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Higher order set-valued iterative roots of bijections

By TOMASZ POWIERZA (Katowice)

Abstract. In the paper multifunctions are considered as generalized iterative
roots. We give a construction of a set-valued iterative root of an arbitrary bijection
which is single-valued whenever its ordinary iterative root exists. Moreover, this con-
struction is universal which means that every iterative root can be obtained in this way.
A version of Lojasiewicz’s Theorem which gives necessary and sufficient conditions for
a bijection to have an iterative root is also proved.

1. Introduction

In 1951 S. LOJASIEWICZ in his paper [5] gave a complete solution of
the following problem. Let X be a nonempty set, r € Nand f: X — X be
a given bijection. Find all functions g : X — X such that the r-th iterate
of g is equal to f, i.e.

(1) g =1

Any function which fullfils (1) is called an iterative root of order r of f or
simply an r-th iterative root of f.

In the case of an arbitrary function f : X — X the problem of the
general solution of (1) was solved for » = 2 in 1950 by R. IsaAcs [2] and
for arbitrary n € N in 1978 by G. ZIMMERMANN [8] (for all these results
see also [7]).

Our purpose is to consider multifunctions as generalized iterative
roots. The results of this article generalize those obtained in our pre-
vious paper [6] for r = 2. We have made some changes in the construction
presented there so that it works in the case of an arbitrary r.
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Let us begin with some definitions and notations. Put

{Z for k = 0,
" lH0,...,k—1} forkeN.

If p,q € Z then p = ¢ (mod k) means that k divides p — ¢ if k¥ € N and
p = q if kK = 0. In the sequel, given positive integers a and b we will write
ged(a, b) for the greatest common divisor of a and b. Moreover, we put
ged(a, 0) := a and ged(0,a) := a for every a € N.

The following definitions and simple facts can be found for instance
in [3].

Let f: X — X be a self-mapping of a non-empty set X. By an orbit

we mean the equivalence class under the Kuratowski relation ~ ¢ defined
by

repy =\ @) ="
m,n€ENg
for z,y € X.

The set of all orbits will be denoted by Orb(f).

If f is a bijection then every orbit is a k-cycle for some k € Ny, i.e.
the set {z; : i € Z} of distinct elements of X such that f(z;) = x;41 for
every i € Zy if k=0 and f(x9) = x1,..., f(xr_2) = xp—1, f(2x—1) = 20
if k € N. (In the literature a O-cycle is called also a Z-chain.) Observe
also that if f is a bijection then the orbit of an x € X is simply the set
{f"(z) :neZ}.

We denote by Li(f), k € Ny, the set of all k-cycles of f and by
I, € No U {00} the number of elements of Lj(f).

We will make use of the following Lojasiewicz’s Theorem ([5], also [7,
Sc. 2.1], [3, Sc. XV.2] and [4, Sc. 11.1]).

Proposition. A bijection f has an iterative root of order r € N if and
only if for every k € Ny either [, = oo or I, is divisible by dy where dy = r
and d = %, k € N, with r; denoting the greatest divisor of r relatively
prime to k.

Now we give a basic definition.
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Definition. Let f: X — X be a function and r > 2 be an integer. A
multifunction G : X — 2X is called a set-valued iterative root of f of order

rif
f(z) e G"(x) forz e X,
where
G%(z) := {x}
and

G"x):= |J Gly) forkeN,.
yeGk ()

Observe that every set-valued iterative root of f whose values are
singletons can be identified with a function which is an iterative root of f
in normal sense. The following simple example shows that if we require
nothing more in the definition above then it is not hard to find set-valued
roots of an arbitrary function.

Example. Let f be a self-mapping of X and r > 2 be an integer.
The function G : X — 2% defined by G(z) := {z, f(x)} is an iterative
root of order r of the function f. Indeed, for z € X we have G"(z) =
{z, f(2), f2(2), ..., [T(2)}, so f(z) € G" ().

Also, given an xg € X, we can define another set-valued iterative root
of f by

H(z) :={xo} forxe X\ {zo}; H(xo) = X.

