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Geometry of a cubic Thue equation

By RYOTARO OKAZAKI (Kyoto)

Dedicated to Professor Kdlmdn Gydry on his 60th birthday

Abstract. Let f(X,Y) = aX3+bX%Y +cXY?+dY? € Z[X,Y] be a binary
cubic form and denote by D = D(f) its discriminant. Under the hypothesis
D > 5.65-10%%, we shall prove that the number of representations of 1 by f, i.e.,
the number of integral solutions to the equation f(z,y) = 1, is at most 7. This
improves upon the previous upper bound 10 of BENNETT [1].

Under various other conditions, we verify the Pethé—-Lippok Conjecture,
which asserts that if D > 361 then the number of representations of 1 by f
is at most 5.

1. Introduction

Let f(X,Y) = aX3 + bX2%Y + cXY? + dY? € Z[X,Y] be a binary
cubic form and denote by D = D(f) its discriminant. A pair (z,y) € Z?
is called a representation of 1 by f if f(x,y) = 1. Let R = R(f) be the
set of representations of 1 by f. We are interested in the number #R of
representations.

DELONE [6] in 1922 and NAGELL [18] in 1928 proved the best possible
upper bound for #R in the case that f has negative discriminant: #R < 3
if D< —44; #R =4if D= —44 or if D = —31; and #R = 5 if D = —23.

If f is reducible over Q, Bezout Theorem implies #R < 4.
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Therefore, we assume D > 0 and f is irreducible over Q. We men-
tion that in this case, the Hessian H(f; X,Y) = —l(a2f(X’Y) PIXY) _

2\ 7 ax? aY?
22f(x,v)\? . . . . :
(W) ) of f is positive definite quadratic form. We say f is reduced

if H(f; X,Y) is a reduced quadratic form (see §2 or §3).
We shall prove the following theorem:

Theorem 1.1. If D > 5.65 - 105, we have
#R LS T.
If f(X,Y) is reduced, f(1,0) # +1 and D > 2.15 - 10%°, we have
#R < 6.

The research on the number #R of representations was started by
THUE work [25] in 1909, who proved the finiteness of #R by using Padé
approximations. In 1929, SIEGEL [22] (see also [23]) used hypergeometric
functions for refining Thue’s Theorem and proved #R < 18 for sufficiently
large D. Their method, now called the hypergeometric method, is ineffec-
tive in the sense it gives no upper bound for the size max{|z|, |y|}. How-
ever, it can give a good universal upper bound for #R. Indeed, Gel'man
proved #R < 10 for sufficiently large D, in his student paper of 1949 (see
[7, Chap 5]). More recently, EVERTSE [9] in 1983 proved #R < 12 uncon-
ditionally and BENNETT [1, Theorem 1.4] in 2001 improved the uncondi-
tional bound to #R < 10. A general effective method was invented by
Baker, who proved an effective lower bound for linear forms in logarithms
of algebraic numbers. This method is usually used for computing the set
R of representations when concrete data of the cubic field associated with
f are given.

Our proof of Theorem 1.1 uses Baker’s method but in such a way that
we do not have to investigate the data of any specific number field. This
leads to an upper bound for #R which is smaller than the best known
result obtained by the hypergeometric method, i.e., Bennett’s result cited
above.

Under various additional conditions on the cubic form f, we prove the
following conjecture of PETHO [19] in 1987 and L1PPOK [13] in 1993:

Conjecture 1 (PETHO [19] and LipPOK [13]). If D > 361, we have

#R <5.
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The first condition is on the cubic order associated with f. Without
loss of generality, we assume #R > 0. Then, according to Theorem 4.1
below, there are algebraic integers a and § belonging to some suitable
cubic field such that f factors as a norm form

3

(1) FX,Y) =] (X +8Y),

=1

where a; (i = 1,2,3) are the conjugates of a and 3; (i = 1,2,3) those
of 8 and such that the discriminant of the order Z[a, ] is equal to the
discriminant D of f. Further, it is shown in Theorem 4.1 that Z[a, f]
is up to isomorphism indpendent of the choice of o and . We now put
O(f) = Z[a, 5] and call this the order associated with f.

Let O be a totally real cubic order and denote the conjugates of 6 € O
by subscripts: 6; (i = 1,2,3). The element sgn(e) = *(g;/|e|;) of {£1}3 ~
F3 is called the signature of ¢ when ¢ € O*. The signature rank of O is
the rank of the image sgn(0*). (Hence, the cardinality of the image is 2°,
where s denotes the signature rank.)

Theorem 1.2. Assume that the signature rank of O(f)* equals 1.

If D > 5.65 - 10, we have
#R <5.
An important invariant of f is the group of its automorphisms:
. m11 Mmi2
Aut(f) ={M € GLy(Z M = f}, where for a matrix M =
ut(f) = { (B o = f}, whereforamatrix M = (1 712)

we define the cubic form foM by (foM)(X,Y) = f(m11 X +m12Y, mo X+

ma2Y). We shall prove a better upper bound for #R when Aut(f) is non-
trivial:

Theorem 1.3. Assume Aut(f) # 1. If D > 2.56 - 10'8, we have
#R € {0,3}.
If the signature rank of O(f)* is less than 3, then we have
#R =0.

This is a generalization of THOMAS [24] of 1990, who determined all
representations of 1 by the simplest cubic forms fy(X,Y) = X3 + (N —
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1)X2%Y — (N +2)XY? + Y3 with integer parameter N > 1.365 - 107. (See
also [17] for the complete determination of all solutions in the full range,
ie., N #0,1,3.) Our generalization of Thomas’ result is non-trivial, since
there are infinitely many cubic forms f other than the forms fy for which
#R > 3 and Aut(f) # 1. (See the remark after Corollary 3.2 of [1].) Our
result also improves upon the previous estimate #R < 9 of BENNETT [1,
Corollary 3.2] obtained by the hypergeometric method.

Since units of trace zero in a given cubic order correspond to represen-
tations of 1 by a certain binary cubic form, our result has an application to
such units. Indeed, an attempt for the following theorem was the prototype
for the current research.

Theorem 1.4. Let © be a totally real cubic order and D(O) its
discriminant. Denote by T the set of units of © whose traces are 0 and
norms are 1. Assume D(9) > 7.2-107. Then, we have

#T <3.
If the signature rank of ©* is 2, we have
#T <2.

If the field of fractions of £ is cyclic, we have #7T = 3 or 0 according as
D(9) = 81 or not.

We remark that if the signature rank of O is 1, then 7 is empty.
Indeed, in this case, each element of D* can be expressed as +¢ where ¢
is totally positive, hence each element of O has trace # 0.

The set T is non-empty when the order O is generated by a root 6
of X3 — kX — 1 with kK > 3. Hence, there are infinity of such orders O
for which 7 is non-empty. When k = 3, the order O becomes the ring
of integers of the cyclic cubic field of discriminant 81. Hence, the three
conjugates of 6 lie in 7.

The structure of our proof is as follows: The key idea is to use the
geometry of a particular continuous plane curve which enables us to prove
exponential gap principles of a geometric nature. The curve is found (§5)
after interpretation of the Hessian of f as an exterior product (§3) and
after giving a geometric interpretation of the representations of 1 by f as
points lying in some displaced lattice in the logarithmic space (§4). Then,
our gap principles assert that these points are lying very far apart. We
use Baker theory (§7) to prove effective upper bounds for the sizes of these
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points. This makes a difference from previous studies (including Bennett’s)
in which uniform upper bounds for #R were obtained by means of the hy-
pergeometric method. To obtain nice numeric constants, we use results of
LAURENT-MIGNOTTE-NESTERENKO [12] and MATVEEV [15] from Baker
theory. We apply geometry of numbers (§6) in the logarithmic space (or
rather a modification of this) to rewrite lower bounds for linear forms in
logarithms in terms of our geometric set-up. Our theorems (§8) follow by
combining the exponential gap principles mentioned above with the upper
bounds obtained from Baker theory.

The author thanks the referee whose comments greatly improved the
paper.

2. Preliminaries

We recall here what is known about lattices, quadratic forms and cubic
forms.

We begin with lattices and quadratic forms associated with them. A
finitely generated module £ of a metric R-linear space U is called a lat-
tice if it is discrete. A minimal set of generators a(l) a® ... a(™ of
the lattice £ is called a basis of £. The number m is called the rank of
£. A basis always consists of R-linearly independent vectors. There-
fore, the rank m never exceeds the dimension of 2U. The volume of
the fundamental parallelepiped of £ in the linear hull R£ of £ is writ-
ten disc(£) and called the covolume of £ in RL. The quadratic form
Q: (XMW, x@,  XM)— | XxWagl) 4 X@g®) ... 4 Xx(Mg(m)|2 js
said to be associated with the lattice £ or more precisely with the basis
a®.a® ... al™. The Voronoi domain of 0 in U with respect to £ is the
domain

{u €U | |lu —v]| < ||u| for all v € £}.

Every point in U can be translated by some lattice vector of £ into this
Voronoi domain. (The translated point is not unique in general. However,
we do not care about uniqueness in this paper.)

Vectors a and b of a lattice £ of rank 2 are called successive minima
of £ if the following two conditions are satisfied:

(i) |la|| < ||v]| for every vector v in £\ {0};
(ii) ||b|| < ||v]| for every vector v in £\ Za.
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Successive minima of a lattice of rank 2 always form a basis of £, which
we call a reduced basis of £. A reduced basis a and b of a lattice £ of
rank 2 can be effectively computed from a given basis @’ and b’ of £. If
la'|| < ||b]|', we can easily deduce |la|| < ||@’|| and ||b]| < ||b'||- This
process is called Lagrange reduction.

It is easy to verify that the radius of the Voronoi domain of 0 in a
plane with respect to £ of rank 2 is less than or equal to v/2||b||, where b
is a second minimum of £.

A basis @ and b of £ is reduced if and only if 2|a ¢ b| < ||a||? < ||b]|?,
where a b denotes the inner product of @ and b. This in particular means
that vectors @ and b form an angle between 7/3 and 27/3 (inclusively).
Hence,

(2) ? la* < ? lall - 6]l < disc(£) < [lall - 1b]| < [|b]]>.

If Q(X,Y) = aX? +bXY +cY? = || Xa + Yb|? is a quadratic form
associated with the basis @ and b, the mentioned characterization of a
reduced basis is written as |b] < a < ¢. We also say @ is reduced if
this condition is satisfied. (Note: every positive definite binary quadratic
form can be associated with some lattice of rank 2.) The discriminant
D(Q) = b? — 4ac of Q equals —4disc(£)?. (The reader should be careful
since the meaning of the term “discriminant” of ) in different references
varies within D(Q), disc(£)? and disc(£). In this paper, a discriminant
is a discriminant of a binary form. For avoiding confusion, we speak of
covolumes of lattices.)

The reader is referred to [4, pp. 26-33] for these facts or [21] for more
historical treatment.

