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Solubility of finite groups admitting
a fixed-point-free operator group

By YANMING WANG (Guangzhou) and SULING PANG (Guangzhou)

Abstract. The main purpose of this paper is to prove the following result: Let
G be an S3-free finite group. Let A be an operator group of G. Denote 7 = #(G).
Suppose that A € E and A is w-nilpotent. If Cg(A) =1, then G is soluble. With the
help of CFSG we also prove a result enabling us to drop the S3-free assumption and to
replace A € E! by A € ES. This result may be viewed as a unified generalization of two
well-known theorems on fixed-point-free automorphism groups which are consequences
of the classification theorem of finite simple groups.

§1. Introduction

It is of considerable interest to investigate the solubility of a finite
group G which admits a fixed-point-free automorphism group A. When
A is cyclic or (|G|, |A|) = 1, people have given a positive answer by using
the classification theorem of finite simple groups. (Refer to [W-C] and
[G].) In [G], Gorenstein stated without proof that, as a consequence of
the classification theorem of finite simple groups, a finite group with a
fixed-point-free automorphism is soluble. Recently ROWLEY gave a short
proof to confirm the result [Ro]. In fact, by using CFSG, people can ask
more general questiones. In [W-C|, we proved that fixed-point-freeness is
too strong a restriction. What we have obtained shows that if G admits a
coprime order operator group with fixed point subgroup S3, A4 and Sz(2)
free (i.e. no subgroup of its quotient group isomorphic to these groups),

Mathematics Subject Classification: 20D15, 20D45.

Key words and phrases: solvable group, fixed-point-free, automorphism group.

The authors was supported in part by the NSF of Guangdong, Fund of the Eduacation
Ministry and Advanced Center of ZSU.



430 Y. Wang and S. Pang

then G is soluble. In particular, if the fixed point subgroup C¢(A) is either
nilpotent or is of odd order then G is soluble. The result is best possible
since we can find simple groups which admit a coprime order operator
group with fixed point subgroup isomorphic to each of these 3 groups.
Recently BELTRAN gave another proof for the case in which Cg(A) is
nilpotent [B]. However, the cyclic case has no significant improvement. The
restriction of “fixed-point-freeness” plays an essential role in the induction
of ROWLEY’s recent proof [Ro]. Meanwhile some people also try to drop, or
at least modify, the hypotheses of coprime order or cyclicity to get similar
results in more general cases [P].

All the groups in this paper are finite. The symbols and terms are
standard (refer to [H] or [R]).

We denote by 7(G) the set of prime divisors of |G]|.

We write G € E if there exists a Hall m-subgroup of G, G € C; if any
two Hall m-subgroups of GG are conjugate in G; G € D, if every m-subgroup
of G is contained in a a given Hall m-subgroup of G up to conjugation, i.e.
G € C, and every m-subgroup of G contained in some Hall 7w-subgroup
of G.

We write G € E? if G has a nilpotent Hall 7m-subgroup; G € EY if G
has a cyclic Hall w-subgroup.

In this paper, we consider the following more general.

Hypothesis (x). Let G be a finite group. Let A be an operator group
of G with Cg(A) = 1. Denote m = 7(G). Suppose that A € ES and A is
m-nilpotent.

Our purpose is to prove the following

Theorem (Theorem 2.4). If (G, A) satisfies the hypothesis (%), then
G is soluble.

Remark 1. The following two important special examples which sat-
isfy hypothesis () are of special interest for many scholars.

(1) A is cyclic (with natural m-Hall subgroup and normal comple-
ment);

(2) |G|, |A|) =1 (with identity Hall 7(G)-subgroup).

Hence, the hypothesis (%) may be viewed as a natural and unified
generalization of these two special cases.
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Our main theorem is a consequence of the classification theorem of
finite simple groups.

Without CFSG, we use Glauberman’s result on S3-free simple groups
to give a generalization of Parrott’s main theorem and we try to get best
possible hypotheses on the operator group. From our proof, it is reasonable
to conjecture that we may replace A € EY ., by A € E" o The main idea
in this paper is to find suitable hypotheses which allow us to use induction
and to reduce the operator group to the easy case of automorphism of a
simple group. It seems that the 7(G)-part of A plays the most important
role in controlling the solubility of the groups.

§2. Theorems and proofs

Lemma 2.1. Let N be a p-group, A, A; be two p-nilpotent operator
groups of N with NNA=1. If NxA=G=NxA; and Cy(A)=1=
Cn (A1), then there exists n € N, such that A; = A™.

PROOF. We prove the lemma by induction on |G|. Obviously, we may
assume that N # 1.

