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Some remarks on the geometry of quasi-Banach spaces

F. ALBIAC (Pamplona) and C. LERÁNOZ (Pamplona)

Abstract. We study the definitions of strict p-convexity and uniform p-convexity
and the relations between them for quasi-Banach spaces when 0 < p < 1.

1. Introduction

The study of quasi-normed spaces arises naturally as a generalization
of normed spaces by substituing the triangular inequality of the norm by a
weaker condition. The geometrical meaning of that generalization is that
whereas the unit ball of a normed space is a convex set, the unit ball of a
quasi-normed space needs not be convex. From a topogical point of view,
the topological vector spaces whose topology can be induced by a norm
are those which have a convex bounded neighbourhood of zero, while the
topological vector spaces whose topology can be induced by a quasi-norm
are those which have a bounded neighbourhood of zero (see [3] and [7]).
If that topology is complete, the normed spaces are called Banach spaces,
and the quasi-normed spaces are called quasi-Banach spaces.

The geometry of the unit ball in Banach spaces has been widely stud-
ied and a great deal of information can be found in the mathematical
literature. In this paper, we present some aspects of the geometry of the
unit ball of those quasi-Banach spaces which are not Banach spaces. We
will translate some concepts used to describe the characteristics of the unit
ball of normed spaces into the setting of quasi-normed spaces and we will
see to what extent we can generalize the properties relating those concepts.
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In Section 2, we define strict p-convexity of quasi-Banach spaces, for
0 < p < 1, generalizing the classical concept of strict convexity of Banach
spaces, and see some characterizations. We present the Lorentz sequence
spaces d(w, p) as an example of quasi-Banach spaces which are strictly
p-convex but do not have an equivalent q-norm for any 0 < p < q ≤ 1.

In Section 3, we discuss the definition of uniform p-convexity (0 <

p < 1) that best generalizes the classical concept of uniform convexity of
Banach spaces.

We now introduce some definitions and notation we will be using in
the sequel (see [3]).

Let X be a (real) vector space. A quasi-norm on X is a map ‖ · ‖ :
X −→ [0, +∞) satisfying

(i) ‖x‖ > 0 if x 6= 0,

(ii) ‖αx‖ = |α|‖x‖ for all x ∈ X, α ∈ R,

(iii) ‖x + y‖ ≤ C(‖x‖ + ‖y‖) for any x, y ∈ X, where C ≥ 1 is a
constant independent of x and y. If C = 1, ‖ · ‖ is a norm.

A quasi-norm is p-subadditive (0 < p ≤ 1), and it is called p-norm, if

(iv) ‖x + y‖p ≤ ‖x‖p + ‖y‖p for any x, y ∈ X.

A quasi-norm clearly defines a metrizable locally bounded vector to-
pology on X. If such topology is complete then we say that (X, ‖ · ‖) is
a quasi-Banach space. If the quasi-norm is also p-subadditive then X is a
p-Banach space.

Given a vector space X and 0 < p ≤ 1, we will denote by [x, y]p the
p-segment with ending points x, y:

[x, y]p = {λx + µy : λ, µ ≥ 0, λp + µp = 1}.

A subset C of X is p-convex (where 0 < p ≤ 1) if given x, y ∈ C and
0 ≤ t, s ≤ 1 with sp + tp = 1, then tx + sy ∈ C, i.e. C is p-convex if it
contains every p-segment with ending points in C.

We recall that if S ⊂ X and 0 < p ≤ 1, then the p-convex hull of S is
the smallest p-convex set that contains S and can be described as

p−co(S)=
{ N∑

k=1

λkxk :
N∑

k=1

λp
k =1, λk ≥ 0, xk ∈S, k =1, . . . , N, N ∈ N

}
.
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When 0 < p < 1, the p-convex hull of a set S can be written as well as

p− co(S) =
{ N∑

k=1

λkxk : 0 <

N∑

k=1

λp
k ≤ 1, λk ≥ 0, xk ∈ S,

k = 1, . . . , N, N ∈ N
}

.

Therefore, if 0 < p < 1 any non empty, p-convex, closed set contains 0.
That leads to interesting situations. For instance, a set formed by one
single element x 6= 0 is not p-convex if 0 < p < 1. In this case,

p− co({x}) = {λx : 0 < λ ≤ 1}.