Vectors a, b and c of a lattice £ of rank 3 are called successive minima,
of £ if the following three conditions are satisfied:

(i) |la|| < ||v]| for every vector v in £\ {0};

(ii) ||b|| < ||v]| for every vector v in £\ Za;
(iii) |le]| < ||v|| for every vector v in £\ (Za + Zb).

Successive minima of £ of rank 3 always form a basis of £, which we call
a Seeber-reduced basis of £ (see [8] for a beautiful geometric proof). A
reduced basis a, b and ¢ of a lattice £ of rank 3 can be effectively computed
from a given basis a’, b’ and ¢’ of £ (see [26] for another beautiful geometric
proof). If |a’|| < [|b']] < [|c'[|, we can easily deduce [|a| < [|a'], [|b]| < [|&/]]
and ||c|| < ||¢/||- We call this process Seeber—Vallée reduction.
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The reader is referred to [21, Chap. 10] for the characterization of a
Seeber-reduced basis in terms of its associated quadratic form.

We need more sophisticated notion of successive minima and reduc-
tion, that is due to Minkowski, for lattices of higher rank. However, we do
not go into its detail since we will only use lattices of rank at most 3.

Now, we move to cubic forms. Let f(X,Y) = aX3 +bX?%Y +cXY? +

dY? be cubic form be given. Let f(X,Y) = [[}_;(a;X + b;Y) be some
factorization. Then,

2

G b g2 9720 4 18abed — dac® — 4b3d

ai+1 biy1

3
p(f) =11

is called the discriminant of f and

’f(X,Y) 0°f(X,)Y)

H(f_XY)__; X2 0XoY
Y HPF(X,Y) Pf(X,Y)
oY oX Y2

= (b* — 3ac)X? + (bc — 9ad) XY + (¢ — 3bd)Y?

is called the Hessian of f. It is positive definite if D(f) > 0. Straightfor-
ward calculation implies

D(H(f)) = =3D(f)-

We say f is reduced if D(F') > 0 and the Hessian H(f) is reduced.
An element M of GLy(Z) acts on a binary form f by

(f o M)(X,Y) = f(Z, W), where (Vf/) —M ()y(') .

Under this action, the Hessian H(f) of a binary cubic form f is a covariant
of f,i.e, H(f o M) = H(f)o M. Indeed, this fact is a motivation of the
definition of reducedness of a binary cubic form.

For the elegant theory of binary forms in the greater picture, the reader
is referred to [11, pp. 1-150]. For direct treatment of binary cubic forms,
the reader is referred to [4, pp. 51-55], [5, pp. 400-418] or [7, pp. 166-176].
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3. The Hessian as an exterior product

Let f(X,Y) € Z[X,Y] be a given irreducible homogeneous cubic form.
We denote its discriminant by D = D(f). We assume D > 0. We shall

associate a canonical lattice £1 in R® with f. The canonical lattice will be
constructed from a factorization of f in such a way that its independence
from the factorization is guaranteed. (In §4, we choose an optimal factor-
ization for our purpose. The choice, however, is made after a formulation
that is suggested by the canonical lattice.)

In the sequel, we adopt the following conventions: an element of R3
is considered as a column vector; subscripts denote indices of components
of vectors in R? and are read modulo 3; (z;) denotes a column vector
t(21, 72, z3) and a bold letter z denotes (2;). We also write 0 = (0,0, 0) and
1="(1,1,1). We equip R? with coordinatewise multiplication: if a = (a;)
and b = (b;) then ab = (a;b;). The inner product of @ = (a;) and b = (b;)
is given by a e b = a1b; + asbs + asbs. We also equip the space R? with
functions norm N : (z;) — z1x923 and trace tr : (z;) — 1 + 2 + z3.
When we consider a totally real cubic field K, we denote its embeddings
into R by v — «; (i = 1,2,3) and form a vector in the way compatible

to our convention: v € & — v = (y;) € R®. An embedding of the normal
closure & in R? will be specified in §4.

Definition 3.1. Let

3
(3) FX,Y) =[] (X +bY)
=1

be a factorization of f(X,Y) in R[X,Y]. Let a x b be the exterior product

)

of @ = (a;) and b = (b;). Then, we have

@it1 bit1
ait2 bito

(4) N (a x b)? = D(§).

The lattice £ = (a x b)(Za + Zb) of rank 2 is called the canonical lattice
associated with f. Here, the product of @ x b and a lattice vector is the
componentwise product.
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PROOF that £7 is well-defined. We prove uniqueness and then exis-
tence of £1. The identity (4) will be verified in the latter step.

Assume one factorization of the form (3) is given. Then, an arbitrary
factorization of f(X,Y) is of the form

3

FXY) =[] GaiX + iy,

i=1

where ¢ = (¢;) € R? has norm 1.
We have (a x ¢b)Ca = (a x b)a since

aiy1 biv1
ait2  bito

Git1@i+1  Giy1biy1
Git2ai+2  Git2biyo

Ciai> = (CiCz‘+1§i+2

(Ca x ¢b)Ca= (

ai) .
Similarly, we have (Ca x ¢b){b = (a x b)b.

The invariance of the basis of £ implies uniqueness of £,

On the other hand, there exists a factorization of the form (3). We
can simply set a; = a = f(1,0)'/ and b; = —aw; (i = 1,2,3) where w;, wo
and w3 are the three roots of f(X,1).

Linear independence of (a x b)a and (a x b)b follows from

3

(5) N(axb)?=]]

=1

3

=a'? H (wWir1 — wz’+2)2 .
i=1

2
4 —awit+1
4 —aWi42

Indeed, the right hand side is non-zero since f is irreducible. Non-vanishing
of the norm N (a x b) implies @ x b € (R?)* = {(%) | z12023 # 0}. In
particular, we get a x b # 0. Hence, a and b are linearly independent over
R. Further, multiplication by a x b € (R?)* preserves linear independence
of vectors. Hence, £f = Z(a x b)a + Z(a x b)b is a lattice of rank 2.
Finally, the identity (5) implies (4). O

Remark. The exterior product a X b (up to orientation) is an invariant
of the lattice Za + Zb. Indeed, its direction is determined by the plane
Ra + Rb and its magnitude is determined by the covolume disc(Za + Zb)
of the lattice Za + Zb in Ra + Rb.

Remark. In general, if we choose a = (a;) and b = (b;) as in the proof,
then for ¢ = 1,2,3 the field Q(a;,b;) will have degree 9. We shall later
recall a way of choosing a and b such that for i = 1,2, 3, the field Q(a;, b;)
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becomes cubic. Such a choice will be essential for our study. However, such
a choice will depend on a representation of 1 though f. The advantage of
the choice in the proof is that it does not require such a representation.

Several properties of the lattice £f are interesting:

Proposition 3.2. The lattice £ is contained in the plane II which
is orthogonal to 1 and its covolume disc(£?) in IT is v/3D.
If the basis (a x b)a and (a x b)b of £ is reduced by GLy(Z), we have

(@ x b)a|> >3V2D and |(a x b)b||> > V3D.

Further, the quadratic form || X (a x b)a+Y (a x b)b||? is proportional
to the Hessian H(f; X,Y) of f(X,Y):

|X(a xbla+Y(axb)b|?=2H(f;X,Y).
PROOF. By definition of exterior product, we have
le(axbla=(axb)ea=0,

where o denotes the inner product. Similarly, we have 1 e (a x b)b = 0.

Therefore, the lattice £¢ is on the plane IT. Tts covolume disc(£f) in IT is
the magnitude of the exterior product

ait1div1 bip1dipy

ait2divo  bijodiyo
of its basis, where we set

w- (ks 2

By the identity (4), the magnitude of the vector in the right hand side is

V/3D. Thus, the value of disc(£?) is established.
By the identity (4) and the inequality of the arithmetic and the geo-
metric means, we get the lower bound

(axb)ax(axb)b:(

) =@,

ait1 bit1
ait2  biyo

|(a x b)a|? > 3¥/N((a x b)a)? = 33/Df(1,0)2 > 3vD,

which is of the same order of the corresponding lower bound of the theorem.
The improved constant is obtained by Lagrange’s method of unknown
multipliers.
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The estimate of ||(a x b)b||? is established in the usual way of geometry
of numbers:

I(a x B)BI|* > ||(a x b)al| - [|(a x b)b]| > disc(£*) = V3D.

The expression for the Hessian is verified by straight-forward calcula-
tion. (Or one can appeal to the uniqueness (see [11, p. 45]) of a quadratic
covariant of a cubic form.) O

The study of representations of 1 by f can now be formulated in terms
of lattice points:

Proposition 3.3. Define the curve H on Il by
(H) : N(z) =VD, trz=0.

Representations of 1 by f and lattice points of £ on the curve H are in
bijective correspondence and hence we have

#R:#(ShﬂH>.

ProOOF. We follow the notation of Definition 3.1. The map (m,n) €
72— m(a x b)a + n(a x b)b € £% is obviously a bijection. On the other
hand, the identity (4) implies

N(m(a x b)a + n(a x b)b) = +VDN(ma + nb) = +VDf(m,n).

Since the lattice is closed under inversion of vectors, the assertion is now

established. 0
The curve H consists of 3 branches (connected components):
(Hj) : (z;) € H, z; > 0.

Points on M satisfy zj41, 2j+2 < 0 and |21, |zj12] < |2j41]+]2j42] = |2]-
Each branch H’ has two asymptotic lines z;;11 = 0 and 2zj;2 = 0 on

the plane II. We cut the branch #7 at the “middle” and divide it in two
parts. More precisely, we define the curve H; by

(Hy) : (zi) €H, Nzl < lzks1ls 2642l
and set

H] = HI N Hy,
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for j # k. (Note: H’ and #; do not intersect.) The six pieces of the curve
do not intersect except at the three points c¢(2,—1,—1), (1,2, —1) and
ct(—1,—1,2), where c designates v'D/v/2.

Let z = (z;) be a vector of II. We introduce local coordinates of z for
each piece Hy:

() perle) = EZHR gy - - L
and
1 1
(1) el(k)=(el (k)), el(k)=0, eLl(k):@ eh (k)= — 75
et (k)=(e*(k)), (k)= —%, emk):%, em(k):%

Then, the vectors ell(k) and e (k) form an orthonormal basis of IT and
we have

(8) z = p(=2)el (k) + g(z)e" (k).
Lemma 3.4. The piece Hy, of the curve H s defined by
(30 —¢*) ¢=3V6D, |p|>v3¢>0

in terms of the local coordinates p = p(z) and q = q(z) on the plane II.
In particular, we have

0 < q<9vV6D/8p>.
Assume z,z' € £ NHy. Assume also |p(2')| > |p(z)|. Then, we have

Ip(=)| > (2v2/9)p(2)*.

Remark. The first assertion indicates the close connection between
£! and the Lagrange resolvent, which has been used together with the
hypergeometric method. Indeed, we have

((p+¢v=1)/v2)* = ((p — ¢v—1)/V2)? = 3V/=3D.