Then f(x) € X = H"(z) for every z € X.

Unless f is the identity function the multifunction G and H can never
coincide with iterative roots of f (if they exist at all). Here we are inter-
ested in multifunctions with the possibly smallest values. We present a
construction of a set-valued iterative root which, in particular, is single-
valued for bijections having iterative root.

Let Z,.(f) denote the set of all functions ® mapping Orb( f) onto itself
and satisfying the conditions

O(Li(f)) = Lr(f) for every k € Ny
and

O = idom(s) -
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Since idoy(p) € Z-(f) this set is non-empty.
Given a ® € Z,(f) and a positive integer n denote by Per(®,n) the
set

{C € Orb(f) : @"(C) = C and ®"(C) # C for k € Z, \ {0}}.

Observe that if ® € Z,.(f), n € N, and Per(®,n) # () then n | r.
Finally, we will use the symbol Z(f) to denote the (possibly empty)
set of all ® € Z,.(f) satisfying the condition

(2) A A (Ek(f)ﬁPer(i),n) 7é®=>gcd( k) - 1).

r
N
n
keNg neN

Let f : X — X be a bijection, r > 2 an integer, and ® € Z,(f).
Clearly ® decomposes the set Orb(f) into at most r elementary distinct
families of the form {C,®(C),...,®"~1(C)}.

Using the axiom of choice we can find a subfamily of Orb(f) having ex-
actly one element in common with each of the set {C, ®(C),...,®"~}(C)}.
Denote by S(f, ®) the (non-void) class of all such subfamilies of Orb(f).

Making use of the axiom of choice again we can also find a function
a: Orb(f) — X (a selector) such that a(C) € C; we will write ac instead
of a(C). Define A(f) as the set of all such selectors.

Now fix & € Z.(f),P € S(f,®), and a € A(f). For x € X let
C € Orb(f) be the orbit containing x. Then C € L (f) N Per(®,n) for
some k € Ny and n € N such that n | 7. Clearly C, as the orbit containing
ac, is of the form

C={fac):i€ Zy}.

Thus there is a unique i € Zj, such that z = f%(ac). We will construct a
key multifunction Go p,, : X — 2% (for the simplicity we will often omit
the indices). If C' ¢ P then we put

Gfb,?’,a(ﬂ?) = {fi(%(c))}-
In the case C' € P we put
Gop.a(®) :={f (asc)), " (as(c))}
if ged (£,k) # 1 and

Gop.a(®) == {f"(asc))}



Higher order set-valued iterative roots of bijections 319

whenever ged (£,k) = 1, where a € Zj is the unique solution (cf. [1],

Ch. 2.6) of the equation
(3) Ta=1 (mod k).
n

(Observe that if k& = 0 then (3) means n =7 and v = 1.)
In what follows f : X — X is an arbitrarily fixed bijection and r > 2
is an integer.

Theorem 1. For every ® € Z,(f), P € S(f,®) and a € A(f) the
function Gg p,, is a set-valued iterative root of order r of the function f.

ProoF. Fix ® € Z,(f),P € S(f,®),a € A(f) and a point z € X.
Let C' € Orb(f) be an orbit that contains x. Then there exist numbers
k € Ng and n € N such that C € L;(f) N Per(®,n) and n | . Moreover,
putting
a;j = agi(C)
for j € Z,,, we have a; € ®/(C) and
®I(C) = {f"(aj):i € Z}} forje€ Z,

and z = fi(ag) for some i € Zy. Put s := L.

