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Charecterization of Gaussian semigroups on a Lie group

By GYULA PAP (Debrecen)

Dedicated to Professor Lajos Tamássy on his 70th birthday

Abstract. It is shown that a convolution semigroup of probability measures on
a Lie group is Gaussian if and only if the infinitesimal generator of the corresponding
semigroup of Fourier transforms satisfies some equation. The result is similar to the
characterization of Gaussian measures on a compact Lie group due to Carnal [1].

1. Introduction

Carnal [1] has proved the following characterization of Gaussian
measures on a compact Lie group G: let µ be a probability measure
on G embeddable into a convolution semigroup; then µ is a Gaussian
measure if and only if its Fourier transform µ̂ satisfies the equation

| det(µ̂(D ⊗D))| · |det(µ̂(D ⊗D))| = |det(µ̂(D))|4n(D)

for any irreducible unitary representation D of G where n(D) is the
dimension of the representation space of D. The aim of the present note
is to give a similar characterization of Gaussian semigroups on arbitrary
Lie groups.

2. Preliminaries

Let G be a Lie group of dimension m ≥ 1 with neutral element e.
Let G× := G \ {e}. Let U(e) denote the system of all neighborhoods
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of e. By Cb(G) we denote the space of bounded continuous complex-
valued functions on G equipped with the supremum norm ‖ · ‖∞. Let
D(G) be the space of infinitely differentiable complex-valued functions
with compact support on G. The space E(G) of bounded regular
functions on G is defined by

E(G) :=
{
f ∈ Cb(G) : f · g ∈ D(G) for all g ∈ D(G)

}
.

Let G be the Lie algebra of G and exp : G 7→ G the exponen-
tial mapping. An element X ∈ G can be regarded as a (left-invariant)
differential operator on G: for f ∈ D(G) we put

Xf(x) = lim
t→0

f(x exp tX)− f(x)
t

.

M+(G) is the space of positive Radon measures on G, Mb
+(G)

the subspace of bounded measures and M1(G) the set of probability
measures on G which, furnished with the operation of convolution ∗
and the weak topology, is a topological semigroup. The Dirac measure in
x ∈ G is denoted by εx.

3. Convolution semigroups of probability measures

A family (µt)t≥0 in M1(G) is said to be a (continuous) convolution
semigroup if we have µs ∗ µt = µs+t for all s, t ≥ 0, and limt↓0 µt =
µ0 = εe. Its generating functional (A,A) is defined by

A :=
{

f ∈ Cb(G) : A(f) := lim
t↓0

t−1

(∫
f(x)µt(dx)− f(e)

)
exists

}
.

We have E(G) ⊂ A and if {ζ1, . . . , ζm} is a system of canonical coordi-
nates of the first kind in D(G) adapted to the basis {X1, . . . , Xm} of
G then on E(G) the functional A admits the canonical decomposition
(Lévy-Khinchin formula)

A(f) =
∑m

i=1
ai(Xif)(e) +

∑m

i,j=1
aij(XiXjf)(e)

+
∫

G∗

[
f(x)− f(e)−

∑m

i=1
ζi(x)(Xif)(e)

]
η(dx),

where a1, . . . , am are real numbers, (aij)1≤i,j≤m is a real symmetric
positive semidefinite matrix and η is a Lévy measure on G, i. e. η ∈
M+(G∗) with

∫
G∗ ϕ(x)η(dx) < ∞, where ϕ is a Hunt function for

G (see Heyer [3], p. 268, Siebert [5] and Hunt [4]). We shall also
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say that the generating functional A admits the canonical decomposition
(ai, aij , η)1≤i,j≤m.

A convolution semigroup (µt)t≥0 of non-degenerate measures in
M1(G) is called a Gaussian semigroup if limt↓0 t−1µ(G \ U) = 0 for
all U ∈ U(e). A non-degenerate convolution semigroup (µt)t≥0 in
M1(G) with canonical decomposition (ai, aij , η)1≤i,j≤m is a Gaussian
semigroup if and only if η = 0. A non-degenerate measure µ ∈ M1(G)
is called a Gaussian measure if there exists a Gaussian semigroup (µt)t≥0

such that µ1 = µ. (For information on Gauss semigroups cf. Heyer [3].)

4. Unitary representations and Fourier transforms

A (continuous) unitary representation of G is a homomorphism D
of G into the group of unitary operators on a complex Hilbert space H
such that the mapping x → D(x)u of G into H is continuous for
all u ∈ H. The space H is called the representation space of D and
is denoted by H(D). The inner product and the norm in H(D) are
denoted by 〈·, ·〉 and ‖ · ‖, respectively.