(For a general treatment of resolvent, see Lecture XX and XXI of Hilbert’s
lecture notes [11] of 1897. For its application in Thue equations, see §7 of
[22] and §70, Chap. V of [7].)
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Remark. The gap principle of Lemma 3.4 corresponds to Lemma, 5.2
of [1], ie., [(p(2') + q(2')v=1)/v2| > (1 = €)l(p(2) + q(2)V~1)/V2/? for
|(p(2) + q(2)v/—1)/v/2| > 0 with explicit specification of the constant of
“>.” for a suitable e. Our proof of the last assertion is already known.
However, we included it since the inequality (9) occurring in it will be used
in the proof of Lemma 5.4 below.

Remark. We consider Lemma 3.4 as a linear gap principle in the log-
arithmic space. Indeed, the lower bound reads log |p(2')| > 2log |p(z)| — €
where the logarithms are close to the coordinates to be introduced in §5.
In contrast, our geometric gap principles Theorems 5.5 and 5.6 are expo-
nential.

PROOF. Write z = %(21,29,23). Let (i,5,k) be a permutation of
(1,2,3) such that z; < z <0 < zj. Then, we have |z;| = |z;|+|2x| > 2|2/
Hence, p = (|2g11| + |25+2])/V2 > 3[2| /V2 = V3q > 0.

The equation follows immediately after substitution of (8) in the def-
inition of H. Then, the estimate of ¢ follows.

The vectors z and 2’ are linearly independent when they are on the
curve H. (Note: N(cz) = c3N(z) for arbitrary ¢ € R.) Hence, we have

!
det (p p,)
q9 q
where p = p(2), g = q(2); p' = p(2'), ¢ = q(z'). We now use the estimate
of ¢ just established to show

9) V3D = disc(£9) < ||z x 2/ =

7

! D |p' D Dlp
det (P 7| < V6P|, 9V6Dp| _ 9VED |pf|
q q 8p? 8(p')? 4p?
The lower bound for p(2z') is now obvious. O

4. Displaced lattice in the logarithmic space

Let f(X,Y) € Z[X,Y] be a given irreducible homogeneous cubic form
of positive discriminant such that #R > 0. We associate with f a displaced
lattice in the plane If,; which is orthogonal to 1 in the space of logarithms.
We map the representations into this displaced lattice. We will also study
the geometric properties of the displaced lattice.
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Our interpretation of the Hessian, i.e., £! of rank 2 in R®, nables us
to exploit the multiplicative structure of R? whileits implementation as
a lattice in the complex plane C (as in [22]) enables us to exploit the
multiplicative structure of C. Our method thus enables us to exploit the
multiplicative action of the unit group associated with f on the space R2.

The multiplicative action comes from a Minkowski embedding (y €
A+— v = (15) € R3) where £ is a totally real cubic field. Obviously, the
Minkowski embedding is an injective ring homomorphism of £ into the
ring R? equipped with componentwise operation. Hence, the unit group
of (a given order of) & acts on R3. The norm and the trace on & are
compatible with those on R3: N(v) = N(v) and tr(y) = tr(y).

The associated order associated with f and its effect are determined
by the following:

Theorem 4.1. Assume #R > 0. Then, the following three assertions
hold:

(i) There is a pair of algebraic integers « and (3 such that

Q(«, B) is a totally real cubic field,
(10) the order Z|a, 8] has discriminant D(Z[a, §]) equal to D,

FXY) =TI, (X +BY),

where subscripts i designate the three real embeddings of Q(«, 3).

(ii) Ifthe norm of { € Z[a, 5] to Q equals 1, then the pair (u,v) = ((a, (S)
satisfies (10) and Z[u,v] = Z[a, f].

(iii) Moreover, the order Z[a, ] is uniquely determined up to isomorphism,
i.e., independent of the choice of @ and 8 with (10). We denote the
order Z[a, 8] by O(f) and call it the associated order with f. Further,
we write R = K(f) for the field Q(«, ).

(iv) Every lattice point of & Iying on the curve H can be expressed as
(e x B)e for some e € O(f)*.

PROOF. It is convenient to start from (i), although it is well-known.
Let (z,y) € R. Then, there is a matrix

M= (; I) € SLy(Z).
We have
(foM)(L,0) = f(z,y) =1.
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Therefore, (f o M)(Z, W) factors as

(7o 0) (Zw) = [ (-0 (7).

i=1
where (61, 602,03) is the conjugate triple of a totally real cubic integer 6.
Set
(11) (. 8) = (L,O)M ",

Then, Q(a, B) is clearly a totally real cubic field and we get

2 x\_ ¢ X
[(X,Y) = H(la _Oi)M_l (Y) = H (i, Bi) (Y) :
i=1 i=1

The equality (11) also implies Za+Zj = Z1+Z6. Hence, we get Z[a, §] =
Z|Za + Zp5) = Z[Z1 + Z6] = Z[6]. Now, invariance of the discriminant
under the action of GLy(Z) implies D = D(f) = D(f c M) = D(Z[0]) =
D(Z[a, B]). This proves (i).

We now prove (ii). Let { € Z[o, f] = Z[0] satisfy N(¢) = 1. Then, we
obviously have

3
FXY) =[] (GeiX +GBiY) .

=1
On the other hand, we have
Z[Ca, (B) = Z[Z{ + Z¢ B = Z[Z¢ + Z¢O) = Z[¢, ¢0) = Z[C][¢O) = Z[C][6),
where the last identity follows from ¢ € Z[¢]*. Thus, we get
Z[Ca, (B) = Z[O)[(] = Z[0).

We now prove (iii). Let (u,v) be any other pair of algebraic integers
satisfying (10). Write (u,v)M = (A, —\9). Then, we have [[>_,(Z —
owW) = ?:l(AiZ — \9;W). Hence, we can identify ¥ with 6 by iso-
morphism. The fact N(A) = 1 is obvious. We follow calculation of the
previous paragraph to get Z[u,v] = Z[0][\] = Z]«, B][A].- Now, equality of
discriminants implies Z[u, v] = Z[a, f5].

We now porve (iv). Let (a x 8)(za + yB) be a point of £f lying on
the curve #. By definition of H, we have N((a x B)(ze + yB)) = VD.
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On the other hand, we have N(a x 8) = +v/D by (4). Therefore, we get
N(za+yB) = £1. Put e = +(za + yB) with the suitable sign. Then, we
now have € € O(f)*. O

Remark. We shall use the second assertion and normalize @ X b by a
unit of Z[«, A] later in this section. Then, Za + Zb will also be normalized.

Remark. Multiplication by a possible unit of Q(a, 8) outside Z|a, (]
can change the order generated by « and . Indeed, we have

Z[M\ M) = Z[N[M] = Z[N][6] = Z[0][A] # Z[0]

if A is a unit of Q(«, B) outside Z[«, §]. However, the change is detected
by smaller discriminant.

Remark. The proof of uniqueness of Z[a, 8] also implies that Z[a, G]
(up to permutation of components) is determined by f.

Remark. In general, if ¢ € O(f)*, then the coordinatewise prod-
uct (e x B)e lies outside the image of the Minkowski embedding v +——
(71,72,73) of &(f) into R3 unless £(f)/Q is cyclic. This is most easily seen
when (o, 8) = (1,—0) and € = 1. In this situation, & X 8 = (0;12 — 0;11).
However, 6;.2 — 6;+1 generates the normal closure of R(f) over K(f).

Hereafter, we apply the machinery of §3 by choosing a = o and b = S.
We identify &(f) with its image of the Minkowski embedding in R3. We
also identify the normal closure & of &(f) with &(a x 8) in R3. (This
embedding is suitable for our problem although it is not a Minkowski
embedding in general.) Due to our identifications, we have inclusions Q1 C
A(f) € & C R?, where Q1 = {(a,a,a) | a € Q} is the diagonal embedding
of Q, and where the first three sets are fields of which the addition and
multiplication are coordinatewise.

The rotation o : (w;) € R® — (w;y1) € R3 of order 3 around the

diagonal line R1 induces an automorphism of order 3 of £. This is verified
as follows: Let @ be a generator of & over the diagonal embedding Q1 of Q.
Then, the normal closure £ is isomorphic to J = Q(64,02,603). Let 7 be the
conjugation of J induced by 7(6;) = 6;41 (i = 1,2, 3) and embed J in R3 by
Ly — ('yTi_l). We have +(y7) = ¢(v)?. It now suffices to show +(J) = &.
Indeed, we have 8 = 1(01) € +(J) and hence a = v(a1),8 = 1(B1) € 1(J).
Thus, a x 8 = o/",['}("2 — a"Qﬁ" € 1(J). Therefore, R C (). We now

get & = 1(J) by comparing degrees. (One might expect interchange of two
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coordinates induces an automorphism of &. This is however not the case
since (6;) — '(601,03,02) = (0,0, — 03,03 — 05) is a zero divisor that cannot
lie in any field.)

Let

log : (z;) € (R¥)? — (log|z|) € R?
be the log-map of Dirichlet. Then, by Dirichlet Unit Theorem, the set

€(f) = log(D(f)™)

is a lattice of rank 2 in the plane I, = {(w;) € R® | wy 4+ wo + w3 = 0}.
Define the modified log-map by

$:z e (R*)3— log (D*1/6 z) € R3.

When (a x B)e € £ N, then by the identity (4), the image

¢((a x B)e) =loge + p(a x B)

is contained in the displaced lattice

E(f) + d(a x B) C Ihog -

We normalize the displacement ¢(a x B). Let ¢ € O(f)* be a unit
of norm 1 such that log¢ is a closest point of &(f) to ¢(a x B). We can
replace a and B by Ca and ¢B. The replacement preserves the lattice £
(by Definition 3.1) and the order O(f) (by Theorem 4.1). The exterior
product o x B is replaced with {(~'(a x B). (This is already verified in
the proof of Definition 3.1.) Obviously, log(¢~!(a x B)) is in the Voronoi
domain of 0 on II,,, with respect to &(f).

Therefore, we assume that ¢(a x 8) is in the Voronoi domain of 0 on
II,,; with respect to €(f). We set

8 =40(f) =axB.

Remark. Exterior product has been used in Diophantine equations
(see e.g. [10]). However, we use it in a way different from previous investi-
gations. Indeed, we shall use the exterior product as a connection between

the representations of 1 by f and a certain continuous curve contained in
IIIOg .
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Define the rotation o of order 3 by o : (w;) € R?® — (w;41) € R3.
We let the group ring Z[o] on the logarithmic space R? from left, i.e.,
(a+ bo + co?)w = aw + bow + co?w for a,b,c € Z.

Automorphisms of f are reflected in our displaced lattice as follows:

Theorem 4.2. Assume Aut(f) # 1 and #R > 0. Then, the cubic
field A(f) is cyclic. Let z € £5NH. Then, Z¢(z)+ &(f) is a lattice of rank
2 in Ty, and the index [Z¢p(z) + E(f) : €(f)] is either 1 or 3. The vectors
(1 — 0)¢(z) and (1 — 02)¢(z) belong to the lattice &(f). The statement
holds with ¢(8) in place of ¢(z) since ¢(z) — #(d) € &(f).

