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Solubility of finite groups admitting
a fixed-point-free operator group

By YANMING WANG (Guangzhou) and SULING PANG (Guangzhou)

Abstract. The main purpose of this paper is to prove the following result: Let
G be an S3-free finite group. Let A be an operator group of G. Denote π = π(G).
Suppose that A ∈ En

π and A is π-nilpotent. If CG(A) = 1, then G is soluble. With the
help of CFSG we also prove a result enabling us to drop the S3-free assumption and to
replace A ∈ En

π by A ∈ Ec
π. This result may be viewed as a unified generalization of two

well-known theorems on fixed-point-free automorphism groups which are consequences
of the classification theorem of finite simple groups.

§1. Introduction

It is of considerable interest to investigate the solubility of a finite
group G which admits a fixed-point-free automorphism group A. When
A is cyclic or (|G|, |A|) = 1, people have given a positive answer by using
the classification theorem of finite simple groups. (Refer to [W-C] and
[G].) In [G], Gorenstein stated without proof that, as a consequence of
the classification theorem of finite simple groups, a finite group with a
fixed-point-free automorphism is soluble. Recently Rowley gave a short
proof to confirm the result [Ro]. In fact, by using CFSG, people can ask
more general questiones. In [W-C], we proved that fixed-point-freeness is
too strong a restriction. What we have obtained shows that if G admits a
coprime order operator group with fixed point subgroup S3, A4 and Sz(2)
free (i.e. no subgroup of its quotient group isomorphic to these groups),
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then G is soluble. In particular, if the fixed point subgroup CG(A) is either
nilpotent or is of odd order then G is soluble. The result is best possible
since we can find simple groups which admit a coprime order operator
group with fixed point subgroup isomorphic to each of these 3 groups.
Recently Beltran gave another proof for the case in which CG(A) is
nilpotent [B]. However, the cyclic case has no significant improvement. The
restriction of “fixed-point-freeness” plays an essential role in the induction
of Rowley’s recent proof [Ro]. Meanwhile some people also try to drop, or
at least modify, the hypotheses of coprime order or cyclicity to get similar
results in more general cases [P].

All the groups in this paper are finite. The symbols and terms are
standard (refer to [H] or [R]).

We denote by π(G) the set of prime divisors of |G|.
We write G ∈ Eπ if there exists a Hall π-subgroup of G, G ∈ Cπ if any

two Hall π-subgroups of G are conjugate in G; G ∈ Dπ if every π-subgroup
of G is contained in a a given Hall π-subgroup of G up to conjugation, i.e.
G ∈ Cπ and every π-subgroup of G contained in some Hall π-subgroup
of G.

We write G ∈ En
π if G has a nilpotent Hall π-subgroup; G ∈ Ec

π if G

has a cyclic Hall π-subgroup.

In this paper, we consider the following more general.

Hypothesis (∗). Let G be a finite group. Let A be an operator group

of G with CG(A) = 1. Denote π = π(G). Suppose that A ∈ Ec
π and A is

π-nilpotent.

Our purpose is to prove the following

Theorem (Theorem 2.4). If (G,A) satisfies the hypothesis (∗), then

G is soluble.

Remark 1. The following two important special examples which sat-
isfy hypothesis (∗) are of special interest for many scholars.

(1) A is cyclic (with natural π-Hall subgroup and normal comple-
ment);

(2) |G|, |A|) = 1 (with identity Hall π(G)-subgroup).

Hence, the hypothesis (∗) may be viewed as a natural and unified
generalization of these two special cases.
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Our main theorem is a consequence of the classification theorem of
finite simple groups.

Without CFSG, we use Glauberman’s result on S3-free simple groups
to give a generalization of Parrott’s main theorem and we try to get best
possible hypotheses on the operator group. From our proof, it is reasonable
to conjecture that we may replace A ∈ Ec

π(G) by A ∈ En
π(G). The main idea

in this paper is to find suitable hypotheses which allow us to use induction
and to reduce the operator group to the easy case of automorphism of a
simple group. It seems that the π(G)-part of A plays the most important
role in controlling the solubility of the groups.