Assume that ged (£,k) # 1 and let j ‘e Z, be such that ®/(C) € P.
If p e N and p > n then, by the definition of G,

GP(f'(ao)) = GP~H(G(f'(a0))) = G~ (f*(a1))
=G (f'(a2)) = =GP (f'(ay))
=GP (f(aj1)) UGN (a541))
=GP (f(aj42)) UGP I 2 (f (a12))
= =GP (f (an-1)) UGP T (f T (an-1))
=GP (f"(a0)) U G (£ (a0)).
Therefore
G () = G™(f'(ao)) = G~V (f*(a0)) U G"C7 V(7 (a))

= G 72 (f(a0)) UGB (7 (a0)) U G (F742 (o))

= =GO (fag)) U--- UG (£145(ag))

= {f"(a0)s -, F**(a0)} > f*(ao)
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and
f(x) = f(f(a0)) = f(ao) € G"(2).

Now assume that ged (%, k:) = 1. Let a € Zj be the unique solution
of equation (3). Let j € Z, be such that ®/(C) € P. If p€ Nand p > n
then

G (f*(a0)) = GP"H(G(f'(a0))) = G (f'(ar))
= =GP (f(ay)) = GP I HG(f (ay)))
= GPITH(fF ag)) = P (T (ag42)
= = QP (g, ) = GPT(F Y (ag)).

Consequently, since s = 1 (mod k) we have
G"(x) = G™(f'(ao)) = G"*~V(f+*(ap))
S — Gn(sfs)(fﬂrsa(ao))
= {/"(a0)} 3 [ (a0)

and

f(@) = f(f'(a0)) = f " (ao) € G"(2). _

Now we present a result which shows that the given construction is,
in a sense, universal, that is every iterative root (if it exists) can be obtain
by using it. At first, however, we will observe the following simple fact.

Lemma. Let g : X — X be an iterative root of order r of the func-

tion f. If C' € Orb(f) and g(C) = C then C € Orb(g).

PRrOOF. If Cy is the orbit of g containing a point of C' € Orb(f) then
C C Cy since ¢g" = f and Cy C C by the equality g(C) = C and the
bijectivity of g. O

Theorem 2. For every iterative root g : X — X of order r of the
function f there exists ® € Z)(f) such that for every P € S(f,®) there is
an a € A(f) for which

Gopa(x)={g9(x)} forxeX.
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PROOF. Let g : X — X be an iterative root of order r of f. For
every z € X denote by Cf(x) the orbit of f containing z. Since f and g
commute we have

g(f'(x)) = f'(g(x)) forz € X and i€ Z,

whence

(4) 9(Cy(x)) = Cy(g(x)) for z € X.

Thus the formula

defines a function ® : Orb(f) — Orb(f).
If x € X then, by (4),

" (Cy(x)) = 2" H(2(Cr () = 2" (9(Cy(x)))
=" (Cy(g(x))) = = "7 (Cy(g" ()
= Cy(f(2)) = Cp(x).

This means that ®" = ido,n (). Moreover, since g is a bijection, we have
card g(C) = card C for every C' € Orb(f), so

O(Li(f)) C Li(f) for k € Ny.

Therefore

Li(f) = " (Lx(f)) C -~ C @(Li(Sf)) € Li(S),

that is ®(Lx(f)) = Lr(f) for k € Ny. Consequently, ® € Z,.(f). We will
show that ® € Z(f). Fix k € Ny and n € N such that L (f)NPer(®,n) #
0 and take any C € Ly(f) N Per(®,n). Clearly n | r. Put j := ged (£, k)
and fix an o € C. Since C' € Per(®,n) it follows from the definition of
® that ¢"(C) = C. Thus ¢g"(x) € C and g"(zg) = fi(xo) for an i € Z.
Then

T

f(@o) = g"(x0) = g"7 (x0) = [ (),

whence i =1 (mod k). Taking /,p,q € Z such that i> —1 = lk, = = pj,

and k = ¢qj we obtain ipj — 1 = lqj, i.e. j(ip — lqg) = 1, whence j = 1.
Therefore ged (£, k) = 1. Consequently, ® € Z;(f).
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Now fix an arbitrary P € S(f,®). We shall define a selector a :
Orb(f) — X.

To this aim let C' € P. Then C € Li(f) N Per(®,n) for some k € Ny
and n € N such that n | 7. Since ® € Z;(f) we have ged (Z,k) = 1. So
there is a unique solution « € Zj, of equation (3). Let ac be an arbitrary
element of C and put

agi(c) = ¢’ (f*"(ac)) for j € Z,\ {0}.