The class of all (continuous) unitary representations of G is denoted
by Rep(G). A representation D ∈ Rep(G) is said to be irreducible
if the only closed subspaces of H(D) invariant under D are {0} and
H(D). By Irr(G) we denote the class of all irreducible representations
in Rep(G).

If (D,H(D)) is a representation of G, the conjugate representation
D is modeled in H(D), the C-linear dual of H(D). For u ∈ H(D) define
ū ∈ H(D) via ū(v) = 〈v, u〉. This map H(D) → H(D) is bijective,
but conjugate linear. The inner product in H(D) is 〈ū, v̄〉 := 〈u, v〉,
and the conjugate representation D of G is given by D(x)ū := D(x)u.
Thus the matrix elements of D(x) are the complex conjugates of those
for D(x).

If (D1,H(D1)) and (D2,H(D2)) are representations of G, we define
the tensor product H(D1)⊗̄H(D2) of Hilbert spaces to be the spaces of
all Hilbert-Schmidt operators S : H(D2) → H(D1). If H(D1) ⊗H(D2)
is the algebraic tensor product of H(D1) and H(D2) as vector spaces, it
corresponds to a dense subspace of H(D1)⊗̄H(D2) if we identify u⊗v with
the rank-1 operator (u⊗v)(w̄) := 〈v, w〉u, and we have 〈u1⊗v1, u2⊗v2〉 =
〈u1, u2〉〈v1, v2〉. The tensor product representation D1 ⊗D2 is given on
H(D1) ⊗ H(D2) by (D1 ⊗ D2)(x)(u ⊗ v) := D1(x)u ⊗ D2(x)v for all
x ∈ G, u ∈ H(D1), v ∈ H(D2). It extends to a unitary representation
on H(D1)⊗̄H(D2) given by (D1⊗D2)(x)S := D1(x) ◦S ◦ (D2(x))−1 for
all x ∈ G.
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Let D ∈ Rep(G). The vector u ∈ H(D) is said to be differentiable
for D if the coefficient function x → 〈D(x)u, v〉 of G into C is in
E(G) for any v ∈ H(D). By H0(D) we denote the space of all vectors
in H(D) differentiable for D.

For a probability measure µ on G we define its Fourier transform
µ̂ by

〈µ̂(D)u, v〉 :=
∫
〈D(x)u, v〉µ(dx)

for all D ∈ Rep(G) (u, v ∈ H(D)). Then µ̂(D) is a bounded linear
operator on H(D) such that ‖µ̂(D)‖ ≤ 1.

Let D ∈ Rep(G). By the usual properties of the Fourier transfor-
mation (µ̂t(D))t≥0 is a strongly continuous semigroup of contractions on
H(D). We denote its infinitesimal generator by (A(D),A(D)). We recall
some results due to Siebert (see [6]):

A(D) = {u ∈ H(D) : 〈Du, v〉 ∈ A for all v ∈ H(D)}
and

〈A(D)u, v〉 = A(〈Du, v〉)
for all u ∈ A(D) and v ∈ H(D). Moreover, H0(D) ⊆ A(D).

5. Characterisation of Gaussian semigroups

For any D ∈ Rep(G) and u ∈ H0(D) we introduce a function fD,u

on G defined by

fD,u(x) := Re[〈u, u〉 − 〈D(x)u, u〉]
for all x ∈ G.

The following characterisation of Gauss semigroups is similar to the
result valid for Gauss measures on almost periodic Lie projective groups
(cf. Heyer, [3]).

Theorem 1. Let G be a Lie group. Let (µt)t≥0 be a non-degenerate
convolution semigroup in M1(G) with generating functional A and
Lévy-measure η. The following statements are equivalent:

(i) (µt)t≥0 is a Gaussian semigroup;

(ii) η = 0;

(iii) limt↓0 1
t

∫
G

f(x)µt(dx) = 0 for all f ∈ Cb(G) with e /∈ supp(f);

(iv) A(f2
D,u) = 0 for all D ∈ Irr(G), u ∈ H0(D);
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(v) we have the (Gauss) condition

Re〈A(D ⊗D)(u⊗ u), u⊗ u〉+ Re〈A(D ⊗D)(u⊗ ū), u⊗ ū〉 =

= 4‖u‖2Re〈A(D)u, u〉
for all D ∈ Irr(G), u ∈ H0(D).