§2. Theorems and proofs

Lemma 2.1. Let N be a p-group, A, A1 be two p-nilpotent operator
groups of N with N ∩A = 1. If N oA = G = N oA1 and CN (A) = 1 =
CN (A1), then there exists n ∈ N , such that A1 = An.

Proof. We prove the lemma by induction on |G|. Obviously, we may
assume that N 6= 1.

Since A is p-nilpotent, there exists a p-subgroup Ap ∈ Sylp(A) and a
normal Hall p′-subgroup Ap′ of A such that Ap′ E A and A = ApAp′ .

Firstly, we prove that NG(Ap′) < G.
In fact, if NG(Ap′) = G, then [N, Ap′ ] ≤ N ∩ Ap′ = 1, i.e. N ≤

CG(Ap′). Now, the p-group Ap acts on the nontrivial p-subgroup N , by
the orbit formula, it is easy to see that CN (Ap) 6= 1. Hence, 1 6= CN (Ap) ≤
CN (A) = 1, a contradiction.

Denote G1 = NG(Ap′). Then G > G1 ≥ A. Let (A1)p′ be a Hall p′-
subgroup of A1. Since A ∼= G/N ∼= A1 and both of them are p-nilpotent,
we have that both Ap′ and (A1)p′ are Hall p′-subgroups of G. Hence
(A1)p′N/N = Ap′N/N / G/N , that is (A1)p′N = (A)p′N . By the Schur–
Zassenhaus Theorem [R] 9.1.2, there exists n1 ∈ N such that (A1)n

p′ = Ap′ .
It is easy to show that G1 = NG(Ap′) = NG((A1)n1

p′ ) = (NG((A1)p′))n1 ≥
An1

1 . Now Dedekind’s Law implies that G1 = G1 ∩ (NA) = (G1 ∩ N)A
and G1 = G1 ∩ (NAn1

1 ) = (G1 ∩ N)An1
1 . Since G1 < G and G1 satisfies

the hypothesis in the lemma, by induction there exists n2 ∈ N such that
An1n2

1 = A, i.e. An
1 = A where n = n1n2 ∈ N . This completes our proof.

¤
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Theorem 2.2. Let G be a finite group and suppose that G is S3-free.

Let A be an operator group of G. Suppose that A ∈ En
π(G) and A is

π-nilpotent. If CG(A) = 1, then G is soluble.

Proof. Assume that the theorem is false and choose G to be a coun-
terexample with |G|+ |A| minimal. Then

(1) For every nontrivial A-invariant proper subgroup M of G, M is
soluble and A ≤ Aut(G).

Let M < G and M is A-invariant. We have that CM (A) ≤ CG(A) = 1
and M is S3-free. Furthermore, π(M) ⊆ π(G). Since A ∈ En

π(G), by defini-
tion we have that A ∈ En

π(M). A is π-nilpotent hence A has a normal π(G)-
complement Aπ(G)′ = K. Since A has a nilpotent Hall π(G)-subgroup
Aπ(G), we have that Aπ(G) = Aπ(M) ×Aπ(G)−π(M). (Aπ(G)−π(M))K is the
normal π(M)-complement of A. Hence (M, A) satisfies the hypotheses of
(G,A). The minimal choice of G implies that M is soluble. A similar
proof yields that A ≤ Aut(G).

Now we assume that A ≤ Aut(G) and GA = G o A and we denote
π = π(G).

(2) There is no nontrivial A-invariant normal subgroup N of G.
Let N be a minimal normal A-invariant subgroup of G, by (1) N

is soluble. Therefore N is an elementary abelian p-group for a prime
p ∈ π(N). Consider G = G/N . Certainly G is S3-free, since π(G) ⊆ π(G).
The same argument as in (1) implies that A ∈ En

π(G)
and A has a normal

π(G)-complement. In order to show that (G,A) satisfies the hypotheses
of the theorem, we only need to show that CG(A) = 1̄.

