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On g-multiplicative functions

By K.-H. INDLEKOFER (Paderborn), I. KATAI (Budapest)
and Y.-W. LEE (Paderborn)

Abstract. The analogon of Delange’s theorem for g-multiplicative functions is
investigated for some subsets of integers.

1. Introduction

Let ¢ > 2 be an integer and A = {0,1,...,q — 1}. We shall use the
standard notations: N, Ny, Z, R, C, denote the set of positive integers, non-
negative integers, integers, real-numbers, complex numbers, respectively.
For x € R let {x} be the fractional part of x, and ||z|| be the distance of
x to the closest integer. The g-ary expansion of some n € Ny is defined as
the unique sequence ey(n),e1(n), ... for which

(1) n=> ¢, e(n)ch
=0

holds. €g(n),e1(n),... are called the digits in the g-ary expansion of n.
Let A, be the set of real-valued g-additive functions, and M, be the
set of complex-valued g-multiplicative functions.
A function f : Ny — R belongs to Ay, if f(0) = 0, and for every
n € Ny,

(2) fn) =Y fle;(n)a’).
j=0
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A function g : Ny — C belongs to My, if g(0) = 1, and for every
n € Ny,

3 o) = [ oles ()

Since f(g;(n)¢?) =0, g(g;(n)¢’) =1 for all those j for which ¢/ > n,
therefore the number of summands on the right hand side of (2), and the
number of factors on the right hand side of (3) is finite.

Let M, be the class of g-multiplicative functions with modulus 1: i.e.
g € My, if g is ¢-multiplicative and |g(n)| =1 (n € Np). Let e(a) = €27,

A classical theorem of H. DELANGE [1] asserts that for g € M,
Nz — [logw}

logq |’

mir) = 3" gn) = i (Zgbq )+ox ),

n<x 7=0 beA

whence he deduced that lim,_ . |m(z)| always exists and equals

Zg bq’)

[ee]

= beA
which is nonzero if and only if
(4) > g(bg?) #0  (for all j € No)
beA
and
(5) > > Re(1—g(bg!)) < 00
j=0 beA

Furthermore, he proved that lim m(z) exists and is nonzero if and
Tr— 00

only if (4) holds and the series

(6)

M2

Zl— bq

beA

Il
o

J

is convergent.
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An interesting problem is to give analogues of DELANGE’s theorem [1],
if we sum g(n) on some subsets of the integers. Let a, ..., ai be rationally
independent real numbers, i.e. such that hyay + -+ hyap, + hgy1 -1 =0
has the only solution hy = -+ = hgy1 = 0 in integers hy,...,hg1. Let
I; = [uj,vj) C [0,1) be arbitrary proper subintervals of [0, 1), let E be the
set of those integers n for which

{agn} € I, ..., {agn} € Iy,

simultaneously holds.
Let

1 ifnekFE,
l(n):{
0 1f7”L€N0\E

Our purpose in this paper is to investigate the sum

M(z) =3 gn)i(n)

n<x
for g € M,.
We shall prove the following
Theorem 1. lim,_, %ﬂ always exists. It is nonzero if there exist
integers hi, ..., hy for which
(7) >3 Re(1 - g(bg")e((hron + -+ + hior)bg')) < o0
1=0 bEA
and
(8) > g(bd)e((huon + -+ + hiag)bg') 0 1=0,1,...
bEA
The relation (7) can be satisfied for at most one choice of hy, ..., hy € Z.

Assume that (7) holds. Then

M (x) 1 k) Shy,..hy (T)
= :Cél)cgk)%‘i‘ox(l)

where

o) _ el=hjug) —e(=hjvy)
“ny = orih; ifh; 70,
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and
e = (v; —uy),
furthermore,
Syt () = Y g(n)e((haar + - - + hyay)n).
n<x
lim —Mz(x) exists if and only if lim Snpohi @) ovicts, Tim 7&1’“;”‘(%)

exists if and only if Y ;0> ca(1 = g(bg)e((hion + -+ + hiou)bg)) is
convergent.