Moreover, the lattice £% is invariant under the rotation o.

PROOF. Let M be a non-trivial automorphism of f and put (u,v) =
(a, B)M. Then, T[>, (uiX + 1Y) = [[2_,(u X + B;Y). Therefore, we get
wiX +vY = Goriy X + GiBri)Y (i = 1,2,3) for some permutation 7 and
some (¢;) € R? such that N((¢;)) = 1. Thus, we have

(i, Bi)M = (i, vi) = (Gior(ay, GiBr(sy) fori=1,2,3.

If 7 is trivial, the matrix M has eigenvectors (o, 3;) of different direc-
tions. (Note: —f;/a; (i = 1,2,3) are distinct roots of f(X,1).) Since the
matrix M of degree 2, this implies that M a unit matrix or its opposite.
The former is against our assumption on M. The latter is impossible since
(X,Y) — (=X, -Y) does not preserve f. This contradiction implies that
T is non-trivial.

Assume 7(j) = k # j. Then, we have v;/p; = Bi/ox. Hence, we get
the inclusion Q(a, Bk) = Q(Be/ak) = Q(v;/1;) C Qluj,v5) = Qley, B;)
of cubic fields. Hence, we get the identity Q(cy, ;) = Q(aw,Bx). Thus, a
non-trivial automorphism & of Q(«;,f;) is induced by «;, 8; — oy, Bi.
Since the degree 3 of Q(«;,3;) is a prime number, the fixed field of & is
Q. Therefore, the order of & equals [Q(a;, 8;) : Q] = 3. In particular, the
field R(f) ~ Q(e; ,0;) is a cyclic cubic field. Applying & to the identity
(aj, Bj)M = (o, (iBr), we get (au, Br)M = ((faf, (I B7). Comparing
this with (ak, Bk)M = (Crerry, CkBrky)s We get Briry/arry = (Br/ox)” =
(ﬁj/aj)EQ. Since the ¢ is an automorphism of order 3 of Q(aj,3;) =
Q(B;/a;), the right hand side differs from j;/a; and fi/ay. Hence, the
permutation 7 is a cyclic permutation of order 3. We can assume 7(i) =
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i+ 1 (mod 3) by inverting M if necessary. Now, we have
(aaﬂ) M = ([.l.,l/) = (Caaa CIBU) .

Hence, M? preserves (a, 8) and hence is a unit matrix. In particular,
the matrix M belongs to SLs(Z) and hence preserves the exterior product
a x B. Thus, we get

op=(uxv)p=((a’ x(B7)¢a’ = (a” x %) a’ = (da)’

by the proof that Definition 3.1 makes sense. The corresponding iden-
tity for v is verified similarly. Therefore, the map ‘(m,n) € Z%2 —
Mt(m,n) € Z? induces the rotation o of order 3 on II. This argument
implies that the rotation o preserves £1.

We now consider z° € £, Obviously, N(z°) = N(z) and hence
2% € H. Thus, Theorem 4.1 implies z = d¢ and z° = d¢’ for some units
g, e’ € O(f)*. Thus, (1 —0)¢(z) = loge — loge’ € €(f). Similarly, we
see (1 —o?)p(z) € &(f). It is now easy to see 3p(z) € &(f). Hence,
Z¢(z) + &(f) is a lattice of rank 2 in [T,z and the index [Zp(z) + €(f) :
&(f)] is 1 or 3. O

We shall continue to use the notation o both for the rotation o : (w;) €
R3 +—— (w;;1) € R3 of order 3 and for the induced automorphism of order
3 of &.

5. Geometric gap principles

We shall prove gap principles of points on ¢(£% N #). The most im-
portant tool is the continuous curve given by

(€): +exp(u;) + exp(ujt1) £ exp(ujr2) =0, ur +ugz+uz =0,

on the plane T, (see Figure 1: “The Continuous Curve C”), or more
precisely C = C* U C? U C?, where the branch C7 is defined by

(G exp(u;) — exp(u;t1) — exp(ujyz) =0, w1 +ug+uz =0.

The curve C and its branches are related to ¢(£4N#H) as follows:
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Proposition 5.1. The curve C is the image of ‘H under ¢. More
precisely, ¢ induces a bijection from the branch H/ to the branch CI.
Thus, we have

#(SNH) = # (4@ +e)N0).

PROOF. The first assertion is obvious. The second assertion follows
from the fact that the signature of z € H can be recovered from the
condition z; > 0 <= u; = max{u,ug,us}. The last assertion now follows
from Theorem 4.1 as we have discussed in §4. O

We set Cy, = ¢p(Hy), for k =1,2,3, ie.,
(Ck) : (ui) € Cy  up < Upy1, Ugs2
and CJ = (), i.c.,
Cl =7 ne.
We introduce local coordinates for each piece Cj

s(u) = HFLZURA2 () = VB

(12) s = 7 , 5
so that
(13) u = s(uw)ell(k) + t(u)et (k),

where the notation is defined by (7). (The notation is unfortunate and
the asymptotic line of C is Re* (k). However, the asymptotic line of
H is Rell(k). We cannot make Rell(k) the notation for all important
asymptotic lines.)

We now study the geometry of Ci. Since C is invariant under permu-
tation of the three coordinates, our results for C% can be translated to each

C,z. The curve C3 is described in terms of the coordinates u;’s by
(C3) = exp(u1) —exp(ua) — exp(uz) = 0, ur +up +uz =0, ur > up > u3.

Since u; = s/\/§+t/\/€,uQ = —s/\/i—l—t/\/(_i and uz = —2t/\/6, the curve
Ci is described by the local equation

(14) 2sinh (5/V2 ) = exp (~V61/2)
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and the inequality
(15) 0<s<V3t.

The local equation has the obvious explicit analytic solution
(16) s =V2sinh ! (exp (—\/gt/2> /2) .
Since this function is decreasing, we can replace the inequality (15) with

(17) t> (1og2)/VG,

where the right hand side is the t-coordinate of the boundary point of the
curve C%. The other side of the curve is open and asymptotic to the line
s = 0. The local equation (14) implies a precise estimate of s:

(18) 0 < s < V2sinh (s/\/ﬁ) = exp (—\/Et/2) /V2.

The explicit analytic solution (16) justifies implicit differentiation of
the local equation (14):

d 3
£ cosh (s/\/i) = —iexp (—\/615/2) .
dt 2
Substituting the local equation (14) into the right hand side, we get
ds
= = —V3tanh (s/\/i) <0.
Further, we get

d?s V3 ds

— = — — > 0.
dt? V2 cosh? (s/\/i) dt

The function

lds V3 tanh (s/\/ﬁ)

sdt s

of s is decreasing in s > 0 since the derivative

V3 (\/is — sinh (\/53))/232 cosh? (s/\/i)
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of the right hand side is negative. Therefore, we have

1
(19) P
V61log 2 s dt 2

in the range

(20) 0<s< (log2)/V2.

Note: this range corresponds to the range (17), i.e., all range of ¢.
We summarize the properties of the curve CZ for later reference.
Theorem 5.2. We consider the curve C, with k € {1,2,3}. Let
j € {1,2,3} be different from k. Define the local coordinates s and t for
Cx by (12). In terms of s and t, the part C,Z = C/ NC, of C is given by
s = +g(t), t > (log 2)/V/6, where the sign is positive or negative according
asj=k—1 (mod 3) or j = k+1 (mod 3), and g is a function independent
of k with the following properties:
(i) g is differentiable and convex;
(ii) g((log2)/v6 = (log2)/V/2) and g monotonously decreases to 0 as t
tends to +00;

(iii) the convergence of g(t) to 0 is quantitatively expressed by

(21) 0<|s| = g(t) <exp (—V61/2) /V2;

(iv) for the logarithmic derivative of f, we have

(22) 2 < - () < ﬁ;
V6log?2 g(t) 2

(v) the ratio g(t)/t assumes its maximum /3 at t = (log2)/v/6 and de-
creases as t increases;

(vi) put r(t) = (t> + g(t)?)'/2. Then, t —s r(t)/t is a decreasing function.
In particular, we have t < r(t) < 1.01¢ ifr(t) > 1.2 or t > 1.2. Further,
we have t < r(t) <1+ 10710 if¢ > 8.

(We use the notation ¢ for derivative dg(t)/dt, since we are using the
notation z’, ' for different representations of 1.)

We combine geometry of numbers on £f with geometric knowledge
about C to infer two gap principles. The following gap principle is useful
when f(X,Y) is reduced but not monic.
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Lemma 5.3. Assume da and 88 form a reduced basis of £%. Let
z € L8N H satisfy ||z|| > ||68||. Then, we have

D

1
16(2)[] > i(d(2)) = ngogﬁ.

If further t > 3, we have
1
2v6

PROOF. By Proposition 3.2, the assumption implies /3D < ||63|? <
|z||%. Let s = s(4(2)) and t = t(¢(z)). Then, we have

D3| z|? = 2e2/V6 cosh (\/is) + e/

_ 402t/V6 ginh2 (s/ﬁ) 1 9e2t/VE 4 o—at/VE

— 9,2t/V6 + 9¢4t/V6 < 3621&/\/5’

()] > t(#(2)) = log(0.4D).

where the local equation (14) is used to prove the last equality and (17) is
used to prove the last inequality. The assertions are now immediate. [

The next gap principle, which we call a linear gap principle, is a trans-
lation of Lemma, 3.4. It guarantees a space of constant size between points

of $(L£NH) that is necessary for proper use of Theorem 5.5. (For a weaker
but easier alternative, see the end of this section.)

Lemma 5.4. Assume distinct points z and z' of £ lie on the same
piece Hy, of the curve H. Assume t(¢(2')) > t(¢(2)). Then, we have

3.9
Nr

The last term can be replaced with —1073if ¢t > 4.8.

Hp(2')) > 2t(d(2)) + % log D —

PROOF. Put p = p(2), p' = p('), u = $(2)), u' = §(&'), 5 = s(w),
s’ =s(u'), t = t(u) and ¢’ = t(u’). Then, we have

[p| = V2D'/5 /Y5 cosh (5/V2) , lg| = (VB/2)D'/be /Y5,

Substituting these in (9), we get
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D/6 < (' -20)/V6 cosh(s'/V2) + elt=2)/V6 cosh(s/v/2).

By expressing cosh in terms of sinh and then substituting (14), we get

(23) D1/6 < e(t’—Zt)/\/g (1 + 6—3(t’—t)/\/€) m

Substituting (17), we get the first assertion. It implies ¢’ —¢ > ¢t —0.26 since
D > 49. Substituting this in (23), we can improve the last term to —1072.

Hence, we get ' —t >t + 1.578. The assertion follows after repeating the
same argument. O

We now state two exponential gap principles of geometric nature,
which constitute the key step of this paper.