Let ḡ ∈ CG(A). Then [g,A] ⊆ N . Hence, ∀x ∈ N , a ∈ A, and
we have xag = xg−1aga−1a ∈ NA, i.e. NAg ≤ NA. Since |NAg| =
|NgAg| = |NA|, we have NA = NAg. Furthermore, by hypothesis,
A = AπAπ′ Aπ′ E A and Aπ is nilpotent. Since p ∈ π(N) ⊆ π, we
have that Op′(Aπ)Aπ′ is the normal p-complement of A. It is clear that
CN (A) ≤ CG(A) = 1 and CN (Ag) = (CN (A))g = 1. Now the hypotheses
of Lemma 2.1 are satisfied for (N, A, Ag). By Lemma 2.1, there exists n ∈
N such that Ag = An, i.e. gn−1 ∈ NG(A). Hence [gn−1, A] ≤ G ∩ A = 1,
that is gn−1 ∈ CG(A) = 1. This yields that g = n ∈ N and so ḡ = 1̄.
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Now (G/N,A) satisfies the hypotheses of (G,A). The minimal choice
of G implies that G/N is soluble. Now both N and G/N are soluble and
so is G, a contradiction.

(3) G is a nonsoluble simple group.
By (2), G has no nontrivial A-invariant normal proper subgroup and

so G is characteristic simple. Since G is a nonsoluble simple group, we
have that G = G1×· · ·×Gk is a direct product of isomorphic non-abelian
simple groups. k ≥ 1, G1 is a minimal normal subgroup of G.

Now we prove that k = 1.
Suppose it is false, i.e. k > 1. Then NA(G1) = A1 < A by (1). Since

A ∈ En
π(G), the Wielandt Theorem [R] 9.1.10 yields that A ∈ Dn

π(G). A

has a normal π(G)-complement hence A1 has a normal π(G)-complement.
By the Schur–Zassenhaus Theorem [R] 9.1.2, there exists a Hall π(G)-
subgroup (A1)π(G) of A1. Since A ∈ Dn

π(G) and (A1)π(G) is nilpotent, we
have that A1 ∈ En

π(G). Now π(G1) ⊆ π(G) implies that A1 ∈ Ec
π(G1)

.
It is clear that the product of the normal π(G)-complement of A1 and
the normal π(G1)-complement of (A1)π(G) is exactly the normal π(G1)-
complement of A1. If CG1(A1) = 1, then (G1, A1) satisfies the hypothesis
of the theorem. Since k > 1, we have that G1 < G). By the minimal
choice of G we have that G1 is soluble and hence G is soluble, a con-
tradiction. Therefore CG1(A1) 6= 1. Let A = A1 + A1a2 + · · · + A1an,
{1 = a1, a2, . . . , an} be the coset transversal of A1 in A. Since Gi is a
minimal normal subgroup of G, Gai

1 = G
aj

1 if and only if ai = aj . Since
G has no nontrivial A-invariant normal proper subgroup, we have that
1 6= 〈Ga

1 : a ∈ A〉 = G. Note that each Gai
1 is a minimal normal subgroup

of G and each of them is a nonabelian simple group. By induction on n,
(see [H] Satz I.9.12), we have that G = G1×· · ·×Gk = G1×Ga2

1 ×· · ·×Gan
1 .

Hence n = k. Since CG1(A1) 6= 1, there exists 1 6= g1 ∈ CG1(A1). It is
easy to show that 1 6= g = g1g

a2
1 · · · gan

1 ∈ CG(A) = 1, in contradiction to
our hypothesis. Hence k = 1.

(4) A ≤ Out(G).
By (1), we have A ≤ Aut(G). It is a basic fact that Inn(G) E Aut(G).