2. Proof

Let f; (j =1,...,k) be the function defined in [0, 1) by

o ityeo )\,

and extended periodically mod 1. Then

oo

i)~ > De(my),
G) _

where ¢’ = e(fmug);.;(*mvj), if m # 0 and ng) = (vj —uy) = ||

Choosing a small A > 0, for

fi(u) = / : fily+u)dy ~ i d3) (A)e(mu)
J QA N J m

m=—0o0

we obtain thatd(()j)(A) = |I;| and |d%)(A)| < %5, with an absolute posi-

Am?2
tive constant c. Thus the Fourier series is absolutely convergent and repre-
sents f7(u). Let now K be a large integer, fj(u) = 32, <x dg)(A)e(hu).

Then |f}(u) — f;(u)| < %, and so

k

9)
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since 0 < f7(u;) < 1 holds for u; € R. We obviously have I(n) =
[T fi(nay). Let I*(n) := [1, f;(na;) and i(n) := [T, f;(na;). Let
us observe that f7(u) = f;(u) ifu ¢ [u;—A, u;+AJU[v;—A, v;+A]. There-
fore I(n) = 1*(n), except when {na;} € [u; — A, u; + AJUv; — A, v + A

for some j. Furthermore |l(n) —[*(n)| < 1 always holds.

Let S(z):= >, ., 9(n)l(n). We have

|M(z) = S(z)| < | > g(n)(i(n) — f(n))‘ <Y li(n) —i(n)|
<D i) =)+ rm) =i => "+

From (9) we have that Y, < €% Furthermore,
2. <
1

and by using that a;n is uniformly distributed mod 1, we obtain that

tin < [{ayn} € [uj — Asu; + Al U oy — A, v; + Al}

IVE

1

J

21 < c1kAx with an absolute positive constant ¢; for every large x.

Let us observe furthermore that

S@)= > d(hi,...,h&)Sh,, n, ()

hi,...;hg

where hq,..., h; run over the integers in [— K, K|,

k
d(ha,....h) =[] d ()
j=1

and

Sty (@) = > g(n)e((hray + -+ + hpag)n).

n<x

Lemma 1. Assume that

M
lim sup M

T—00 x

> 0.
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Then there are some integers hi, ..., hj, such that
(10) Z Z Re(1 — g(cgHe((hiay + --- + hiag)cq))
=0 ceA

is convergent.

PROOF of Lemma 1. The function g(n)e((hiay + -+ + hgag)n) as a

function of n belongs to M. If (10) does not hold, then M —0
1S ()] |M(2)]

x

(x — 00) due to DELANGE’s theorem [1], and so — 0. Since

[S(@)| | [M(z)=S5(x)]
m:l} + .fI?x €T

, and the second term is less than c1 kA + %, therefore

: | M ()] ck
11 1 —= < kA + —.
(11) msup T T S ARt AR
This inequality holds for each A > 0 and each K > 0. By letting K — oo,

then A — 0, we obtain that

M
lim sup M = 0. U
xr—00 T
Lemma 2. The relation
(12) D) “Re(l — g(bg))e((haon + -+ - + hrar)bg’)) < oo
j=0 beA
may hold at most for one collection of integers hq, ..., hy.

PROOF of Lemma 2. The relation (12) is equivalent to

2

arg g(bq’) c

+ (hiog + -+ + hkak)bqj

Assume that (12) holds with (hq, ..., hs) as well as with (h], ..., h}).
Let v = (h1 —h})ar+- - -+ (hg —h})ag. If (he,... hy) # (BT, ..., h}),

then v is an irrational number, and

(oo}

(13) > > b |? < oo

j=0 beA
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we shall see that (13) is impossible.

From (13) it follows that ||y¢’|| — 0 (j — o). Let v¢/ = m; + 4;,
where 0; € (—3, %
gm;j + qd;, and so d;41 = qdj, m;11 = gm; for every large j, and this
contradicts to the fact that §; # 0. The lemma is proved.