Since A is p-nilpotent, there exists a p-subgroup A, € Syl,(A) and a
normal Hall p’-subgroup A, of A such that A,y < Aand A= A,A,.

Firstly, we prove that Ng(4,) < G.

In fact, if Ng(4,) = G, then [NJAy] < NNAy =1, ie N <
Ca(Ay). Now, the p-group A, acts on the nontrivial p-subgroup N, by
the orbit formula, it is easy to see that Cn(A,) # 1. Hence, 1 # Cn(A,) <
Cn(A) =1, a contradiction.

Denote G1 = Ng(A,). Then G > G; > A. Let (A1), be a Hall p’-
subgroup of A;. Since A =2 G/N = A; and both of them are p-nilpotent,
we have that both A, and (A;), are Hall p’-subgroups of G. Hence
(Al)p/N/N = Ap/N/N<1 G/N, that is (Al)p/N = (A)p/N By the Schur—
Zassenhaus Theorem [R] 9.1.2, there exists nq € N such that (A1), = Ap.
It is easy to show that G1 = Ng(4y) = No((41),') = (Na((A1)p))™ >
AT'. Now Dedekind’s Law implies that G; = G1 N (NA) = (G1 N N)A
and Gi3 = G1 N (NAT') = (G1 N N)AT'. Since G; < G and G, satisfies
the hypothesis in the lemma, by induction there exists no € N such that
A" = A, ie. A} = A where n = niny € N. This completes our proof.

O
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Theorem 2.2. Let G be a finite group and suppose that G is Ss-free.
Let A be an operator group of G. Suppose that A € EQ(G) and A is
m-nilpotent. If Cg(A) = 1, then G is soluble.

PRrROOF. Assume that the theorem is false and choose G to be a coun-
terexample with |G| + |A| minimal. Then

(1) For every nontrivial A-invariant proper subgroup M of G, M is
soluble and A < Aut(G).

Let M < G and M is A-invariant. We have that Cps(4) < Cg(4) =1
and M is Ss-free. Furthermore, 7(M) C 7(G). Since A € E , by defini-
tion we have that A € E;l( M) A is w-nilpotent hence A has a normal 7(G)-
complement A,y = K. Since A has a nilpotent Hall 7(G)-subgroup
Ar(a), we have that Arq) = Az X Ar@)—rr)- (Ar(@)—=()) K is the
normal (M )-complement of A. Hence (M, A) satisfies the hypotheses of
(G, A). The minimal choice of G implies that M is soluble. A similar
proof yields that A < Aut(G).

Now we assume that A < Aut(G) and GA = G x A and we denote
m =m(G).

(2) There is no nontrivial A-invariant normal subgroup N of G.

Let N be a minimal normal A-invariant subgroup of G, by (1) N
is soluble. Therefore N is an elementary abelian p-group for a prime
p € m(N). Consider G = G/N. Certainly G is Ss-free, since 7(G) C 7(G).
The same argument as in (1) implies that A € E

7(G)-complement. In order to show that (G, A)W(silisﬁes the hypotheses
of the theorem, we only need to show that Cz(A) = 1.

Let g € Cz(A). Then [g,A] C N. Hence, YV € N, a € A, and
we have ra? = xg~laga™'a € NA, ie. NAY < NA. Since |[NAY| =
IN9AY9| = |NA|, we have NA = NAY9. Furthermore, by hypothesis,
A= A;Ay Ay < A and A, is nilpotent. Since p € 7(N) C 7, we
have that O,/ (Ax)A is the normal p-complement of A. It is clear that
Cn(A) < Cg(A) =1 and Cy(A9) = (Cn(A))Y = 1. Now the hypotheses
of Lemma 2.1 are satisfied for (N, A, A9). By Lemma 2.1, there exists n €
N such that A9 = A", i.e. gn~! € Ng(A). Hence [gn™ 1, A] < GNA=1,
that is gn~! € Cg(A) = 1. This yields that g=n € N and so g = 1.

and A has a normal
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Now (G/N, A) satisfies the hypotheses of (G, A). The minimal choice
of G implies that G/N is soluble. Now both N and G/N are soluble and
so is GG, a contradiction.

(3) G is a nonsoluble simple group.

By (2), G has no nontrivial A-invariant normal proper subgroup and
so (G is characteristic simple. Since G is a nonsoluble simple group, we
have that G = G1 X - -- X GG, is a direct product of isomorphic non-abelian
simple groups. £ > 1, G; is a minimal normal subgroup of G.

Now we prove that £k = 1.