By (3), G is a nonabelian simple group and so Inn(G) ∼= G/Z(G) ∼= G.
Let Ig ∈ Inn(G) with g ∈ G. By definition, ∀ x ∈ G, we have Ig : x → xg.
Let Inn(G) ∩ A = A1, then A1 E A. Since A1 is a π(G)-subgroup of A

and A ∈ En
π(G) and hence A ∈ Dn

π(G), we have that A1 ≤ Aπ(G), where
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Aπ(G) is a Hall π(G)-subgroup of A. Suppose A1 6= 1. Since A1 E A and
A has a normal π(G)-complement A(π(G))′ , we have that Z(A1)A(π(G))′ =
Z(A1) × A(π(G))′ . Since Aπ(G) is nilpotent, we have that 1 6= B1 =
A1 ∩ Z(Aπ(G)) ≤ Z(A1). It follows that B1 ≤ Z(A). Let 1 6= Ig ∈ B1

with 1 6= g ∈ G. For any h ∈ A, we have h−1Igh = Ig, that is, ∀ x ∈ G,
h−1Igh : x → (xh−1

)Igh = (g−1)xh−1
g)h = (g−1)h

xgh = xga

, i.e. Igh = Ig.
Hence g−1gh ∈ Z(G) = 1. It follows that g = gh for every h ∈ A, i.e.
1 6= g ∈ CG(A) = 1, a contradiction. Hence A ∩ Inn(G) = A1 = 1.
A ∼= A/A ∩ Inn(G) ∼= A Inn(G)/ Inn(G) ≤ Aut(G)/ Inn(G) = Out(G).

Since G is an S3-free nonabelian simple group, by a result of Glauber-

man ([Gl] Corollary 7.3) it follows that G is isomorphic to either Sz(22n+1)
or PSL(2, 32n+1).

The structure of the outer automorphism groups of the above groups
is well known. Assume that G is Sz(22n+1). By [S], Out(G) is isomorphic
to a field automorphism group F . In this case, F is cyclic. Let p be a
prime divisor of 2m + 1. If p < 2n + 1, then Sz(2p) is an A-invariant
subgroup since A ≤ F . By (1), Sz(2p) is soluble, a contradiction. Hence
2n + 1 = p is a prime. That means A is a fixed point free automorphism
group of prime order. A well known theorem of Thompson [T] implies
that G is soluble, a contradiction.

Now we assume that G is PSL(2, 32n+1). By [C] XVI, we know that
Out(G) = DF because the graph automorphism is the identity group.
Furthermore we know that |D| = 2 and |F | = 2n + 1. Hence F / DF

since F has index 2. By [G] p. 303, F normalizes D, and we have that
DF = D×F . Since the field automorphism group is a cyclic of odd order,
we have that DF is a cyclic group in this case. It follows that A is cyclic
fixed point free automorphism group of G. Refering to Rowley’s proof of
the theorem (4) [Ro], we get a contradiction. ¤

Corollary 2.3. Let G be a finite group. Let A be an operator group

of G. Suppose that CG(A) = 1 and G is S3-free. Then G is soluble

provided that one of the following conditions holds:

(a) A is nilpotent; (b) A is S3; (c) (|G|, |A|) = 1.

This corollary implies the main theorems of [P] and [W].

If we appeal to CFSG, we can use a similar proof to prove our main
theorem.
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Theorem 2.4. Let G be a finite group. Let A be an operator group

of G. Suppose that A ∈ Ec
π(G) and A is π-nilpotent. If CG(A) = 1, then

G is soluble.

Proof. Suppose that this is false and consider the counterexample
G with |G|+ |A| minimal. Then (1) to (4) of the proof of Theorem 2.2 are
valid for our proof. We have that G is a simple group with every proper
A-invariant ubgroup soluble and A ≤ Out(G). Furthermore we have that
A is cyclic.