Another particularity of the case 0 < p < 1 is that [x, y]p needs not
be a p-convex set: if x and y are not colinear then

p−co[x, y]p = {λx+µy : λ, µ≥ 0, 0 < λp+µp≤ 1} =
⋃

z∈[x,y]p

{λz : 0 < λ≤ 1}.

2. p-convexity and strict p-convexity

Whereas the unit ball of a normed space is always a convex set, the
unit ball BX of a quasi-normed space X needs not be convex. There are
even such examples as X = Lp([0, 1], dt), 0 < p < 1, where the convex
hull of BX is the whole space. In fact, the unit ball BX of a quasi-normed
space X needs not be p-convex for any 0 < p ≤ 1 as the following example
shows (see another example in [7], page 95). The set

B =
{
(x, y) ∈ R2 : (|y| − 1) ≤ (log |x| − 1)−1 ≤ 0

} ∪ {
(0, y) : −1 ≤ y ≤ 1

}

is not p-convex for any 0 < p ≤ 1 but it is the unit ball of the quasi-Banach
space (R2, µB), being µB the Minkowski functional of B:

µB(x) = inf{t > 0 : x ∈ tB}, x ∈ R2.

Nevertheless, a theorem by Aoki ([1]) and Rolewicz ([6]) asserts that
every quasi-norm is equivalent to a quasi-norm which is p-subadditive for
some p > 0 (see Theorem 1.3 of [3] and Theorem 3.2.1 of [7]).
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Definition. We say that a quasi-normed space (X, ‖ . ‖) is p-convex ,
0 < p ≤ 1, if the unit ball BX = {x ∈ X, ‖x‖ ≤ 1} is a p-convex set,
equivalently, if the quasi-norm is p-subadditive:

‖x + y‖p ≤ ‖x‖p + ‖y‖p

for any x, y ∈ X.

The following is an obvious remark.

Proposition 2.1. If a quasi-normed space (X, ‖ . ‖) is p-convex for
some 0 < p ≤ 1, then (X, ‖ . ‖) is r-convex for any 0 < r ≤ p.

Let us recall that a normed space (X, ‖ . ‖) is said to be strictly convex
if

‖x + y‖ < ‖x‖+ ‖y‖
whenever x, y ∈ X are not colinear.

Strict convexity in a normed space (X, ‖ . ‖) can be characterized
equivalently in different forms: via the extreme points of BX or according
to the behaviour of the middle points of segments ending in the unit sphere
SX of the space.

The classical definitions of strict convexity and extreme point can be
easily generalized for quasi-normed spaces:

Definition. We say that a quasi-normed space (X, ‖ . ‖) is strictly p-
convex , 0 < p < 1, if

‖x + y‖p < ‖x‖p + ‖y‖p

for any x, y ∈ X different from 0X .

Definition. Let 0 < p ≤ 1. If C is a closed, p-convex subset of X, a
point a ∈ C is p-extreme if it does not belong to any open p-segment with
ending points in C, i.e., if a = λx1 +µx2 with x1, x2 ∈ C and 0 ≤ λ, µ ≤ 1,
λp + µp = 1 implies that either λ = 0 or µ = 0.

The set of p-extreme points of C is denoted by ∂pC.

It is well-known that a normed space (X, ‖ . ‖) is strictly convex if and
only if the set of extreme points of BX coincides with the unit sphere SX

or, equivalently, if and only if
∥∥x+y

2

∥∥ < 1 for any different x, y such that
‖x‖ = ‖y‖ = 1. We will state a similar theorem in the more general setting
of quasi-normed spaces.
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Proposition 2.2. Let 0 < p < 1.

(i) A quasi-normed space (X, ‖ . ‖) is strictly p-convex if and only if

∂pBX = SX .

(ii) If a quasi-normed space (X, ‖ . ‖) is strictly p-convex then

∥∥∥∥
x + y

21/p

∥∥∥∥ < 1,

for any x, y ∈ X such that ‖x‖ = ‖y‖ = 1. The converse is not true.

