

(C) One of the authors [2] also proved that if p = ¢ = 2, 2 1 r,
¢ =5 (mod 8), b = 3 (mod 4) and ¢ is a prime power, then the Terai-
Jesmanowicz conjecture holds. In a recent paper of LE [9], we see that Le
only got a special case of the result of [2].
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Recently, TERAI [18] also considered the case p=¢q =2, 217 >3, he
proved that if b = 3 (mod 8), 2|la,(?)= — 1 and b>30a, where [>1
is a divisor of b and (%) denotes the Jacobi symbol, then the Terai-
Jedmanowicz conjecture holds.

In this paper, we prove the following further results.

Theorem 1. Let p = ¢ = 2 and r odd > 3. Suppose that b = 3
(mod 4),2||a and b > 25.1a, then the Terai-Jesmanowicz conjecture holds.

This is an improvement of Theorem 1 of TERAI [18].

From Lemma 1 of [16], we know that a = n(3m? —n?), b = m x
(m? —3n?), c = m? + n? are all primitive solutions of a? + b> = ¢3, where
m,n € N with ged(m,n) = 1.

Corollary to Theorem 1. Suppose that a = n(3m? —n?), b = m x
(m? — 3n?), ¢ = m? + n?, where m,n € N with gcd(m,n) = 1. If m =3
(mod 4), 2|jn and m > 71.68n, then equation (1) has only the solution
(x,y,2) =(2,2,3).

Theorem 2. Let m,r € N with 2 r, r > 1, define the integers U,,
Vi by (m+v=1)" =V, +U/~1. Ifa=|V,|, b= |U,|, c = m? + 1 and
ifm=2 (mod 4), b =3 (mod 4) and b is a prime, then equation (1) has
only the solution (x,y, z) = (2,2,71).

In Theorem 2, taking r = 3, we obtain the result of LE [8]. If r =7,
then we have from Theorem 2 that

Corollary to Theorem 2. Let
a=m|mb —21m* + 35m? — 7|,
b=Tm" —35m*+21m? -1, c=m?+1,

where 2 < m € N. If m = 2 (mod 4) and b is a prime, then equation (1)
has only the solution (z,y,z) = (2,2,7).

In addition, we have also the following two results.

Theorem 3. If m € N with m > 1, then the Diophantine equation
(4) A*™ 4 B2 =C* A BCcZ, gcd(A,B)=1,2]|A

has no solution with AB # 0.
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Theorem 4. If m € N with m > 3, then the Diophantine equation
(5) A*™ 4 B*=C? A B,CcZ, gcd(A,B)=1, 2| B

has no solution with AB # 0.

Clearly, Theorems 3 and 4 can be applied to Terai—Jesmanowicz con-
jecture.

§2. Proof of Theorem 1 and its corollary

We will use the following lemmas to prove Theorem 1 and its corollary.

Lemma 1. Let a,b,c,p,q,7 € N satisfy the hypotheses of the Terai—
Jesmanowicz conjecture. If p = q=2,21r, ¢ =5 (mod8) and b = 3
(mod 4), then 2 | z, 2 | y in equation (1).

PROOF. See [2]. O

Lemma 2. Let a,b,c € N be fixed satisfying a®> + b*> = ¢" with
ged(a,b) = 1 and r odd > 3. Suppose that b = 3 (mod 4), 2|ja. If
equation (1) has solutions (z,y,z), then x =2, 2 |y, 21 z.

PROOF. Lemma 2 uses Theorem 3 and 4, whose proofs will be given
in the last Section.

From b = 3 (mod 4), 2||a, a® + b?> = ¢" and r odd, we see that ¢ =
5 (mod 8). So, if equation (1) has solutions (z,y,z) then we get from
Lemma 1 that 2 | z, 2 | y.

Case (i): z is odd. Then, by arguing mod 8, we have from (1) that
a®+1=5 (mod 8), and so = = 2 since 2|a.

Case (ii): z is even. We can assume that z = 2X, y =2Y, z = 27,
where X,Y,Z € N. Then from (1), we have

a® =2uw, b =u? — %, & =u?+2,
where u,v € N with ged(u,v) =1, 2t u + v.
Since 2||a, we have X > 1. If X > 2, then uv =0 (mod 4) and so ¢? =
1 (mod 8), we get 2 | Z. Then equation (1) leads to a?X +(b¥)? = (c#/2)*4,
which is impossible by Theorem 3. Hence X = 2, and by Theorem 4, we
get Y < 3.
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If Y = 1, then from (1), we have a* + b? = ¢?Z. So, we get
a*(a* —1) = (a* +V*) — (> +0*) = 2% — " =" (P77 —1).
Hence, we see that ¢” | a® — 1 since ged(a,c) = 1. And so
<a’-1<a®+b?=¢",

a contradiction.