Theorem 5.5. Let 9 be a lattice of rank 2 in I, . Assume distinct
points u, u' and u" of ¢(8) + I lie on the same piece Cy, of the curve C.
Set t = t(u), t' = t(u') and t" = t(u"). Assume t" — /6log2 > t' > t.
Then, we have

o V2disc(M) exp (V6 1/2) .
~ 1+exp(—2(t —t)/V6log2)
Theorem 5.6. Let 9 be a lattice of rank 2 in IT,, . Assume distinct

points u, and u’ of M lie on the same piece Cy, of the curve C. Set t = t(u)
and t' = t(u'). Assume t' > t. Then, we have

g V2 disc(9M) exp (V61/2)
~ 1+exp(—2(¢' —t)/V6log2)

These gap principles can be rewritten in terms of r = ||ul|, 7’ = ||u/|]
and 7" = ||[u"| since " > ", ' > t' and t > r/2 (or t > r/1.01 if r > 1.2).

PROOF of Theorem 5.5. By symmetry, we assume k = 3 and u € Ci.

We shall later show that the three points are not collinear. In partic-
ular, the three points u, 4’ and u” form a triangle of positive area, which
we denote by A. Since v’ — u and u” — u are vectors in 9, this implies
the lattice constraint

(24) A > disc(9N)/2
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on the area A.

We express everything in terms of the (¢, s)-coordinates of C3 defined
by (12). Then, with respect to these coordinates, Ci may be viewed as
the graph of g and C? as the graph of —g, where g is the function of
Theorem 5.2. Thus, if we put s = s(u), s’ = s(u’) and s" = s(u”), we
have s = +g(t), s’ = £g(t') and s" = +¢(t"), where the signs depend on
whether the points lie on C3 or C3. Recall that g is a decreasing function
assuming only positive values. Therefore, the triangle formed by u, u’ and
u” is contained in a rectangle of sides t” — ¢ and |s| + || (see Figure 2:
“Area Estimate”). Hence, we have:

A< (@ =t)(|s| +s)/2-

Here, we have |s'| < |s|e 2(*' ~1)/vV61082 by integrating (19). Therefore, the
inequality (21) now implies the area estimate

(25) A < t"exp (—\/675/2) (1 + e_Q(t’_t)/\/élogQ) /2V/2.

The lower bound for ¢ is an immediate consequence of the lattice con-
straint (24) and the area estimate (25).

We now show that the three points w, u’ and " are not collinear.
Suppose the contrary, i.e., they lie on the same line £ and investigate its
inclination against the t-axis.

First of all, the line £ cannot be perpendicular to the t-axis since a
perpendicular line intersect C,]c. at only one point for each j = 1,2. Hence
its inclination with respect the ¢-axis makes sense. Thus, inclination of £
is equals to both G = (s’ — s)/(t' —t) and G' = (s" — ") /(t" — t).

We now show that G = G' is impossible. Without loss of generality,
assume s > 0. There are four possibilities of the combination of signs of s’
and s”.

When s’ < 0 and s” < 0, the fact ¢ monotonously decreases implies
G'>0>G.

When s’ < 0 and s” > 0, we obviously have G’ > 0 > G.

When s’ > 0 and s” < 0, we have 0 < —G' < 4s'/v/61log2 < —g(t') by
the inequality (22) of Theorem 5.2. On the other hand, the convexity of g
(Theorem 5.2 again) implies ¢(¢') > G. Therefore, we get G' > g(t') > G.
(See Figure 3: “Proper Triangle across Axis”.)

When s’ > 0 and s” > 0, the convexity of g implies G' > ¢(t') > G.
(See Figure 4: “Proper Triangle in One Side”.)
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We now arrive at the desired contradiction. O

PROOF of Theorem 5.6. The proof is similar to the proof of Theo-
rem 5.5. We easily verify that 0, u and u’ are not collinear. Indeed, the
function g is a decreasing function of positive value (Theorem 5.2). Hence,
two distinct points on the union of the graphs of ¢ and —g cannot be on
the same line passing through the origin.

The rest is the same as the proof of Theorem 5.5. O

Before closing this section, we give two lemmata which are also shown
by using the geometry of continuous curves. The following lemma is a
refinement of Pohst’s lower bound [20]:

Lemma 5.7. Let ¢ be a totally real cubic unit of discriminant D(().
Then, we have

D(¢)
| log ¢l > Qﬁlog B0’

where P(D(¢)) = 1.01 if D(¢) > 102 or P(D({)) = 4 otherwise.
Further, we have for a totally real cubic field &,

V3. o D(R)

disc(&(R)) > 5 log P(D(R))

> 0.6.

PROOF. Without loss of generality, we assume [(1| > 1 > |C2| > (3]
Put [ = ||log¢||- Then, the point (Uy,Us;,Us) = log ¢ is on the arc A of
the circle U2 + U2 + Ug? = 12 (on the plane U; + Uy + U3 = 0) cut by the
sector Us < Uz < 0.

Then, we have /D(¢) = (P21 — (5/G)(1 = G/G)(1 — Gi/G)| <

1€2¢a|(1—]¢3 /¢ ) (1+]¢2/¢1]) (14]¢3/¢2]) since at most two quotients among
Ca/C1, C3/C2 and (3/(1 are negative. Hence, the inequality

W (U1,Us,Us) > v/ D(C)
holds at some point on the arc A, where
W =W (U, U, Us) = 2V1TV2(1 — Vs=U1)(1 4 V2701) (1 4 eVo~12),

We make a change of variables T = —/3U,/2 and S = (U; — Us)/2,
ie, Uy =8 +T/V3, Uy =—2T/+/3 and U3 = —S + T/+/3. The equation
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of the arc A becomes S? + T2 = [?/2 with 0 < V3T < S. We have
W=W(S,T)=4 (cosh(S) + cosh(\/?_)T)> sinh(S).

Substituting 0 < V3T < S < 1/v/2, we get W < 4cosh (25) < 2¢V2. The
inequality with P(D(¢)) = 4 now follows immediately.

We now assume D(¢) > 10'2. Then, we have [ > 9.27 and hence
S > 4log4 by the inequality just established. Put T'(S) = 4/I%2/2 — S2.
Then,

d o (sinh(S) _ sinh(v/3T(9))
73 (cosh (8) + cosh (\/gT(S))) =S ( g 3 V3T (5) ) .

When /3T = S — log4, we have sinh(S) > 4sinh(v/37T), S < (4/3)V/3T
and hence sinh(S)/S > 3sinh(v/37)/v/3T. The last inequality is also
valid for T in the range 0 < /3T < S — log4 since sinh(\/gT)/\/?_)T is
an increasing function of 7. Hence, we get cosh (S) + cosh (V3T (S)) <
cosh (1/v/2) + 1 and hence W < W (1/+/2,0).

When S — /3T(S) < log4, we have V3T < S < (v/6/4)l + (1/4) log 4
and hence W (S,T(S)) < 4cosh((v/6l + log4)/2). Thus, W(S,T(S)) <
0.7W (1/+/2,0).

We now have
vz )2 NG NG
W < W(I/V2,0) = (1 rel 2) (1 e 2) V2 < 1.004eV2.

Therefore, P(D(¢)) can be improved to 1.01. This proves the first asser-
tion.
The second assertion follows from the first assertion on noting (2). O

An immediate application of this lower bound is the following initial
gap principle:

Lemma 5.8. Let z € £'NH. If z # 8, we have

1 D
l¢(2)]l > Wi log (D)’

If D > 10" and there is some point 2t € £9NH (2t # z) satisfying
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I¢(2)|| > |l¢(2")]], we have

1 D
> ——log ——.
I#(2)l > 5 =los {3

If Aut(f) # 1, we have

1 D
Ip(2)]l > W log (D)’

Note: the conditions of the three inequalities are independent.

PrOOF. By triangle inequality and the choice of d, we have

[log(e)l| < [[log(e) — d(2)[| + lp(2)]l = [[#(O)]| + ll¢(2)Il < 2[|B(=)ll;

where € = 267! € O(f)*. Substituting Lemma 5.7 and recalling D(g) >
D©O(f) =D

(Theorem 4.1), we establish the first lower bound.

Let © denote the closed disc of radius r = ||¢(z)|| centered at the
origin. Two points of the part of C intersecting with ® which have largest
between each other lie on the intersection of C with the boundary of ®.
Indeed, we have seen in Theorem 5.2 that every branch C’ is convex and
each piece Ci is described by an explicit function ¢ — s. Thus, the convex
hull of CN® is a hexagon. Hence, the two points of f C N0 having largest
distance between each other are among the vertices of this hexagon.

By using the rotational symmetry of order 3, and the estimate (21),
we see that the distance between those points is less than
V3r++v2exp (—v67/2.02). Therefore, ||¢(2) — p(2')|| is smaller than this
quantity. Hence, Lemma 5.7 implies

V3r > (1/2v2) log(D/P(D)) — v2e V67/2:02,

(Note: ¢(z) — ¢(2') € €(f).) By estimating r by the first assertion, we
see that the second term is less than 0.0024 when D > 10'3. The second
assertion follows immediately.

Now, assume Aut(f) # 1. Then, Theorem 4.2 implies (1 — 0)¢p(2) €
€(f). Since the map 1 — o expands the lengths of the vectors in [T,z by
a factor of v/3, Lemma 5.7 implies the third assertion provided ¢(z) # 0.
This condition is indeed guaranteed since z € II. O
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Remark. Lemma 5.7 also implies an alternative for Lemma 5.4:
H(p(=')) ~ 1(9(2)) > /(1/8) log?(DD/4) — 210 2. Tndeed, this follows from

Lemma 5.7, Pythagoras’ theorem and the inequalities |s'|, |s| < v/2log?2
(Theorem 5.2).

6. Arithmetic invariants

We can write a coordinate of (1 — o)¢(de) as a linear form in three
logarithms since (6&)'~7 belongs to the division group of the multiplicative
group generated by 6177 and (O(f)*)!=?. In this section, we investigate
the invariants of the division group, hich will be substituted in Baker
theory for estimating the geometric size ||¢(de)| in §7.

The reason for studying the division group is the dependence of Mat-
veev’s lower bound [15] on the “Kummer condition”. Indeed, Matveev’s
result gives a lower bound for |/ log 6 +mlog & +nlog 7;|, where the group
generated by 8, € and 7 essentially coincides with its division group in a
suitable field.

The goal of this section is to estimate the heights of suitable generators
of the division group in terms of geometric sizes, i.e., L?-norms. This
establishes a connection between geometric gap principles of §5 and the
lower bounds for linear forms in logarithms stated in §7 which are written
in terms of heights, i.e., normalized L!-norms.

By height, we mean the absolute Weil height

1
hA) = —=——— 1og |14l
D= g 2 lesll

of an arbitrary algebraic number 4 € :QX, where v runs through the set
M (R) of all places of & and || - ||, denotes the normalized v-adic valuation
with respect to the product formula. The normalization of each wv-adic

valuations is chosen so that the restriction of || - || to Q equals || - ||£,(ﬁ)”:Qp],

where || - ||, denotes the standard p-adic valuation on Q.