Proof. (i) It is obvious that if (X, ‖ . ‖) is strictly p-convex then
∂pBX = SX . Reciprocally, if (X, ‖ . ‖) is not strictly p-convex then there
exist x, y ∈ X different from 0X such that

‖x + y‖p = ‖x‖p + ‖y‖p.

We may assume that ‖x‖ = 1 and ‖y‖ = ε ≤ 1; therefore, ‖x + y‖ = α =
(1 + εp)1/p. Now, we observe that

x + y

α
=

1
α

x +
ε

α

y

ε
,

( 1
α

)p

+
( ε

α

)p

= 1,

so x+y
α ∈ SX \ ∂pBX .
(ii) It is obvious. A counterexample of the converse for 0 < p < 1

is the quasi-Banach space (R2, µB) whose unit ball is a set B = Bp ∪
1/2B∞ ⊂ R2 formed by the union of the unit ball Bp of `

(2)
p with the

`
(2)
∞ -ball of radius 1/2. Given any x = (x1, x2), y = (y1, y2) ∈ B, we check

that µB(x + y) < 21/p: if x ∈ Bp and y ∈ 1/2B∞ then µB(x + y) ≤
(|x1 + y1|p + |x2 + y2|p)1/p ≤ ((1/2)p + (3/2)p)1/p < 21/p for all 0 < p < 1;
if x, y ∈ 1/2B∞ then µB(x + y) ≤ 2 max(|x1 + y1|, |x2 + y2|) ≤ 2 < 21/p

for all 0 < p < 1; if x, y ∈ Bp and x1y1 6= 0 or x2y2 6= 0 then µB(x + y) ≤
(|x1 + y1|p + |x2 + y2|p)1/p < 21/p (see Lemma 2.4); and if x, y ∈ Bp and
x1y1 = x2y2 = 0 then µB(x + y) ≤ max(µB(1, 1), µB(2, 0)) = 2 < 21/p for
all 0 < p < 1. In this space,

µB

(
x + y

21/p

)
< 1
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for any x, y ∈ R2 such that µB(x) = µB(y) = 1, but it cannot be strictly
p-convex because its unit sphere has points which are not p-extreme. ¤

Strict p-convexity is an intermediate stage between p-convexity and
q-convexity for 0 < p < q ≤ 1.

Proposition 2.3. If a quasi-normed space (X, ‖ . ‖) is q-convex for

some 0 < q ≤ 1, then (X, ‖ . ‖) is strictly p-convex for any 0 < p < q.

Proof. It is a straightforward consequence of the following lemma.
¤

Lemma 2.4. If 0 < p < 1, then

|a + b|p ≤ |a|p + |b|p

for any real numbers a and b. Furthermore, |a + b|p = |a|p + |b|p if and

only if ab = 0.

Next, we see that the converse of Proposition 2.3 is not true: there are
strictly p-convex quasi-Banach spaces whose quasi-norm is not q-subbadi-
tive for any p < q ≤ 1. The example is provided by the Lorentz sequence
spaces.

For every 0 < p ≤ 1 and every non-increasing sequence of positive
numbers ω = (ωn)∞n=1 so that ω1 = 1 we consider the Lorentz space d(ω, p)
of all sequences of scalars a = (an)∞n=1 for which

‖a‖ = sup
π∈Π

( ∞∑
n=1

|aπ(n)|pωn

)1/p

< ∞,

the supremum being taken over the set Π of all permutations of the inte-
gers. It is known that (d(ω, p), ‖ . ‖) is a p-Banach space.

Theorem 2.5. If 0 < p < 1 then (d(ω, p), ‖ . ‖) is not q-convex for

any q > p.

If ω decreases then (d(ω, p), ‖ . ‖) is strictly p-convex.

Proof. First, we check that d(ω, p) is not q-convex for any given
p < q ≤ 1. Let us take x = (1, 0, 0, . . . ) and y = (b, b, 0, 0, . . . ) so that
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‖y‖ = 1 (i.e., b = 1
(1+w2)p ). The points of the q-segment [x, y]q with ending

points x and y are given by

λ(b, b, 0, 0, . . . ) + (1− λq)1/q(1, 0, 0, . . . )

= (λb + (1− λq)1/q, bλ, 0, 0, . . . ), λ ∈ [0, 1].