If j € Z, then agicy € ¢7(C) = ®/(C). Observe also that ¢"(C) =
®"(C) = C, so due to the Lemma, applied for the root g™ of order = of f,
we have C' € L;(¢9") and g"*(ac) = ac. Therefore, since n — ra = 0
(mod nk) by (3),

9(agn-1(0)) = g(g" ' (f*7*(ac))) = 9" (f*~*(ac))
_ gn(gr(kfa)(ac)) _ gnfrthrk(aC)

= g""(ac) = fF(ac) = ac,

that is
(5) glagn-1(cy) = ac-.
Moreover, we have
{C,®(0),..., " 1O} = {C,®(C),...,d" 1 (C),..., " 1(O)}.

Thus, since the family Orb(f) is the sum of the disjoint subfamilies of the
form

{C,®(C),..., 2" 1 (C)}

where C runs over P, the above procedure defines a function a : Orb(f) —
X such that ac = a(C) € C for every C' € Orb(f).

Fix an z € X. Then there exist an orbit C' € P and numbers k € Ny
and n € N such that C € Lp(f) N Per(®,n) and z € ®/(C) for some
J € Zn. Put aj := agi(c) for j € Z,. Since ®(C) € Ly(f) is the orbit
of f containing a; we have

(C) ={[f"(ay) i € Zi}
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Choose an i € Zj such that = f%(a;). If j = 0 then, by the definitions
of G and a, we obtain

G(z) = G(f'(ao)) = {f"*(ar)} = {f"*(g(f* *(a0)))}
={g(f"(a0))} = {g(x)}.

If j € ZK, \ {0,n — 1} then we have

G(z) = G(f'(a7)) = {f'(aj41)} = {F'(9(a;))}
= {9(f"(a;)} = {g(2)}.

Finally, if j = n — 1 then, by (5), we get

G(z) = G(f'(an-1)) = {f'(a0)} = {f*(g9(an-1))}
= {g(f"(an-1))} = {g(2)}.
This shows that G(z) = {g(z)} for every x € X. O

Theorem 3. Let ® € Z,.(f). Then ® € Z}(f) if and only if the
function Gg p , is single-valued for every P € S(f, ®) and a € A(f).

PROOF. Assume that ® € Z)(f). Fix P € S(f,®) and a € A(f). If
C € Orb(f) then C' € Li(f)NPer(®,n) for some k € Ny and n € N. Thus,
since ® € Z*(f), we have ged (%, k:) = 1. Consequently, it follows from the
definition of G p , that its values on C' are singletons. This means that
Ga p,q is single-valued.

Now assume that for every P € S(f,®) and a € A(f) the function
G p,q is single-valued. Fix numbers k € Ny, n € N and an orbit C' €
Ly(f) N Per(®,n). Choose a P € S(f,®) in such a manner that C € P
and take an arbitrary a € A(f). Since all values of Gg p , are singletons
it follows from the definition of Gg p, that ged (%,k:) = 1. Therefore
o ecZH(f). O

The final result gives a necessary and sufficient condition for a bi-
jection to have a real iterative root of given order, a little bit different
from that proposed by Lojasiewicz, cf. the Proposition. This is a simple
consequence of Theorems 2 and 3.
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Theorem 4. The bijection f has an iterative root of order r if and
only if the set Z(f) is non-empty.

PROOF. Assume that f has an iterative root of order r. According
to Theorem 2 there exist ® € Z*(f), P € S(f, ®) and a € A(f) such that

Gopa(x)={g(x)} forxzeX.

In particular Z*(f) # 0.

Now assume that the set Z*(f) is non-empty and let ® € Z*(f),P €
S(f,®) and a € A(f) be arbitrary. It follows from Theorem 3 that the
function G p o is single-valued. Thus its only selection g : X — X is an
iterative root of order r of f. O
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