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On q-multiplicative functions

By K.-H. INDLEKOFER (Paderborn), I. KÁTAI (Budapest)
and Y.-W. LEE (Paderborn)

Abstract. The analogon of Delange’s theorem for q-multiplicative functions is
investigated for some subsets of integers.

1. Introduction

Let q ≥ 2 be an integer and A = {0, 1, . . . , q − 1}. We shall use the
standard notations: N, N0, Z, R, C, denote the set of positive integers, non-
negative integers, integers, real-numbers, complex numbers, respectively.
For x ∈ R let {x} be the fractional part of x, and ‖x‖ be the distance of
x to the closest integer. The q-ary expansion of some n ∈ N0 is defined as
the unique sequence ε0(n), ε1(n), . . . for which

(1) n =
∞∑

j=0

εj(n)qj , εj(n) ∈ A

holds. ε0(n), ε1(n), . . . are called the digits in the q-ary expansion of n.
Let Aq be the set of real-valued q-additive functions, and Mq be the

set of complex-valued q-multiplicative functions.
A function f : N0 → R belongs to Aq, if f(0) = 0, and for every

n ∈ N0,

(2) f(n) =
∞∑

j=0

f(εj(n)qj).
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A function g : N0 → C belongs to Mq, if g(0) = 1, and for every
n ∈ N0,

(3) g(n) =
∞∏

j=0

g(εj(n)qj).

Since f(εj(n)qj) = 0, g(εj(n)qj) = 1 for all those j for which qj > n,
therefore the number of summands on the right hand side of (2), and the
number of factors on the right hand side of (3) is finite.

Let Mq be the class of q-multiplicative functions with modulus 1: i.e.
g ∈Mq, if g is q-multiplicative and |g(n)| = 1 (n ∈ N0). Let e(α) = e2πiα.

A classical theorem of H. Delange [1] asserts that for g ∈ Mq,

Nx =
[

log x
log q

]
,

m(x) :=
1
x

∑
n<x

g(n) =
Nx−1∏

j=0

1
q

( ∑

b∈A
g(bqj)

)
+ ox(1),

whence he deduced that limx→∞ |m(x)| always exists and equals

∞∏

j=0

∣∣∣∣
1
q

∑

b∈A
g(bqj)

∣∣∣∣,

which is nonzero if and only if

∑

b∈A
g(bqj) 6= 0 (for all j ∈ N0)(4)

and
∞∑

j=0

∑

b∈A
Re(1− g(bqj)) < ∞.(5)

Furthermore, he proved that lim
x→∞

m(x) exists and is nonzero if and

only if (4) holds and the series

(6)
∞∑

j=0

∑

b∈A
(1− g(bqj))

is convergent.
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An interesting problem is to give analogues of Delange’s theorem [1],
if we sum g(n) on some subsets of the integers. Let α1, . . . , αk be rationally
independent real numbers, i.e. such that h1α1 + · · ·+ hkαk + hk+1 · 1 = 0
has the only solution h1 = · · · = hk+1 = 0 in integers h1, . . . , hk+1. Let
Ij = [uj , vj) ⊂ [0, 1) be arbitrary proper subintervals of [0, 1), let E be the
set of those integers n for which

{α1n} ∈ I1, . . . , {αkn} ∈ Ik

simultaneously holds.
Let

l(n) =
{ 1 if n ∈ E,

0 if n ∈ N0 \ E.

Our purpose in this paper is to investigate the sum

M(x) :=
∑
n<x

g(n)l(n)

for g ∈Mq.
We shall prove the following

Theorem 1. limx→∞
|M(x)|

x always exists. It is nonzero if there exist

integers h1, . . . , hk for which

∞∑

l=0

∑

b∈A
Re(1− g(bql)e((h1α1 + · · ·+ hkαk)bql)) < ∞(7)

and
∑

b∈A
g(bql)e((h1α1 + · · ·+ hkαk)bql) 6= 0 l = 0, 1, . . .(8)

The relation (7) can be satisfied for at most one choice of h1, . . . , hk ∈ Z.