If Y = 2, then (1) gives a* + b* = ¢?2, which is impossible (see [14],
p. 37).

If Y = 3, then (1) gives a* + b5 = ¢®Z. So, we get
(6) b2(2a2—|—b2—b4):(a2+b2)2—(a4+b6):CQT—CZZ.
Clearly, 7 # Z. Hence, if r > Z then we see from (6) that b2 | ¢>" 2% — 1.
So, (6) gives

2r—27 _q
2a2—|—b2—b4:czz'7b2 > 7 =gt 418

which is impossible. If r < Z, then (6) gives

2Z-2r _ 1
b4—2a2—b2:czr'b72 > > ot + vt
which is also impossible. The proof is complete. O

Lemma 3. Let a,b,c,p,q,r € N satisfy the hypotheses of the Terai—
Jesmanowicz conjecture, b > a > 1, ¢ > 3 and q > p. Let n be a given
positive integer with p < n < 1722. If b > paP/? and the equation

a+bv=c* y,zeN

has solutions y, z with (y,n) # (q,p), then y < n + q — p, where

5 —1/q
i ()
log e +M
1 1
M = 1060.29 + 105.53( + ) + 765.39(log blog ¢) /2

logb logc

log81 4+ 12.26  log(logblogc)
logblogc logblogc

and 6 =1 or 2 according as ry — qz is odd or even.
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Proor. Using a corollary to a theorem of Laurent—Mignotte—Neste-
renko [12], the lemma follows from the proof of main theorem of TERAT [18].
O

A Lucas pair (resp. a Lehmer pair) is a pair (a, 3) of algebraic integers
such that o + 3 and af (resp. (a + 3)? and af3) are non-zero coprime
rational integers and «/( is not a root of unity. For a given Lucas pair
(a, ), one defines the corresponding sequence of Lucas numbers by

_an_ﬂn

Up :Un(Oé,,B) — Oé—ﬂ

For a given Lehmer pair (a, 3), one defines the corresponding sequence of

(n=0,1,2,...).

Lehmer numbers by

ot =" if n is odd,
SO a—p
Up = Un(a, B) = -

——— if nis even.
a? — 32

It is clear that every Lucas pair (o, 3) is also a Lehmer pair, and

{ Uy, if n is odd,
Up =

(a+ B)u, if n is even.

Let (a, ) be a Lucas (resp. Lehmer) pair. The prime number p is
a primitive divisor of the Lucas (resp. Lehmer) number w,(a, 3) (resp.
i (a, 8)) if p divides u,, but does not divide (o — 3)?uy - - - un, 1 (vesp. if p
divides @, but does not divide (a? — 3%)%u; - - - U, _1). Recently, Y. BILU,
G. HANROT and P. VOUTIER [1] proved the following

Lemma 4. For any integer n > 30, every n-th term of any Lucas or
Lehmer sequence has a primitive divisor.

In [1], for any positive integer n < 30, all Lucas sequences and all
Lehmer sequences whose n-th term has no primitive divisor are explicitely
determined. See Tables 1-4 of [1].

Lemma 5. If 2 t r and r > 1, then all solutions (X,Y,Z) of the
equation
X?24Y?=27", XY, Z€Z, gcd(X,Y) =1
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are given by
X+YV-1=M(X;+0V1V-1), Z=X{+Y7

where A\, Ao € {—1,1} X;1,Y; € N and ged(X;,Y7) = 1.

Lemma 5 follows directly from a theorem in book of MORDELL [13]
pp. 122-123.

PROOF of Theorem 1. From the theorem of [2], we see that if ¢ is a
prime power, then our theorem holds. Hence, we may suppose that ¢ > 85.
It follows from Lemma 2 that + = 2, 2 | y and 2 { z. In Lemma 3, let
p=¢q=2,n=2and § =2 Then by Lemma 3, if equation (1) has
solutions with (y,n) # (2,2), then y < n + ¢ — p = 2 under the condition

9 —1/2
> _ ] — .
(7) b> {exp<1026+M> 1} a

Now, we prove that

(8) b > 251.