We prepare some notation for the unit group of & since they are more
closely related with the division group than the group O(f)* is. We denote
the maximal order of & by O(R) and the lattice log(O(R)*) on s by
&(R). Of course, the unit group of K is O(R)*.
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We consider the multiplicative group I'(w) generated by O(£)* and a
given element w of &. We denoted by I'(w) the division group of I'(w)~7
in R. Then, for € € O(R)*, (1—0)p(de) belongs to the module log T'(8)'~
and hence to log'(§). The division group I'(d) is the group that will be

used. The reason (apart from the use of I'(1)) for allowing other value of
w than 4 is the following identity:

(26) I'(8) =T(6/VD).

This identity is important since the right hand side is a division group of
a subgroup of (8%)!=7. (Note: §/v/D € £%.)

Its consequence is the following:

Lemma 6.1. If4 € T'(8) is a unit of the maximal order of &, then 4°
or —4* belongs to (O(K)*)!°.

PROOF. When & = &, we have 4(170)(1-0) = 53-(1+o+o?) — 153
This implies the assertion since 177" € O(K)*.

We now assume R # R. By (26), there is a pair of a positive integer m
and an element v of £% such that 4™ = 4'~7. Let 7 be a non-trivial con-
jugation of &/R. Then, we have yM(1+7) = yltT-0—0T — ylfT-0-T0
since the Galois group of R is a dihedral group. Noting that 7 pre-
serves the element v of &, we get §™(117) = 3-(1+o+0?) — Y Ng/qv~*.
Thus, 3™(1+7)(1-0) = 43(1-0) = 43m_ Gince K is totally real, this implies
4147)(1-9) = 4~3 On the other hand, 5117 € O(K)* since ¥ € O(R)*.
The lemma is now established. O

The division group I'(#) always contains I'(1

(1)
I'(1) in some important cases. Let & = logT'(1). Then, Lemma 6.1
implies

and it coincides with

(27) 36 C (1—0)€(R) C &.
In particular, we get the isomorphism
(28) r(1) ~ 2’ @ (Z/2Z)

of groups. The following lemma discriminates when T'(8) = I'(1):

Lemma 6.2. The following five conditions are equivalent:
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9 is a unit;
(6) =T(1);
P(6) = 22 & (2/22);
(iv) logT'(8) is a lattice of rank 2 in Iy ;
(v) Z¢(6) + €(R) is a lattice of rank 2 in Il .

The index [Z$(8) + E€(R) : €(R)] is either 1 or 3 when these conditions
hold.

(i)
(i)
)
)

'110;

(iii

PRrROOF. By Lemma 6.1, the condition (i) implies (ii). By isomorphism
(28), condition (ii) implies (iii). By isomorphism (28) again, condition (iii)
implies finiteness of the index [['(8) : T'(1)]. Thus, it implies (iv) by (27).
Since 1—0 is a similarity on Ih,g , Z¢p(d)+E(K) is a lattice if the submodule
(1 —0)(Zp(8) + €(R)) of logT(d) is a lattice. Hence, (iv) implies (v).

We now assume (v) and prove (i) and the last assertion on the index.
Let m = [Z$(8) + €(R) : €(R)] < oco. Then, there exist ¢ € O(K)*
such that m¢(8) = log¢. Thus, mlogd'= = (1 — o)mep(8) = log ¢17.
Therefore, (6177)?™ = ({?)'~7 is a unit and so is §' 7. By Lemma 6.1, this
implies 63(179) € (O(K)*)1~7, or equivalently 3(1 — o)$(d) € (1 — 0)E(K).
Since 1 — ¢ is a similarity on I, , we now get 3¢(d) € E(R). O

Lemma 6.3. Assume 6'7° is a unit. Let & and 1 be independent
units of & such that ||log€|| < ||logn||. Then, there is a pair € and 7 of
elements of I'(§) = ['(1) such that log € and log 7 form a reduced basis for
®. We have

L B o B
S10g€loc = h(é) < | Tog €]l < |l1ogéll;
1. Ve V2
10870 = h() < ——[/logA|| < —= || logn]|.
3 9 3
Moreover, we have
Imlog €]l + [[nlog 7|l < 2||lmlog € + nlog ||

for an arbitrary pair of integers m and n.

PROOF. By Lemma 6.2, logT'(d) is a lattice of rank 2 in I5,g . Choose
elements & and 7 of I'(6) so that log€ and log# form a reduced basis of
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log T'(). By Lemma 6.2, we have T'(§) = T'(1) and hence logT'(§) = &.
Therefore, 10g£~ and log 77 form a reduced basis of ®.

Obviously, (1 — o)logé and (1 — o)logn belong to &. Therefore,
Lagrange reduction implies ||log €| < ||(1 — o)logé|| = v/3||log €| and
log || < V3| logn].

For 4 € T'(1), we have h(%) = |log4|1/6, where | - |; denotes the L!-
norm. This is obvious if [& : &] = 1. Otherwise, h(¥) = |(log 4, —log )|/
12 = |log 4|1 /6. On the other hand, we get |log4|1 < 2v6/3 - || log4|| by
applying Lagrange’s method of unknown multipliers to the function w; —
wy — w3 defined on the circle w} + w3 + w3 = || log 7| on Iheg. We arrive
at the second assertion after observing the elementary fact |log%|c =
| log |1/2 which follows from log¥ € Il -

The last assertion follows from observing that the angle formed by the

reduced basis log € and log 7 is between 7/3 and 27/3. O

We now assume 6'~7 is not unit. Then, the module logI'(d) is not
a lattice by Lemma 6.2. Therefore, we construct a suitable space so that
we can capture arithmetic information about T'(d) in a geometric way. We
fix some convention here since we will use many norms: || - || denotes the

Euclidean (L?-)norm on R?; ||-||,, the v-adic valuation of & normalized such
that the product formula holds; | - | the absolute value of a real number;
and | - [, the LP-norm on a Cartesian power of R or on Map¢y: (M, R),
(p =1,2,00). Note: Mapcpt (M, R) denotes the space of functions from M
to R with compact supports (or finite support if M is discrete). Note also:
Mapcp; (M, R) is equipped with the LP norm |F|, = (3, c a4 |F(v)[P)'/P if
p is finite or |F| = maxyem |[F(v)|}-

Let M>(R) be the set of all infinite places of &, M°(K) the set of all
finite places of & and M (R) their union M (&) U M°({). Define

QEM 1Y € f(é) — (log ”'NYHU)UEM € Mapcpt (M,R)
for a1~1 arliitrary subset ~./\/~l of M(R). Set 9> = d)MOO(fQ)’ PO = ?MO(,&)
and 1 = 9/ z). Then, (T'(9)) is a lattice of rank 3 in Mapey: (M (R), R),

equipped with the L2-metric mentioned above.
We want to control the L' and the L?-norms of suitable generators of
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this lattice. For this purpose, it is preferable to work in a linear space of
small finite dimension. Therefore, we shall factor 4 by a map 1 : ['(8) —
R* and investigate the L' and the L?-norms of suitable generators of the
module (T'(4)).

The image 1°(T'(6)) is contained in Qy°(8'~7) since
YO((O(R)*)'~7) = 0. This image is non-trivial since §'~7 is not a unit.
Noting that ¥°(T'(8)) is discrete with respect to the L'-topology, we see
that 4°(I'(8)) = Z¢°(&) for some & € ['(d).

The division group I'(8) is generated by & and ker(¢°), where ker(¢)) =
I'(1) by Lemma 6.1.

We define the homomorphism ¢0 :T(6) — R by

0z 70
P ('ﬁ)—[ﬁ ﬁ]liﬁ( )1
and 9°(T'(1)) = 0. We also define maps 9™ : 4 € I'(§) — log4 € R?
and 1 : 4 € T(8) — (¥®°(3),%°(F)) € R: We see

(29) B = [R: & [p(H)h
by noting that 9> (%) = log if [R : &] = 1 or $>°(%) = (log¥, —log7) if
[ : &] = 2. The module (I'(8)) = (& ® 0) + Zyy(&) is a lattice of rank 3
since ¥(k) ¢ R® @ 0.

Lemma 6.4. Assume §' 77 is not a unit. Let £ and i) be independent
units of & such that ||log&|| < ||logn||. Then, there is a triple 8, £ and

7) of generators of T'(8) (modulo {+1,—1}) such that (a permutation of)

¥(8), ¥(€) and ¢(R) form a reduced basis for 1(T'(8)) and their L?>-norms
satisfy the following inequalities:

3h(8) < [$(8)]2 < [¥(8")]> < V3/lI4(8)[12 + (1/3) log? D;
(30) {3h((€) < 1(@)]2 < (€ )]z < V3| log &l
3h(#) < ()2 < (=) < V3 log .

Let u € ¢(8)+Zlog £+7Zlogn and write (1—o)u = [ log 8+m log £+nlog
with integers [, m, and n. Then, we have

(31)  max {[19(8)) |2, b (€)) lmap(7)) > } < /8llwl2 + (8/3) log? D.
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PROOF. Firstly, the existence of a basis ((8), ¥(€) and (7)) of

y(T'(d)) satisfying the three inequalities in the middle column of (30) is
guaranteed by Seeber—Vallée reduction.

Secondly, we show that &, £ and 7] satisfy the other inequalities of (30).

The identity (29) implies h(5) = [¢(7)|1/6 for arbitrary 7 € T'(d).
On the other hand, we have the usual estimate |¢(7)|1 < 2|¢(7)|2 of the
L'-norm in terms of the L?-norm. (Note: the image of 1 is contained in
R*.) Therefore, the three inequalities on the left hold.

By Pythagoras’ theorem [1)(8'~7)[5 = [|(1 — o)$(d)[|* + [|4° (6" 7)|I11.
For the first term, we have ||(1 — 0)¢(8)|| = V3 ||¢()|| and for the sec-
ond sum we have [¢°(8'9)]; = |°(89)|1/[R : A] < 2[9°()[1/[R : A
Further, the product formula implies |°(8)|; = [& : &]log(8,8203) = ([& :
£]/2)1log D. Hence, we get [4°(6177)|; < log D. Therefore, the inequality
in the top of the right column holds. The two other inequalities in the
right column are more easily proved.