Assume that (7) holds. Then

M(x)
x

= c
(1)
h1

. . . c
(k)
hk

Sh1,...,hk
(x)

x
+ ox(1)

where

c
(j)
hj

=
e(−hjuj)− e(−hjvj)

2πihj
if hj 6= 0,
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and

c
(j)
0 = (vj − uj),

furthermore,

Sh1,...,hk
(x) =

∑
n<x

g(n)e((h1α1 + · · ·+ hkαk)n).

lim
x→∞

M(x)
x exists if and only if lim

x→∞
Sh1,...,hk

(x)

x exists. lim
x→∞

Sh1,...,hk
(x)

x

exists if and only if
∑∞

l=0

∑
b∈A(1 − g(bql)e((h1α1 + · · · + hkαk)bql)) is

convergent.

2. Proof

Let fj (j = 1, . . . , k) be the function defined in [0, 1) by

fj(y) =

{
1 if y ∈ Ij ,

0 if y ∈ [0, 1) \ Ij ,

and extended periodically mod 1. Then

fj(y) ∼
∞∑

m=−∞
c(j)
m e(my),

where c
(j)
m = e(−muj)−e(−mvj)

2πim , if m 6= 0 and c
(j)
0 = (vj − uj) = |Ij |.

Choosing a small ∆ > 0, for

f∗j (u) =
1

2∆

∫ ∆

−∆

fj(y + u)dy ∼
∞∑

m=−∞
d(j)

m (∆)e(mu)

we obtain thatd(j)
0 (∆) = |Ij | and |d(j)

m (∆)| ≤ c
∆m2 , with an absolute posi-

tive constant c. Thus the Fourier series is absolutely convergent and repre-
sents f∗j (u). Let now K be a large integer, f̃j(u) =

∑
|h|≤K d

(j)
h (∆)e(hu).

Then |f∗j (u)− f̃j(u)| ≤ c
∆K , and so

(9)
∣∣∣∣

k∏

j=1

f∗j (uj)−
k∏

j=1

f̃j(uj)
∣∣∣∣ ≤

ck

∆K
,
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since 0 ≤ f∗j (uj) ≤ 1 holds for uj ∈ R. We obviously have l(n) =∏k
j=1 fj(nαj). Let l∗(n) :=

∏k
j=1 f∗j (nαj) and l̃(n) :=

∏k
j=1 f̃j(nαj). Let

us observe that f∗j (u) = fj(u) if u /∈ [uj−∆, uj+∆]∪[vj−∆, vj+∆]. There-

fore l(n) = l∗(n), except when {nαj} ∈ [uj −∆, uj + ∆]∪ [vj −∆, vj + ∆]

for some j. Furthermore |l(n)− l∗(n)| ≤ 1 always holds.

Let S(x) :=
∑

n<x g(n)l̃(n). We have

|M(x)− S(x)| ≤
∣∣∣∣
∑
n<x

g(n)(l(n)− l̃(n))
∣∣∣∣ ≤

∑
n<x

|l(n)− l̃(n)|

≤
∑
n<x

|l(n)− l∗(n)|+
∑
n<x

|l∗(n)− l̃(n)| =
∑
1

+
∑
2

.

From (9) we have that
∑

2 ≤ ckx
∆K . Furthermore,

∑
1

≤
k∑

j=1

]{n ≤ x | {αjn} ∈ [uj −∆, uj + ∆] ∪ [vj −∆, vj + ∆]}

and by using that αjn is uniformly distributed mod 1, we obtain that∑
1 ≤ c1k∆x with an absolute positive constant c1 for every large x.