Lenmma 3. Assume that (12) holds with (hy,...,hy). Then

M(z)

], mj € Z. Then [|§;|| = ||7¢’||. Furthermore v¢’*! =

1
= ) ) 2 4o (1),

PROOF of Lemma 3. Repeating the argumentation of Lemma 1, we
deduce that

lM(z)

) " k
—d(hl,...,hk)w‘ <akat 2

whence

M@) o) 09 Sk (@)
. Chl ...Chk .

ck 1 k
< ek + oo + \d(Ry,. .., hy) _cgg_..c,gkq.

Then, by K — 0o, and A — 0 we obtain that

M
lim ‘(x) — CS) . Cglk)w
x 1 k T

— 0’
r—00

due to the fact that d(hy,..., hg) — cglll) e cgz) as A — 0.
Observe that cglll) e cgz) # 0.

From Lemma 3 we obtain that lim,_, oo Miz) exists if and only if

lim, o0 exists. Due to DELANGE’s theorem [1] it exists and
nonzero if and only if

Zg(bqj)e((hloq + -+ hgag)bg?) #0
beA
for j=0,1,..., and
Z Z(l = g(bg?)e((hion + -+ + hieay)bg’))

7=0 beA
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is convergent.
Hence Theorem 1 immediately follows.

3. On the distribution of g-additive functions

Theorem 2. Let f € A,, E(x) :=t{n <z, ne E}

1

F(y) = ggyHln <o n€ B, f(n) <),

The limit lim, . F,(y) = F(y) exists for almost all y € R, where F is a
distribution function, if and only if the series

(14) DD g

7=0 beA

and

(15) SN )
7=0 becA

are convergent.

PROOF. Let g,(n) = e(rf(n)), where 7 € R. Then g,(n) € M,. Let
m(z) = ﬁ Y new 9r(n)l(n). Assume first that (14), (15) are satisfied.
Then Z;io > pea(l—gr(bg?)) is convergent, and by Theorem 1 we obtain
that m,(z) — m(7) (x — o0), where m(7) # 0 in a neighborhood of 0, i.e.
if |7| < ¢. Thus, by a wellknown theorem in probability theory we obtain
that F,(y) — F(y), the characteristic function of F' is m(7).

Assume now that lim, ., F,(y) exists. Then there exists
lim, o m,(x) = m(7) in a suitable interval || < ¢. Applying Theorem 1,
we obtain that

16) 3 S0 - e(rf (b)) + (ha(T)an + -+ hu(r)a)bg'))

=0 beA

is convergent, where hq(7),..., hi(7) are suitable integers. Consequently

I177(ba") + (ha(T)ar + -+~ + hi(T)ar)bg' | — 0,
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and so
||m7'f(bql) +m(hy () + -+ hk(T)ozk)bqu — 0,

for every m € N. Furthermore,
lm f(bg") + (ha(mT)ar + - - + hi(mT)ar)bg' | — 0,

as | — oo.
Then, for every fixed m € N,

(17) DD (U —e(mrf(bg') + mha(r)ar + -+ hy(r)ax)bg'))
1=0 beA

is convergent as well. Applying (16) for m7 instead of 7, we obtain that
18) > (1 —e(mrf(bg") + (ha(m7)on + -+ + ha(mr)a)bg")),

1=0 beA
(17) and (18) easily imply that
>~ Yl mr) = mhi(r))as + -+ + (hi(mr) = mhi (7)) aog’ | < .
1=0 beh

Applying the argument which was used in the proof of Lemma 2, and that

ai,...,qq are linearly independent, we obtain that h;(m7) = mh;(7)
(j =1,....k). Let now K be fixed, |[K| < c¢. Then h;(K) = mh; (£)
holds for every m = 1,2,..., and since h; (%) € 7Z, therefore m divides
h;(K) for every m. Thus h;(K) =0 (j =1,...,k), |K| < c. Consequently,
(19) > (1—e(rf(ba)))

1=0 beA

is convergent for |7] < c.
Hence one can deduce that (14), (15) are convergent.
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