Pproof. (i) ⇐⇒ (ii) ⇐⇒ (iii) is well known (cf. Heyer [3]).
(ii) =⇒ (iv) follows immediately from the Lévy-Khinchin formula since

for all D ∈ Irr(G), u ∈ H0(D) we have fD,u(e) = 0 and (XifD,u)(e) =
0 for i = 1, . . . ,m, thus

(Xif
2
D,u)(e) = 0, (XiXjf

2
D,u)(e) = 0

for i, j = 1, . . . , m.
(iv) ⇐⇒ (v). For every D ∈ Irr(G), u ∈ H0(D) one has the

identities
fD⊗D,u⊗u(x) = ‖u‖4 − Re[〈D(x)u, u〉2]
fD⊗D,u⊗ū(x) = ‖u‖4 − Re[〈D(x)u, u〉〈D(x)ū, ū〉]

= ‖u‖4 − Re[〈D(x)u, u〉〈D(x)u, u〉]
4‖u‖2fD,u(x)− 2f2

D,u(x) = 2fD,u(x)(2‖u‖2 − fD,u(x))

= 2‖u‖4 − 2( Re〈D(x)u, u〉)2

= 2‖u‖4 − Re[〈D(x)u, u〉(〈D(x)u, u〉+ 〈D(x)u, u〉)].
Therefore

fD⊗D,u⊗u + fD⊗D,u⊗ū = 4‖u‖2fD,u − 2f2
D,u

and
AfD = − Re〈A(D)u, u〉

imply the assertion.
(iv) =⇒ (ii). For every D ∈ Irr(G) and u ∈ H0(D) we have by

the Lévy-Khinchin formula

0 = A(f2
D,u) =

∫

G×
f2

D,u(x)η(dx).

Since ⋂

u∈H0(D)

{x ∈ G : f2
D,u(x) = 0} = ker(D)

for every D ∈ Irr(G) (see Siebert [6], the proof of Lemma 5.2) and
⋂

D∈ Irr(G)

ker(D) = e
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(cf. Hewitt, Ross [2] Vol. I, (22.12)) we conclude that η = 0.

Remark 1. Obviously the Gauss condition (v) can be formulated also
for the generating functional of the convolution semigroup (µt)t≥0:

Re A(〈(D ⊗D)(u⊗ u), u⊗ u〉) + Re A(〈(D ⊗D)(u⊗ ū), u⊗ ū〉) =

= 4‖u‖2 Re A(〈(D)u, u〉)

for all D ∈ Irr(G), u ∈ H0(D).

Remark 2. Unfortunately, in general the Gauss condition (v) does not
imply that the Fourier transform µ̂1 itself satisfies some equation as in the
case when G has only finite dimensional irreducible representation.Thus
we cannot conclude, for example, that the definition of a Gaussian measure
is independent of its embedding semigroup.

Remark 3. If (µt)t≥0 is a Gaussian semigroup on a Lie group then
using the identity

fD⊗D,u⊗v + fD⊗D,u⊗v̄ = 2(‖u‖2fD,v + ‖v‖2fD,u − fD,ufD,v)

we can conclude

Re 〈A(D ⊗D)(u⊗ v), u⊗ v〉+ Re 〈A(D ⊗D)(u⊗ v̄), u⊗ v̄〉 =

= 2(‖u‖2 Re 〈A(D)v, v〉+ ‖v‖2 Re 〈A(D)u, u〉)

valid for all D ∈ Rep(G), u, v ∈ H0(D).

Introducing the notation

fD,u,v(x) := Re[〈u, v〉 − 〈D(x)u, v〉]
for all D ∈ Rep(G), u, v ∈ H0(D) and x ∈ G we have the identity

fD⊗D,u1⊗v1,u2⊗v2 + fD⊗D,u1⊗v̄1,u2⊗v̄2
=

= 2(Re〈u1, u2〉fD,v1,v2 + Re〈v1, v2〉fD,u1,u2 − fD,u1,u2fD,v1,v2)

and conclude that the infinitesimal generator A satisfies the equation

Re〈A(D ⊗D)(u1 ⊗ v1), u2 ⊗ v2〉+ Re〈A(D ⊗D)(u1 ⊗ v̄1), u2 ⊗ v̄2〉 =

= 2( Re〈u1, u2〉 Re〈A(D)v1, v2〉+ Re〈v1, v2〉 Re〈A(D)u1, u2〉)

valid for all D ∈ Rep(G), u1, u2, v1, v2 ∈ H0(D).
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