For the closed unit ball to be q-convex it must contain all the q-segments
with ending points in it, in particular it must be verified that

‖(λb + (1− λq)1/q, bλ, 0, 0, . . . )‖

=
(
(bλ + (1− λq)1/q)p + w2

(
bλ

)p)1/p ≤ 1

for all λ ∈ [0, 1]. Let us see that for any p < q ≤ 1, there exists λ = λ(q) ∈
(0, 1) (closed enough to 0) such that f(λ) > 1. Call λq = t, and

f(t) = (bt1/q + (1− t)1/q)p + w2b
ptp/q, t ∈ [0, 1].

Then

f ′(t)=
p

q

(
bt1/q+(1−t)1/q

)p−1(
bt

1
q−1−(1−t)

1
q−1

)
+

p

q
w2b

pt
p
q−1, t∈ (0, 1).

As limt→0+ f ′(t) = +∞, it follows that there exists δ = δ(q) > 0 so that
t ∈ (0, δ) implies f ′(t) > 1 > 0. Then f is increasing in [0, δ]. Now,
f(0) = 1, so f(t) > 1 for every t ∈ [0, δ], or equivalently, ‖λ(b, b, 0, 0, . . . )+
(1− λq)1/q(1, 0, 0, . . . )‖ > 1 if λ ∈ [0, δ1/p].

Now, we see that if ω decreases then d(ω, p) is strictly p-convex. Let
x = (xn)∞n=1, y = (yn)∞n=1 be any two elements in d(ω, p), and let (|xσ(k) +
yσ(k)|)∞k=1 be a decreasing rearrangement of the sequence (|xk + yk|)∞k=1.
Then,

‖x + y‖p =
∞∑

k=1

|xσ(k) + yσ(k)|pωk

(1)

≤
∞∑

k=1

|xσ(k)|pωk

+
∞∑

k=1

|yσ(k)|pωk

(2)

≤ ‖x‖p + ‖y‖p.

The equality ‖x + y‖p = ‖x‖p + ‖y‖p holds if and only if the inequalities
(1), (2) are actually equalities. By Lemma 2.4, the inequality (1) is an
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equality if and only if xσ(k)yσ(k) = 0 for all k ∈ N; and, on the other hand,
the inequality (2) is an equality if and only if both sequences (|xσ(k)|)∞k=1,
(|yσ(k)|)∞k=1 are non increasing. Therefore, ‖x + y‖p = ‖x‖p + ‖y‖p if and
only if either x = 0 or y = 0.

Although the space d(w, p) is infinite dimensional, the above proof
also shows that for any 0 < ω2 < 1, the 2-dimensional Lorentz spaces
(d((1, ω2), p), ‖ . ‖) are strictly p-convex but they are not q-convex for any
q > p. ¤

The following question arises: Can the space d(w, p) be endowed with
an equivalent q-subadditive quasi-norm, for some q > p ? As we will see,
the answer depends on the sequence w = (wn)∞n=1. In order to deal with
one of the cases, we need a lemma from [5].

Lemma 2.6 ([5], cf. [2]). Let (en)∞n=1 be the canonical basis in d(w, p),
0 < p < 1, w ∈ c0 \ `1. Then every normalized block basis

un =
qn+1∑

i=qn+1

aiei, n = 1, 2, . . .

such that limi→∞ ai = 0 contains a subsequence (unj )
∞
j=1 such that for

some constant C > 0

∥∥∥
∞∑

j=1

λjunj

∥∥∥ ≥ C
( ∞∑

j=1

|λj |p
)1/p

for any finitely nonzero scalars (λj)∞j=1.

Theorem 2.7. Let 0 < p < 1. The quasi-norm on d(w, p) is equivalent

to a q-subadditive quasi-norm for some p < q ≤ 1 if and only if ω =
(ωn)∞n=1 ∈ `1. In that case, d(w, p) ' `∞.

Proof. If ω = (ωn)∞n=1 ∈ `1 then it is easy to prove that d(w, p) '
`∞, so as a matter of fact d(w, p) has an equivalent norm, which obviously
is q-convex for all p < q ≤ 1. It remains to see what happens in the other
cases.