We lastly show the inequality (31). Write u = ¢(8) + I'log€ +
Jlogn. Set @ = %((6¢'n”)1=7) and 7 = |@|o. Then, we get 72 =
3l|lul|? + [°((6)*~9)|? by following the argument for the upper estimate
of [4(6'7)|2 and noting ¢°(¢'n?)=0. Hence, we have #? = 3|ul|® +
90

It now suffices to estimate the left hand side of (31) by (2v/2/v/3)7.
Without loss of generality, we assume |1(8)]z < |1(€)]2 < [4(77)|2. De-

compose (n7) in a sum of an orthogonal vector and parallel vector to
the plane spanned by %(8) and ¥ (€) as ¥(7) = »(H)L + (). We
obviously have 4|y(A)[3 < [1(8)[3 + [ (£)3 < 2[%()[3. Thus, the an-
gle formed by (A7) and ¥ (7)! is between /4 and 37 /4. So is the an-
gle formed by (7)) and an arbitrary linear combination @ of (&) and

PY(€). We set @ = [1)(8) + myp(€). Then, the estimate of the angle im-
plies that the diameter of the circle passing through 0, w and @ is at

most /27. (Note: consider circumferential angle.) Therefore, we get
max{|®|s, |[n9)(7)|2} < V27. Applying the same argument to @ and not-
ing that the angle of v (8) and () is between 7/3 and 27/3, we get

max{|l1(8)|2, |mv(€)|2} < (2/v3)|w]z. The desired estimate now follows
immediately. O
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The following lemma estimates the heights of generators of T'(8) from
below:

Lemma 6.5. Let 4 € T'(). Then, we have

1 49
Y - l o > —l — = U.
[P(F)|2 = || log 7| > 55187 0.8858

V2
if 87 is a unit and [R: 8] = 1; or

1 148
~ = 1 ~ > —l — = . “ee
[Y(F)|2 = || log 7| > Nl 0.7370

if 817 is a unit and [f’% 1 R] =2; or
|v(F)|2 > log2 =0.693 - - -

otherwise.

PROOF. Firstly, we consider the case that 4 is a unit. This is always
the case when '~ is a unit (Lemma, 6.2). If [& : &] = 1, then Lemma 5.7
and D > 49 imply the first inequality.

If [R : A] = 2, choose a unit v € & by Lemma 6.1 so that 3| log 4| =
|(1—o)log~| = V3| log~v||. Since D > 148, Lemma 5.7 implies || log | >
(1/2v/2)log(148/4). Thus, the second inequality follows.

The third inequality follows from one of the two inequalities.

Secondly, we consider the case that 4 is not a unit. Then, neither is
8'=°. Thus, it suffice to prove the third inequality. We have log |5/, # 0
for some v € M°(&) since 4 is not a unit. Such a v cannot be unique
since 419293 = 1. (Note: we can use either the product formula or pull
back log |57+ ||, = —log||¥]l.) Therefore, |°(%)|1 > 2log2. Hence,
|(%)|2 > log 2 follows from the definition of the map 1. O

7. Upper bound for geometric sizes

We shall bound the geometric sizes ||¢(z)|| of a given point z of £1NH
by using Baker theory, i.e., lower bounds for linear forms in logarithms
of algebraic numbers. In this paper, the logarithms of scalars are always
understood as real logarithms.
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Theorem 7.1. Set & = R(f). Assume 67 is not a unit. Let z €
L'NH, t = t(4(2z)). Then, we have

(32) < 3.418 - 10 - L1og?(1.01 - 10 . L|| log €])),

t
disc(&(R))
where || log &|| is the first minimum of &(8) and
L= 1/Il(8)|I? + (1/3) log? D.

Theorem 7.2. Let & = R(f) and assume 6'~7 is a unit. Let z €
£5NH and t = t(4(2)). Then, we have

t

disc(Z¢p(8) + €(R)) <3.54-10%

The right hand side can be replaced with 5.04 - 10* if the field & is cyclic.

Remark. If we use Theorem 2.1 of [16], we can show

(33) < 3.11-10 - L1og(2.69 - 10'° - L||log &||).

t
disc(€(R))
However, the extra log-factor of (32) will be less than 33 in the critical
situation. Therefore, the upper bound (32) will be roughly 1/3 of the
upper bound (33).

Remark. The explicit dependence of (32) on quantities L and || log &||
will be utilized in our proof of Theorem 1.1, where we control them by a
“small” solution. Theorem 7.1 is actually specialized for this purpose. For
other purposes, its dependence on the invariants of f is not nice. Here,
we explain this fact by doing a little exercise on (33) which has better
dependences than (32). We replace ¢(d) with its translation by &(RK)
into the Voronoi domain of 0 with respect to &(f) and estimate it with
| log n||/v/2, where || log 7| denotes the second minimum of &(&). We then
use Lemma 5.7 and an analytic estimate of the regulator (see the proof of
Theorem 1.1) to show ¢ < 2 - 10" disc(€(R))? + 10'° disc(&(8)) log D x
loglog D. We now follow the proof for Lemma 5.3 to deduce an upper
bound for ||z|| and use the property of the reduced basis of £7 (see Propo-
sition 3.2) to show

log max{|z|, |y|} < 2.5-10"R(K)(R(K) + log D loglog D)
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if we assume f is reduced. (R(R) = disc(€(R))/v/3 denotes the regulator of

£.) Here, the factor loglog D is responsible for the case R(R) = o(log? D).
The form of this estimate is not better than the previously known estimates

log max{|z|, |y|} < 7.07-10* R(&)(R(K) + log H) log R(R),

of BUGEAUD-GYORY [3] (H is the maximum magnitude of the coefficients
of f) nor

log max{|z|, |y|} < 1.01-10°°R(&)(h(e) + h(B)) + 1.01 - 10'* R(&)%.

BUGEAUD [2] (Note: trivial estimates of log D are log D < log(64H*/3)
and log D < 12(h(e) + h(B) + logv2).)

For proving Theorem 7.1, we use Matveev’s lower bound, which is
quoted below with some restrictions and simplifications. (The role of the
subscripts differs from the other part of this paper.)

Theorem 7.3 (MATVEEV [15]). Let A = by logy; +b2log y2+b3 logys
be a linear combination with integer coefficients in logarithms of multi-
plicatively independent positive totally real algebraic numbers v;,7s and
v3. Assume the group generated by <1, Y2, 73 and —1 coincides with its
division group in Q(vy1,72,73)*-

Choose parameters d, A;, Ay, As and B such that

d > [Q(71,72,73) : Q;
dA; > max {dh(v;), [logvi| ,0.56}, (i =1,2,3);
B > max {|b1| A1, |bo| Ao, |b3| A3} .
If bs # 0, we have
log |A| > —C1d° A1 Ay Az log(Cad* Ay Ay) log(2eB/As3),

where C; = 1.9546 - 108 and Cy = 1.2032 - 10°.
If b3 = 0 and by # 0, we have

log |A| > —Csd* A1 Ay log(Cud® A;) log(e2B /A3),

where C3 = 1.3608 - 107 and Cy = 1.1958 - 10%.
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PRrROOF of Theorem 7.1. By Lemma 5.7 and D > 49, the right hand
side of (32) is greater than 10''log D and disc(€(R)) > 0.6. Hence, it
suffice to discuss the case t > 4logD. Set r = ||¢(z)||. Then, we have
r < 1.01¢ by Theorem 5.2.

Without loss of generality, we assume z € C3. We consider

A = V2s(¢(2)).

Its absolute value is small. Indeed, we have

(34) log |A| < —(vV6/2) ¢

by the inequality (21) of Theorem 5.2.

By Theorem 4.1, there is a unit ¢ € O(f)* such that z = de. Let
¢ and 1 be a fundamental pair of O(K)* such that log& and logn form
a reduced basis of €(8). Choose 8, £ and 7 by Lemma 6.4 and write

(1—0)logz = llog +mlog & + nlog 7 with suitable integers [, m and n.
Then, we have

(35) A:llog‘gl‘—l—mlog@‘+nlog|ﬁ1|.

We discuss the case n # 0 since the other case is easier.

We specify parameters for Theorem 7.3. We set v; = |51\, Yo = |§~1|,
v3 = |71, b1 =1, bo = m and b3 = n. Then, 71, 72 and 3 satisfy the as-
sumption of Theorem 7.3 by Lemma, 6.4. We set d = 6, so that [.ﬁ : Q] < d.
We set A1 = |¢(6)|2/3, AQ = ‘¢(£)|2/3 and A3 = |’lﬁ(’ﬁ)|2/3 Lemma 6.4
guarantees A; > h(vy;) (i = 1,2,3). Since 7; is totally positive, the in-
equality |log~i| < [Q(vi) : QJh(y;) < dh(y;) is easily verified by noting
the product formula. Lemma 6.5 implies dA; > 2log2. Therefore, our
A;’s are suitable for Theorem 7.3. Set B = t. Lemma 6.4, the assump-
tion ¢ > 4log D and the inequality r < 1.01¢ imply that B is suitable for
Theorem 7.3.

Theorem 7.3 and (34) imply

26t/A3

— P2 £ 6.75-102Qlog(1.56 - 108Q
log(2et/As3) < o8 )

where we abbreviated = A;Ay. Since we already verified A; > (log2)/3,
the right hand side is larger than 5.73 - 10'2. Thus, we get

t <1.391-10" - QA3 log(1.56 - 103Q) log(6.75 - 10 - Qlog(1.56 - 10892)).
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Hence, we get
(36) t < 1.538-10'2 - QA310g?(3.25 - 10'°9Q).

by using the inequality of the arithmetic and the geometric means.
On the other hand, we have A2 As < (1/3)|/log &|| - || log || by Lem-

ma 6.4. Since log & and logn form a reduced basis for (&), this implies
Ay Az < (2/3V3) disc(€(R)).

Substituting this inequality in (36), we get

t 2 12 2 10
< -1.538 - 10™ - A1 1 3.25-1077Q).
disc(€(R)) ~ 3v3 1log )
The theorem follows after substituting estimates of A; and Ay (Lemma 6.4
again) in this inequality. O
For proving Theorem 7.2, we use the lower bound due to Laurent—

Mignotte—-Nesterenko quoted below with some restrictions and simplifica-
tions. (The role of the subscripts again differs from the other part of this
paper.)

Theorem 7.4 (LAURENT-MIGNOTTE-NESTERENKO [12]). Let A =
b1 log 1 + b2 log v be a linear combination with integer coefficients in loga-
rithms of multiplicatively independent positive totally real algebraic num-
bers v; and 7ys.

Let d = [Q(71,72) : Q] and A > 0.3. Choose parameters A, Az, B, b
and b’ such that

A; > max {(e)‘ —1)|log vi| + 2dh('yi),2)\,2} , (1=1,2);
B > (|b1|A1 + [b2|A2) /A1 Az;
b > max {d(log B + log A + 1.56),d/2,5\}
b =b+ X+ \2/4b.
Then, we have

log |A] S 16 8(Ai+A4z)+61 16v/2 log (A\73A4; A9"?)

A A2 = T 9X3 3AA; Aot 3V N A, Al Ay Agb?
1412
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PROOF of Theorem 7.2. Without loss of generality, we assume
t/ disc(Z$(8) + €(K)) > 10*. Then, Lemma 5.7 and 6.2 imply ¢ > 103.
Without loss of generality, we assume z € C3. We consider

A = V3s(4(2)).
Then, we have
(37) log [A| < —(V6/2)t
by the inequality (21) of Theorem 5.2.
Let & and m be elements of D(8)* such that log& and logn form a
reduced basis for &(R). Choose generators £ and 7 of I'(§) = I'(1) by

Lemma 6.3 and write z!77 = iémﬁ" with integers m and n. Then, we
have

A:mlog‘gl‘ + nlog |71] .