If A(π(G))′ = 1, then A is a π-group. A ∈ Ec
π(G) implies that A is

cyclic.
Now we assume that the normal π(G)-complement A(π(G))′ of A is

not the identity group. By [G] 4.239, |Out(G)/G| ≤ 4 when G is one of
the sporadic simple groups, alternative groups or the Tits simple group.
So we know that G is not isomorphic to any of the above simple groups.
By the classification theorem of finite simple groups, we see that G is a
simple group of Chevalley type. By [G] p. 303, Out(G) ∼= DFM , where
D, F , M are the diagonal, the field and the graph automorphism of G

respectively. Since π(A(π(G))′)∩ π(G) is empty, by [C] p. XV, |Out(G)| =
dfg, f = |F |. By [C] page XVI Table 5 and Table 6, (q − 1)q(q + 1) | |G|.
Hence π(d)∪π(g) ⊆ π(G). So π(A(π(G))′) ⊆ π(F ). Since F is cyclic, there
is a Hall-π(A(π(G))′)-subgroup F1 of F . By our hypothesis, F1 is also a
Hall-π(A(π(G))′)-subgroup of Out(G). By Wielandt’s Theorem [R] 9.1.10,
Ax

(π(G))′ ≤ F1 for some x ∈ Out(G). Without loss of generality, we can
assume that A(π(G))′ ∈ F1 ≤ F . (We refer to the proof of [W-C] Theorem 2
(2).) Let 1 6= 〈α〉 = A(π(G))′ . Take a prime order element β of 〈α〉, say
|β| = p. Since 1 6= 〈β〉 char〈α〉 = A(π(G))′ E A, CG(β) is an A-invariant
proper subgroup of G. By (1), CG(β) is soluble. By [G-L] 1.2 (5), G is
isomorphic to one of the following simple groups: A1(2p), A1(3p), 2A2(2),
p 6= 2, 3, a prime, or 2B(2p), p 6= 2, 5, a prime.

Now we see that A(π(G))′ is a cyclic group of order p. By [C] p. XVI
Table 5 and Table 6, d = g = 1 when G is A1(2p) or Sz(2p) = 2B(2p).
In these cases, 1 < |A| ≤ |Out(G)| = p is cyclic. If G = A1(3p), then
g = 1, d = 2, f = p. Since Aπ′ 6= 1, p /∈ π(G), |Aπ(G)| = 1 or 2. If
|Aπ(G)| = 2, then Aπ(G) = D. By [G] p. 303, A(π(G))′ normalizes D.
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Hence A = Aπ(G)A(π(G))′ = Aπ(G) ×A(π(G))′ is a cyclic group of order 2p.
If |Aπ(G)| = 1, then A is a cyclic group of order p.

Now the only case left is G = 2A2(2p). In this case, d = 3 or 1
and f = 2p. If d = 1 then A is cyclic so we assume that d = 3. Since
{2, 3} ⊂ π(G) in this case, we know that p 6= 2, 3. By [G] p. 303, D is
normalized by F and hence D is the unique nontrivial 3-subgroup of DF .
If 3 /∈ π(A), then A ≤ F by conjugation and hence A is cyclic. Now assume
that 3 ∈ π(A) and hence D / A. Since A has normal π(G)-complement
and cyclic π(G)-subgroup, we have that A(π(G))′ commutes elementwise
with D and F , and hence A = Aπ(G)A(π(G))′ = Aπ(G)×A(π(G))′ is a cyclic
group.

Now by the same proofs of Rowley [Ro] it follows that G is soluble
and the final contradiction completes our proof. ¤

According to the proof of Theoremes 2.2 and 2.4, we would like to
pose the following

Conjecture. Let G be a finite group. Let A be an operator group

of G with CG(A) = 1. Suppose that A ∈ En
π(G) and A is π(G)-nilpotent.

Then G is soluble.

Remark 2. We have an example to show that the hypothesis of A ∈
En

π(G) is necessary. Let A5 = G and A3 = A. Consider A acts on G by
conjugate. Then we have that CG(A) = 1 but G is non-abelian simple.
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