Case 1: If infn ωn > 0 then we have d(w, p) ' `p, which does not have
an equivalent q-subadditive quasi-norm for any p < q ≤ 1.
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Case 2: If (wn)∞n=1 ∈ c0 \ `1 then, by Lemma 2.6, there is a sequence
(un)∞n=1 ⊂ d(w, p) of elements of quasi-norm 1, and a constant C such that

CN1/p ≤
∥∥∥

N∑
n=1

un

∥∥∥

for all N ∈ N. If the space d(w, p) had an equivalent q-subadditive quasi-
norm then there would exist a constant D so that

CqNq/p ≤ ‖u1 + u2 + · · ·+ uN‖q ≤ D

N∑
n=1

‖un‖q = DN

for all N ∈ N, but the previous inequality cannot be true for all N ∈ N if
q > p. ¤

3. Uniform p-convexity

The aim of this section is to find the most appropriate definition of
uniform p-convexity when 0 < p < 1 in the sense that it should coincide
with the concept of uniform convexity for p = 1 and it should be an
intermediate property between strict p-convexity and q-convexity for q > p.

A Banach space (X, ‖ · ‖) is called uniformly convex if for every ε > 0
there is a number δ = δ(ε) such that

inf
{

1−
∥∥∥∥

x + y

2

∥∥∥∥ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε

}
= δ > 0.

If (X, ‖ · ‖) is a p-Banach space and 0 < p < 1, then for any x, y ∈ X

such that ‖x‖ = ‖y‖ = 1 and ‖x− y‖ < ε it holds that

1−
∥∥∥∥

x + y

21/p

∥∥∥∥ ≥ 1− (2p + εp)1/p

21/p

ε→0−−−→ 1− 2(p−1)/p > 0.

Therefore, the obvious generalization of uniform convexity is the following:

Definition. Let 0 < p < 1. A quasi-Banach space (X, ‖ . ‖) has the
p-midpoint property if

inf
{

1−
∥∥∥∥

x + y

21/p

∥∥∥∥ : ‖x‖ = ‖y‖ = 1
}

= δ > 0.
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The reason for not calling the above property “uniform p-convexity”
is that it does not imply strict p-convexity:

Theorem 3.1. For every 0 < p < 1, there are quasi-normed spaces

that have the p-midpoint property but fail to be strictly p-convex, and

there are strictly p-convex quasi-normed spaces that fail to have the p-

midpoint property.

Proof. The counterexample in Proposition 2.2 is not strictly p-con-
vex and satisfies that δ(x, y) = 1 − µB

(
x+y
21/p

)
> 0 for all x, y ∈ R2 such

that µB(x) = µB(y) = 1. Since the unit sphere of (R2, µB) is compact
and δ(x, y) is a continuous function, (R2, µB) is also an example of quasi-
Banach space with the p-midpoint property that is not strictly p-convex.

A strictly p-convex quasi-Banach space which does not have the p-
midpoint property is the space `1(`n

pn
) where (pn)∞n=1 is a decreasing se-

quence of numbers converging to p. ¤

In [8], Rolewicz gives a characterization of uniform convexity using
the so-called “drops”. The concept of drop has been generalized to p-Ba-
nach spaces in [4].

Definition ([4]). If C is a closed p-convex subset of a p-Banach space
(X, ‖ . ‖) (0 < p ≤ 1), and x ∈ X \C, the p-convex hull of {x}∪C is called
p-drop and denoted by

Dp(x,C) = p− co({x} ∪ C)

= {sx + ty : y ∈ C, s, t ∈ [0, 1], sp + tp = 1}.

If BX is the closed unit ball of (X, ‖ . ‖) and x ∈ X \BX , we denote

Rp(x) = Dp(x,BX) \BX .

Theorem 3.2 ([8]). A Banach space (X, ‖ . ‖) is uniformly convex if

and only if diam R1(a)
‖a‖→1−−−−→ 0 uniformly on ‖a‖.