Let us observe furthermore that

S(x) =
∑

h1,...,hk

d(h1, . . . , hk)Sh1,...,hk
(x)

where h1, . . . , hk run over the integers in [−K,K],

d(h1, . . . , hk) =
k∏

j=1

d
(j)
hj

(∆)

and

Sh1,...,hk
(x) =

∑
n<x

g(n)e((h1α1 + · · ·+ hkαk)n).

Lemma 1. Assume that

lim sup
x→∞

|M(x)|
x

> 0.
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Then there are some integers h∗1, . . . , h
∗
k such that

(10)
∞∑

l=0

∑

c∈A
Re(1− g(cql)e((h∗1α1 + · · ·+ h∗kαk)cql))

is convergent.

Proof of Lemma 1. The function g(n)e((h1α1 + · · ·+ hkαk)n) as a
function of n belongs to Mq. If (10) does not hold, then |Sh1,...,hk

(x)|
x → 0

(x →∞) due to Delange’s theorem [1], and so |S(x)|
x → 0. Since |M(x)|

x ≤
|S(x)|

x + |M(x)−S(x)|
x , and the second term is less than c1k∆+ ck

∆K , therefore

(11) lim sup
x→∞

|M(x)|
x

≤ c1k∆ +
ck

∆K
.

This inequality holds for each ∆ > 0 and each K > 0. By letting K →∞,
then ∆ → 0, we obtain that

lim sup
x→∞

|M(x)|
x

= 0. ¤

Lemma 2. The relation

(12)
∞∑

j=0

∑

b∈A
Re(1− g(bqj)e((h1α1 + · · ·+ hkαk)bqj)) < ∞

may hold at most for one collection of integers h1, . . . , hk.

Proof of Lemma 2. The relation (12) is equivalent to

∞∑

j=0

∑

b∈A

∥∥∥∥
arg g(bqj)

2π
+ (h1α1 + · · ·+ hkαk)bqj

∥∥∥∥
2

< ∞.

Assume that (12) holds with (h1, . . . , hk) as well as with (h∗1, . . . , h
∗
k).

Let γ = (h1−h∗1)α1 + · · ·+(hk−h∗k)αk. If (h1, . . . , hk) 6= (h∗1, . . . , h
∗
k),

then γ is an irrational number, and

(13)
∞∑

j=0

∑

b∈A
‖γbqj‖2 < ∞.
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we shall see that (13) is impossible.
From (13) it follows that ‖γqj‖ → 0 (j → ∞). Let γqj = mj + δj ,

where δj ∈ (− 1
2 , 1

2 ], mj ∈ Z. Then ‖δj‖ = ‖γqj‖. Furthermore γqj+1 =
qmj + qδj , and so δj+1 = qδj , mj+1 = qmj for every large j, and this
contradicts to the fact that δj 6= 0. The lemma is proved.

Lenmma 3. Assume that (12) holds with (h1, . . . , hk). Then

M(x)
x

= c
(1)
h1

. . . c
(k)
hk

Sh1,...,hk
(x)

x
+ ox(1).

Proof of Lemma 3. Repeating the argumentation of Lemma 1, we
deduce that

∣∣∣∣
M(x)

x
− d(h1, . . . , hk)

Sh1,...,hk
(x)

x

∣∣∣∣ ≤ c1k∆ +
ck

∆K
,

whence
∣∣∣∣
M(x)

x
− c

(1)
h1

. . . c
(k)
hk

Sh1,...,hk
(x)

x

∣∣∣∣

≤ c1k∆ +
ck

∆K
+ |d(h1, . . . , hk)− c

(1)
h1

. . . c
(k)
hk
|.

Then, by K →∞, and ∆ → 0 we obtain that

lim
x→∞

∣∣∣∣
M(x)

x
− c

(1)
h1

. . . c
(k)
hk

Sh1,...,hk
(x)

x

∣∣∣∣ → 0,

due to the fact that d(h1, . . . , hk) → c
(1)
h1

. . . c
(k)
hk

as ∆ → 0.

Observe that c
(1)
h1

. . . c
(k)
hk
6= 0.