Using Lemma 5, from a? + b% = ¢", ged(a,b) = 1, 2| @ and r odd > 3, we
get

9) b+av—1= X\ (u+vv—1)", c=u?+0%

where A1, A2 € {—1,1}, u,v € N with ged(u,v) = 1 and 2 t u + v. Let
a=u+vy—1, 8 =u—vy—1. Then (9) gives

o’ — IBT
a—p
Since 2 { a;:g and 2||a, (10) implies that 2||v. By Lemma 4 and Tables 1
and 3 of [1], we see that O‘;%gr has a primitive divisor. Also, if 3 { v and
3 | a;:gT7 then from b? + a? = ¢" we see that ¢ = u? +v? = 1 (mod 3)
and so 3 | u. On the other hand, from 3 | 0‘;%[’6; we know that 3 1 u, a

contradiction. If 3 | v, then a > 18, b > 251, i.e. (8) holds. If 3§ =5,
then from (10), we get a > 10 and so b > 251, i.e. (8) also holds.

(10) a=

V.

r
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From b > 251 and ¢ > 85, we have @ < 0.2251n and

1 1
M =1060.29 + 105.53 —— + —— | + 765.39(log blog c)_1/2
logb logc

log 81 + 12.26 n log(log blog c)

1258.434.
logblogc logblog c <

Therefore, we get that

9 ~1/2 9 ~1/2
{ o ( =+ M) } < { P (0.2251 2t 1258.434> }

< 25.1.

From this, we have b > 25.1a > {exp (ﬁ) — 1}71/2a, i.e. (7) holds.
Hence, y < 2, but which is impossible since 2 | y.
Thus, y = 2, and from ¢ = a® + b¥ = a? + b* = ", we get 2 = 7.
This proves Theorem 1. (|

PRrROOF of Corollary to Theorem 1. Clearly, a® +b%> = ¢ and b = 3
(mod 4),2||a. Notice that m > 71.68n. We get

8 m
23. —_ 1. —.
388<3+(Z)2_3><7 68<n

It implies that m(m? —3n?) > 23.88n(3m? —n?), that is b > 23.88a. Since
n>2,m>71.68n > 143, i.e. m > 145. We get

2
a=n? (3(m> - 1) > 8(3-71.68% — 1) = 123304.53 - - - |,
n

i.e. a > 123306. Hence,
b > 23.88 - 123306 > 2944547 (i.e. b > 2944549),
(11)
c > 145% + 22 = 21029.
By the proof of Theorem 1, it suffices to prove

2 —-1/2

log ¢
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From (11), we have 2= < 0.1004656n and

1 1
M =1060.29 + 105.53 —— + —— | + 765.39(log blog c)_1/2
logb logc

log 81 + 12.26 n log(log blog c)

1141. 42.
logblogc log blog ¢ < 0033

From this, we easily get that (12) holds.
The corollary is proved. O

Remark 1. Using TERAI's method (see [18]), we can prove that if a =
2(3m2 —4),b = m(m?—12), ¢ = m?>+4, where m € N with m = 3 (mod 4)
and m > 3, then equation (1) has only the solution (z,y, z) = (2,2, 3).

§3. Proof of Theorem 2

We need Lemma 2, Lemma 5 and the following result.

n__an
Let u,, be Lucas sequence, i.e. u, = O‘aig , where «, 3 are two roots

of the equation
?~Pr+Q=0, PQcZ P>0, gcd(P,Q) = 1.
It is well known fact that
Lemma 6. If m, n are odd, then gcd(unm, tun) = Uged(m,n)-
PROOF. For example, see D. H. LEHMER [10]. O

PROOF of Theorem 2. It is clear that 2|ja when m = 2 (mod 4). Then
from Lemma 2, we get © = 2, y = 2y; and 21 z, where y; € N. If y; = 1,
then we have from (1) that z = r, that is, Theorem 2 holds. Otherwise,
we assume that y; > 1.

By Lemma 5, we have from (1) that

(13) a+ b V-1=X\(X+XYV-1), c=X>+Y?

where A1, A2 € {—1,1}, X, Y € N and ged(X,Y) = 1. It follows from (13)
that

(14) M Aob¥ = Y<('i) P G (g)XZ‘3Y2+---+(—1)221 <Z> Yz—l).
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Clearly, (14) gives that Y = b, 0 <1 <. If [ >0, then m?2 +1 =c =
X?24+Y?2>02+1 and so

(15) m > b.