Rolewicz’ theorem asserts that uniform convexity can be characterized
not only from the inside of the unit ball but also by some uniform behaviour
measured from the outside of the ball, via the drops. That suggests the
following definition:
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Definition. Let 0 < p ≤ 1. A quasi-Banach space (X, ‖ · ‖) is uni-

formly p-convex if diam Rp(a)
‖a‖→1−−−−→ 0 uniformly on ‖a‖.

Next, we check that uniform p-convexity is an intermediate property
between strict p-convexity and q-convexity for q > p as well as its relation
with the p-midpoint property.

Theorem 3.3. If (X, ‖ . ‖) is q-convex quasi-Banach space for some
p < q ≤ 1 then (X, ‖ . ‖) is uniformly p-convex. The converse is not true.

Proof. For each a ∈ X with ‖a‖ > 1, if x1, x2 ∈ Rp(a) then

x1 = (1− sp)1/pa + sy1, x2 = (1− tp)1/pa + sy2,

for some y1, y2 ∈ BX , s, t ∈ [0, 1]. Since

1 ≤ ‖(1− sp)1/pa + sy1‖q ≤ (1− sp)q/p‖a‖q + sq

hence

1 ≤ 1− sq

(1− sp)q/p
≤ ‖a‖q.

It follows that s → 0 when ‖a‖ → 1. Analogously, t → 0 when ‖a‖ → 1.
Therefore,

‖x1 − x2‖q = ‖(1− sp)1/pa + sy1 − (1− tp)1/pa− sy2‖q

≤ ∣∣(1− sp)1/p − (1− tp)1/p
∣∣q‖a‖q + sq + tq

‖a‖→1−−−−→ 0.

The 2-dimensional Lorentz spaces d(ω, p) with ω = (1, ω2), 0 < ω2 < 1,
are a counterexample of the converse. ¤

Theorem 3.4. If 0 < p < 1 and (X, ‖ . ‖) is uniformly p-convex then
it is strictly p-convex. The converse is not true.

Proof. First, we prove that (X, ‖ . ‖) is p-convex. Suppose it is not
and take a ∈ X with ‖a‖ > 1 such that a ∈ p − co(BX). Then −λa, a ∈
Rp(−λa) for all λ > ‖a‖−1 and diam Rp(−λa) ≥ ‖λa+a‖ = (λ+1)‖a‖ > 1
for all λ > ‖a‖−1.

Now, suppose that (X, ‖ . ‖) is not strictly p-convex. Then, there is a
non p-extreme point in SX , i.e. there exist 0 < β < α < 1, and x, y ∈ SX

such that αp + βp = 1 and ‖αx + βy‖ = 1. Given ε > 0, denote

C =
(

αp

(1 + ε)p
+ βp

)−1/p

, λ =
αC

1 + ε
, µ = (1− λp)1/p = βC.
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These numbers satify that λp + µp = 1 and, since 1 < C < 1 + ε,

α

1 + ε
< λ < α, β < µ < (1 + ε)β.

Since ‖λ(1+ε)x+µy‖ = C‖αx+βy‖ = C > 1, we have that λ(1+ε)x+µy ∈
Rp((1 + ε)x), and

(
diam Rp((1 + ε)x)

)p ≥ ‖λ(1 + ε)x + µy − (1 + ε)x‖p

≥ (1− λ)p(1 + ε)p − (1− λp) ε→0−−−→ (1− α)p − 1 + αp > 0.

A strictly p-convex quasi-Banach space which is not uniformly p-convex is
the space (`1(`n

pn
), ‖.‖) where (pn)∞n=1 is a decreasing sequence of numbers

converging to p. This space does not have the p-midpoint property which
is a necessary condition for uniform p-convexity, as we see in the next
theorem. ¤

Theorem 3.5. If 0 < p < 1 and (X, ‖ . ‖) is uniformly p-convex then

it has the p-midpoint property. The converse is not true.

Proof. For any x, y ∈ SX , and any ε > 0,

x + y

21/p
= αε(λε(1 + ε)x + µεy)

with

λε =
1

αε21/p(1 + ε)
, µε =

1
αε21/p

, αε =
(

(1 + ε)p + 1
2(1 + ε)p

)1/p

.

These numbers satisfy the following

1
1 + ε

< αε < 1,
1

21/p(1 + ε)
< λε <

1
21/p

< µε <
1 + ε

21/p
, λp

ε + µp
ε = 1.