From Lemma 3 we obtain that limx→∞
M(x)

x exists if and only if

limx→∞
Sh1,...,hk

(x)

x exists. Due to Delange’s theorem [1] it exists and
nonzero if and only if

∑

b∈A
g(bqj)e((h1α1 + · · ·+ hkαk)bqj) 6= 0

for j = 0, 1, . . . , and

∞∑

j=0

∑

b∈A
(1− g(bqj)e((h1α1 + · · ·+ hkαk)bqj))
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is convergent.
Hence Theorem 1 immediately follows.

3. On the distribution of q-additive functions

Theorem 2. Let f ∈ Aq, E(x) := ]{n < x, n ∈ E}

Fx(y) :=
1

E(x)
]{n < x, n ∈ E, f(n) < y}.

The limit limx→∞ Fx(y) = F (y) exists for almost all y ∈ R, where F is a

distribution function, if and only if the series

∞∑

j=0

∑

b∈A
f(bqj)(14)

and
∞∑

j=0

∑

b∈A
f2(bqj)(15)

are convergent.

Proof. Let gτ (n) = e(τf(n)), where τ ∈ R. Then gτ (n) ∈ Mq. Let
mτ (x) = 1

E(x)

∑
n<x gτ (n)l(n). Assume first that (14), (15) are satisfied.

Then
∑∞

j=0

∑
b∈A(1− gτ (bqj)) is convergent, and by Theorem 1 we obtain

that mτ (x) → m(τ) (x →∞), where m(τ) 6= 0 in a neighborhood of 0, i.e.
if |τ | < c. Thus, by a wellknown theorem in probability theory we obtain
that Fx(y) → F (y), the characteristic function of F is m(τ).

Assume now that limx→∞ Fx(y) exists. Then there exists
limx→∞mτ (x) = m(τ) in a suitable interval |τ | ≤ c. Applying Theorem 1,
we obtain that

(16)
∞∑

l=0

∑

b∈A
(1− e(τf(bql) + (h1(τ)α1 + · · ·+ hk(τ)αk)bql))

is convergent, where h1(τ), . . . , hk(τ) are suitable integers. Consequently

‖τf(bql) + (h1(τ)α1 + · · ·+ hk(τ)αk)bql‖ → 0,
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and so
‖mτf(bql) + m(h1(τ)α1 + · · ·+ hk(τ)αk)bql‖ → 0,

for every m ∈ N. Furthermore,

‖mτf(bql) + (h1(mτ)α1 + · · ·+ hk(mτ)αk)bql‖ → 0,

as l →∞.
Then, for every fixed m ∈ N,

(17)
∞∑

l=0

∑

b∈A
(1− e(mτf(bql) + m(h1(τ)α1 + · · ·+ hk(τ)αk)bql))

is convergent as well. Applying (16) for mτ instead of τ , we obtain that

(18)
∞∑

l=0

∑

b∈A
(1− e(mτf(bql) + (h1(mτ)α1 + · · ·+ hk(mτ)αk)bql)),

(17) and (18) easily imply that

∞∑

l=0

∑

b∈A
‖[(h1(mτ)−mh1(τ))α1 + · · ·+ (hk(mτ)−mhk(τ))αk]bql‖2 < ∞.

Applying the argument which was used in the proof of Lemma 2, and that
α1, . . . , αk are linearly independent, we obtain that hj(mτ) = mhj(τ)
(j = 1, . . . , k). Let now K be fixed, |K| ≤ c. Then hj(K) = mhj

(
K
m

)

holds for every m = 1, 2, . . . , and since hj

(
K
m

) ∈ Z, therefore m divides
hj(K) for every m. Thus hj(K) = 0 (j = 1, . . . , k), |K| ≤ c. Consequently,

(19)
∞∑

l=0

∑

b∈A
(1− e(τf(bql)))

is convergent for |τ | ≤ c.
Hence one can deduce that (14), (15) are convergent.
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