We specify parameters for Theorem 7.4. Put v, = |§~1|, Y2 = |Tl,
bp=m,bp=nand d=[R: Q). We set A\ = 1.7 or 2.1 according as d = 3
or 6. Let ¢ = v6/9 - (3(e* — 1) 4 2d), A; = ¢||log £|| and Ay = ¢||log 7]
We have A; > (e} — 1)|log ;| + 2dh(~y;) by Lemma 6.3. We also have

468 ifd=3;
38 A; > ’
(38) Z—{&m if d =6

by Lemma 6.5 and hence A; > 2\ > 2. Thus, A1 and A, are suitable

for Theorem 7.4. We set B = 2.02/3c¢t/A; Ay, which is also suitable

since we have 2V3[|¢(2)| = 2/|(1 — 0)¢(2)|| = 2||mlog€ + nlog7| >

|lmlog &|| + ||nlog 7| by Lemma 6.3 and ||¢(2)|| < 1.01¢ by Theorem 5.2.
We have ||log €| - || log A < (2/v/3) disc & < 2v/3 disc(ZH(8) + E(R))

since (1 — 0)(Z¢(8) + €(R)) C &.Thus,

_ 2.92\/§t . 1.01¢ > 10%,

g ]| [[log ]| ~ cdisc(Z(3) + €())

Therefore, b = d(log B + log A + 1.56) is also suitable.
Theorem 7.4 and the inequality (37) now imply

B/V2 _ 16 8(41 +4s) +6) 16v2 | log (A4 4:0%)
2.02¢h2 = 9\3 3AA; Aot 3vVA3 A, Al A Axb?

(39)
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The left hand side is an increasing function of B. (b/b and vB/b are
increasing function of log B.) The right hand side is a decreasing function
in A1, Ay and ¥ since A;Ab? > 4.6% - 310g210% > Me. Therefore, we
can replace A; and Ay with one of the lower bounds (38) depending on d.
Then, the left hand side is larger than the right hand side at B = 9.63-103
when d = 3 or at B = 3.92 - 10* when d = 6. Therefore, B is less than
the mentioned values. The theorem now follows after substituting these
values in (39). O

8. Proof of main results

We prove our main results. We use Proposition 5.1 to associate ¢(z) =
¢(6(zax + yB)) with the representation (z,y) and apply results of the pre-
vious sections. The main task is to estimate ¢ = t(¢(z)) and r = ||¢(2)]|.
Since the upper bound for ¢ we want to establish is larger than 8, we will
be working on points with ¢ > 8. Hence, we can assume ¢ < r < 1.001¢ by
Theorem 5.2.

PROOF of Theorem 1.1. Let w be the element of £f N7 such that
||¢p(w)]| is minimal.

We suppose £1 N Hj, with some k has three distinct points z, 2z’ and
2" other than w. Without loss of generality, we assume t”" = t(¢(z")) >
t' =t(p(2") >t =t(¢(2z)). Put r = ||¢(2)]. We firstly show

(40) r < 30.9.

Without loss of generality, we also assume t > 10.
We can apply Theorem 7.2 or Theorem 7.1 according as 6'~7 is a unit
or not. Since the latter gives a larger upper bound, we get

n

) Fece@)

< 3.418 - 10" - L1og?(1.01 - 10" - L|| log €])),

where log £ is the first minimum of &(R) and L = \/||<,25(6)||2 + (1/3) log? D.

Lemma 5.4 implies #' —¢ > t and t" — ¢ > t' >t > /6log2. By
substituting the lower bound of Theorem 5.5 (with 9t = &(RK)) in (41), we
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get

\/iexp (\/(_St/Z)
1+ exp (—2t/v61log?2)

(42)

< 3.418 - 10 - L1log?(1.01- 10 - L log &]|).

We estimate the quantities appearing in (42). The denominator of the
left hand side is smaller than 1.001. We have || log&|| < ||¢(z) — ¢(w)]| <

2r. By Lemma, 5.8, we have log D < 4y/2r + log 4.
Therefore, we get

exp (\/6 r/2.002) <2.42-10" . L1og?(2.02 - 10 . Lr)

and L < \/72 + (4v/2r + log4)2/3. These imply the inequality (40).

Now suppose #R>8. Then, Proposition 3.3 and 5.1 implies £1NH>8.
Thus, three points of £ N A other than w concentrate on £7 N H,, with
some k. Therefore, the supposition at the beginning of the proof must
hold. Now, (40) and Lemma, 5.8 with z # w imply D < 5.65-10%°. Hence,
the first assertion is established.

Assume f(X,Y) is reduced and f(1,0) # +1. The basic difference
from the previous situation consists of two points: we can use Lemma 5.3
for estimating r; we cannot assume § # z since we do not have an extra
point w at our disposal. Therefore, we must estimate || log £|| by another
method. To this end, we use an idea of Siegel.

Recall the analytic class number formula (see e.g. page 38 of [27]):

4h(R)R(R) = v D(R) Ress=1((q);

where h(R) is a positive integer called the class number of & and R(R) =

disc(€(8))//3 is called the regulator of &. The right hand side is estimated
by Louboutin’s upper bound [14, Theorem 2]:

Res;—=1(Cg) < (1/8)log” D(R).

On the other hand, we have disc(&) > (v/3/2)]||log &||? since log ¢ is the
first minimum of &(RK). Therefore, we get

log &]| < (1/4) D(8)"/*log D(&) < (1/4) D'/*log D.
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Since log D < 2167 +10og 2.5 by Lemma 5.3, we get an estimate of || log £||
in terms of r. By substituting it in (42), we get

r < 32.4.

Thus, Lemma, 5.3 implies D < 2.15 - 105°. We can now deduce the second
assertion by adding up the number of points in £ N . O

PROOF of Theorem 1.2. Let de and e’ be points in £4NH. By The-
orem 4.1, € and €’ belong O(f)*. Hence, they are totally positive by the
assumption of the Theorem. Thus, de and d¢’ have the same signature
distribution. Therefore, they are on the same branch, say H’. We now
see P(8e), ¢p(de’) € C,; UCY 5. Since J is determined by one particular
point de, all points of #(£* NH) lie on the two pieces Cfﬂ and Cf+2.

Now, the proof of Theorem 1.1 implies the assertion. O

PROOF of Theorem 1.3. By Theorem 4.2, the number #(£% N Hy) is
independent of k. Hence, the assertion of the theorem is reduced to the

assertion # (&1 NH;3) < 1.
For contradiction, suppose £1 N #3 have two distinct points z and 2’
Set r = ||¢(2)||, t = t(¢(z)) and t' = t(P(2')). Without loss of generality,
we assume t' > ¢.
By Theorem 4.2 and Lemma, 6.2, §' ¢ is a unit. Hence, the second
assertion
tl
disc(90)

of Theorem 7.2 is valid, where we set I = Z$(d) + E(R).

Substituting the lower bound of Theorem 5.6, we get
V2exp (V61/2)

1+ exp (—2(¢ —t)/V61log2)

< 5.04 - 10*

< 5.04 - 10

The difference #' — ¢ in the denominator is estimated from below by

0.3¢v6%/2 _¢. To see this, substitute # —# > 0 in Theorem 5.6 and estimate
disc(M) by Lemmata 5.7 and 6.2.

Therefore, we get ¢ < 8.56 and hence r < 1.01 - 8.56 < 8.65. Thus,
Lemma 5.8 implies D < 2.56 - 10'8. The first assertion is established.

If the signature rank of O(f)* is less than 3, at most 2 branches of

H, H’ and H’*!, say, can have a lattice point of £ (as it is proved in
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the same way as Theorem 1.2). Hence, one set £ NH7*? is empty. This
implies # (Eh NHI ) = ( since the number # (Eh N HI ) is independent of j.
The second assertion of the theorem now follows immediately. O

PROOF of Theorem 1.4. Let ¢ € 7. Let o and S form a Z-basis of the
module {7y € O | try = 0} Then, ¢ is written as za+yS with a suitable pair
of integers = and y. Let v — «y; (i = 1,2, 3) be the three real embeddings
of O in R. Consider the cubic form f(X,Y) = [[>_,(;X + $Y). Then,
the pair (z,y) is a representation of 1 by f. We now identify O with its
image in R3.

The covolume of Za + ZS on the plane IT is \/3¢D(9) with c =1 or
—1 according as £ contains an element of trace 1 or not. Hence, a X 8 =
\/3¢D(9D) 1. Thus, we have § = §(f) = axB and D = D(f) = 33*D(D)3.

Therefore, Lemma 5.7 implies

~ 1 373D(D)3
(43) [¢@e)ll = lllogel| = 7 log =7,

Let € and €’ be distinct elements of 7. Suppose their image under
log lie on the same branch Cy of C. Put r = ||loge||, t = t(loge) and
t' = t(loge'). Without loss of generality, we assume t' > .

Then, we have

tl
disc(€(R))
by Theorem 7.2, where we set & = &(f). On the other hand, we have

g V2disc(€(R)) exp (V6t/2)
~ 1+exp (—2(t' —t)/V6log?2)

< 3.54-10°

by Theorem 5.6. Here, the difference #' —¢ in the denominator is estimated
from below by 0.3¢v6%/2_¢. To see this, substitute ' —¢ > 0 in Theorem 5.6
and estimate disc(€(R)) by Lemma 5.7.

Therefore, the two inequalities imply £ < 10.2 and hence r < 1.01 -
10.2 < 10.4.

Substituting this in (43), we get 373D (90)? = D < 1.36-10?2 and hence
D < 7.17-107. This contradicts the assumption of the theorem on D.

The contradiction proves # (2h N Hk) = # (gb(Sh) N Ck) <1 for k=
1,2,3. The first assertion is now obvious.
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If € € T, there is an index j such that e; > 0 > €j41,€j42. Thus,
log e € C7. This means that the branch C/ is determined by the signature
of e. Each signature except (+,+,+) corresponds to one branch of the
curve C.

If the signature rank of O* is 2, the image of € € 7 under log lie
on a branch C’ determined by ©*. Hence, those images lie on the two
pieces C/*! and C/*2. The second assertion of the theorem now follows
immediately.

The third assertion of the theorem is trivial.

We now show the last assertion. Assume e € 7. Let w = €—?. Then,
we have w — w’ = —3e. Hence, D(Z[w]) = Ng/q(—3¢)? = 3%. Thus, & is
the cyclic cubic field of discriminant 81. Let @ be the root of X3 +3X + 1
and write € = 26 + y0? with z,y € Z. By taking norm, we get fi(z,y) =
x3 + 32y — 6292 + 93 = 1. Tts solutions are (z,y) = (1,0), (0,1), (=1, —1)
and correspond to @, 8% and 67 (sce [17, 24]). Therefore, D(O) = 81 and
#T = 3. O
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9. Figures

Cg —u
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Figure 2: Area Estimate.
Figure 1: The Continuous Curve C.
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Figure 3: Triangle across Axis.
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