Therefore, λε(1 + ε)x + µεy ∈ Dp((1 + ε)x,BX); and since

‖λε(1 + ε)x + µεy − (1 + ε)x‖p = ‖(1− λε)(1 + ε)x− µεy‖p

≥ (1− λε)p(1 + ε)p − µp
ε

>

(
1− 1

21/p

)p

(1 + ε)p − (1 + ε)p

2
>

(
1− 1

21/p

)p

− 1
2
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for all ε > 0, there must exist ε0 > 0 such that ‖λε(1 + ε)x + µεy‖ ≤ 1 for
all ε ≤ ε0. Otherwise, diam Rp((1 + ε)x) ε→09 0. Then,

∥∥∥∥
x + y

21/p

∥∥∥∥ = αε0‖λε0(1 + ε0)x + µε0y‖ ≤ αε0 < 1.

The counterexample in Proposition 2.2 is an example of quasi-Banach
space with the p-midpoint property that is not strictly p-convex and, there-
fore, it is not uniformly p-convex. ¤

Finally, we see if spaces with the p-properties that we have studied
can be renormed with an equivalent q-subadditive quasi-norm for some
p < q ≤ 1.

Theorem 3.6. If 0 < p < 1 and (X, ‖ . ‖) has the p-midpoint property

then there exist p < q ≤ 1 and a q-subadditive quasi-norm ‖ . ‖q on X

which is equivalent to ‖ . ‖. In particular, uniformly p-convex quasi-Banach

spaces can be renormed with an equivalent q-subadditive quasi-norm for

some p < q ≤ 1. The converse is not true.

Proof. Let

δ = inf
{

1−
∥∥∥∥

x + y

21/p

∥∥∥∥ : ‖x‖ = ‖y‖ = 1
}

> 0,

and fix 0 < ε < pδ. If ‖x‖ = 1 and ‖y‖ ≤ 1− 2ε, then
∥∥∥∥

x + y

21/p

∥∥∥∥
p

≤ 1 + (1− 2ε)p

2
<

2− 2pε

2
= 1− pε.

If ‖x‖ = 1 and 1− 2ε < ‖y‖ ≤ 1, then

∥∥∥∥
x + y

21/p

∥∥∥∥
p

=

∥∥∥∥∥
x + y

‖y‖
21/p

− y

‖y‖
1− ‖y‖

21/p

∥∥∥∥∥

p

≤ (1− δ)p + ε < 1− pδ + ε.

We have proved that there exists 0 < γ < 1 such that

‖x + y‖ ≤ 21/pγ max{‖x‖, ‖y‖}

for all x, y ∈ X.
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Now, take p < q ≤ 1 such that 21/pγ = 21/q, by the theorem of Aoki

and Rolewicz’s (see Theorem 1.3 of [3] and Theorem 3.2.1 of [7]),

‖x‖q = inf

{( n∑

i=1

‖xi‖q
)1/q

:
n∑

i=1

xi = x, n ∈ N
}

defines a q-subadditive quasi-norm on X which is equivalent to ‖ . ‖.
Any finite dimensional `p space with 0 < p < 1 is a counterexample

of the converse. ¤

Theorem 3.7. For every 0 < p < 1, there are quasi-normed spaces

that can be renormed with an equivalent norm (or 1-subadditive quasi-

norm) but fail to be strictly p-convex, and there are strictly p-convex quasi-

normed spaces that cannot be renormed with an equivalent q-subadditive

quasi-norm for any p < q ≤ 1.

Proof. Any finite dimensional quasi-normed space can be renormed
with an equivalent norm.

The space (`1(`n
pn

), ‖.‖), where (pn)∞n=1 is a decreasing sequence of
numbers converging to p, is strictly p-convex but cannot be renormed with
an equivalent q-subadditive quasi-norm for any p < q ≤ 1. ¤
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UNIVERSIDAD PÚBLICA DE NAVARRA
31006 PAMPLONA
SPAIN
AND
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF MISSOURI–COLUMBIA
COLUMBIA, MISSOURI 65211
USA

E-mail: albiac@math.missouri.edu

CAMINO LERÁNOZ
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