On the other hand, let

(- (e (1)

Then b = |U,| = |m2?A + (—1)%\. Therefore, by b is a prime, we see that
A # 0. It implies that

b=|U| = |m2A+(-1)7 | >m2A] —1>m>—1>m,

which contradicts (15). Therefore [ = 0, thatis, Y = 1. From ¢ = m?+1 =
X2 + 1, we get that X = m. Now, we get from (14) that

aF _ﬁz
16 A AobYt = =U,,
(16) 1A2 a_3
where o = m + /—1, 3 = m — /—1 are two roots of the equation z? —

2mx + (m? +1) = 0. By Lemma 6, we get that ged(b,U,) = ged(U,,U,) =
Ugcd(r,z)- Since b = |U,| is a prime, U, | U., we get 7 | z. Let z = rz1,
z1 € N. We have

V;“zl + Urzl\/? = (m + \/jl)rZI = (‘/r + UT\/jl)Zl-
It follows from (16) that

Ur‘zl
U,

(17) = 1 V;’Zl_l_ 21 erzl—SUg_'_‘“_i_(_l)zlgl 21 Ufl_l
1 3 “

Clearly, b | z1. Let bla]|(,71,)V* ®*U2 0 < j < 271 and let

b'(|25 +1. Then we have 2j —t; > 0 for j > 0. So from

21 —(2+0)7r2 A1 21— 1\ 1o —(2541) 25
VA= 2+ 2 — \ J+1) 27
(2j+1)r " 2j+1< 27 "

pvi—1 — ‘
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we see that lg < lp +2j —t; <[, for j > 0. Hence, we get from (17) that
pyvr—1 | z1, and so z; > pv1—1 Tt follows from (1) that

CL2 +b2y1 — T — (CL2 +b2)z1 > (a2 +b2)b9171 > (L2 —|—b2y1,

a contradiction.
This proves Theorem 2. O

Remark 2. In the proof of Theorem 2, not using Lemma 2, we can
also get © = 2, y = 2y; and 21 z. In fact, using some results on the equa-
tions 22 —y" =1, 22 — 2" = —1 and z?" — 2y? = —1 (see CHAO KO [7],
LJUNGGREN [11], STORMER [15] and ZHENFU CAO [3]), we can get an
elementary proof of it.

§4. Proof of Theorems 3 and 4

Proof of Theorems 3 and 4 need two important results on the Dio-
phantine equations

(18) P +29P + 2P =0, =z,y,2z€Z, xyz #0, p e P,
and
(19) "y =22, x,y,z2€7Z, zyz#0, n€N.

Lemma 7. Equation (18) has no solution with x # z.
Lemma 8. Ifn > 4, then equation (19) has no solution.

For the proofs of Lemmas 7 and 8, see DARMON and MEREL [4]. Now,
using Lemma 7, we can obtain the proof of Theorem 3.

PROOF of Theorem 3. Suppose that equation (4) has a solution with
AB # 0. From RIBENBOIM [14], p. 38, we can assume that 2 { m. There-
fore, we get from (4) that

(20) |A|™ = 2uv, O? =u? + 07,

where u, v € N with ged(u,v) = 1,2 1 u+v. Without loss of generality, we
may assume that 2 | w, 2 { v. Then from the second equality of (20), we
get

(21) u=2uv;, v=us— vl
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where uy,v; € N with ged(u1,v1) = 1,21 ug + v1. From the first equality
of (20), we have

(22> U= 2m—1A§n’ v = gl, ‘A| = 2A1A27

where Ay, Ay € N with ged(A;, A2) = 1. Hence, we get from (21) and (22)
that

(23) ugvy = 2M2AT . ui — o = AR
Clearly, the second equality of (23) implies

up +v; = A5, up—vy =AY, Ay = A3Ay,
and so
(24) 2up = A5+ A", 20 = A5 — AT,

where As, Ay € N with ged(As, A4) = 1. From the first equality of (23),
we see that uy = A" or v; = A'. By Lemma 7, we know that (24) gives
Az = A4 and so v; = 0, which is impossible since v1 € N. The theorem is
proved. O

Using similar method and Lemma 8, we easily prove that Theorem 4
holds.
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