Suppose it is false, i.e. K > 1. Then Nao(G1) = A; < A by (1). Since
A € E7 ), the Wielandt Theorem [R] 9.1.10 yields that A € D7 ). A
has a normal 7(G)-complement hence A; has a normal 7(G)-complement.
By the Schur-Zassenhaus Theorem [R] 9.1.2, there exists a Hall n(G)-
subgroup (A1) of A;. Since A € D;l(G) and (A1) () is nilpotent, we
have that 4; € E;L(G). Now 7(G1) C 7(G) implies that 4; € E7Cr(G1)‘
It is clear that the product of the normal m(G)-complement of A; and
the normal 7(G1)-complement of (A1)r () is exactly the normal 7(G1)-
complement of A;. If Cg, (A1) = 1, then (G, A;) satisfies the hypothesis
of the theorem. Since k& > 1, we have that G; < G). By the minimal
choice of G we have that (G; is soluble and hence G is soluble, a con-
tradiction. Therefore Cg, (A1) # 1. Let A = Ay + Ajas + -+ + Ajay,
{1 = ay,a2,...,a,} be the coset transversal of A; in A. Since G; is a
minimal normal subgroup of G, G}* = G{’ if and only if a; = aj. Since
G has no nontrivial A-invariant normal proper subgroup, we have that
1# (G :a € A) = G. Note that each G{* is a minimal normal subgroup
of G and each of them is a nonabelian simple group. By induction on n,
(see [H] Satz 1.9.12), we have that G = Gy X+ - X G, = G1 X G2 x-- - xG{".
Hence n = k. Since Cg, (A1) # 1, there exists 1 # ¢1 € Cg,(A1). It is
easy to show that 1 # g = g197? --- g1 € Cg(A) = 1, in contradiction to
our hypothesis. Hence k& = 1.

(4) A < Out(G).

By (1), we have A < Aut(G). It is a basic fact that Inn(G) < Aut(G).
By (3), G is a nonabelian simple group and so Inn(G) = G/Z(G) = G.
Let I, € Inn(G) with g € G. By definition, V « € G, we have I :  — 9.
Let Inn(G) N A = Ay, then A; < A. Since A; is a w(G)-subgroup of A
and A € E:(G) and hence A € D;‘(G), we have that Ay < A (g), where
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Ar () is a Hall 7(G)-subgroup of A. Suppose A; # 1. Since A; < A and
A has a normal 7(G)-complement A (), we have that Z(A1) A (q))y =
Z(A1) X Aza)y- Since Ar(G) is nilpotent, we have that 1 # B; =
A1 NZ(A-(G)) < Z(Ay). It follows that By < Z(A). Let 1 # I, € By
with 1 # g € G. For any h € A, we have h™'I,h = I, that is, V z € G,
h=*I,h: 2z — (xhil)lgh = (g7 )z g)h = (g_l)hxgh =29 e Iy =1,
Hence g~ 'g" € Z(G) = 1. It follows that g = ¢" for every h € A, i..
1 # g € Cqg(A) = 1, a contradiction. Hence A N Inn(G) = A; = 1.
A= A/ANInn(G) = Alnn(G)/ Inn(G) < Aut(G)/Inn(G) = Out(G).
Since G is an Ss-free nonabelian simple group, by a result of GLAUBER-

MAN ([G]] Corollary 7.3) it follows that G is isomorphic to either S, (227+1)
or PSL(2,3%*1).

The structure of the outer automorphism groups of the above groups
is well known. Assume that G is S, (22"*1). By [S], Out(G) is isomorphic
to a field automorphism group F. In this case, F is cyclic. Let p be a
prime divisor of 2m + 1. If p < 2n + 1, then S,(2P) is an A-invariant
subgroup since A < F. By (1), S,(2P) is soluble, a contradiction. Hence
2n + 1 = p is a prime. That means A is a fixed point free automorphism
group of prime order. A well known theorem of THOMPSON [T] implies
that G is soluble, a contradiction.

Now we assume that G is PSL(2,3?"*1). By [C] XVI, we know that
Out(G) = DF because the graph automorphism is the identity group.
Furthermore we know that |D| = 2 and |F| = 2n + 1. Hence F < DF
since F' has index 2. By [G] p. 303, F' normalizes D, and we have that
DF = D x F'. Since the field automorphism group is a cyclic of odd order,
we have that DF is a cyclic group in this case. It follows that A is cyclic
fixed point free automorphism group of G. Refering to Rowley’s proof of
the theorem (4) [Ro], we get a contradiction. O

Corollary 2.3. Let G be a finite group. Let A be an operator group
of G. Suppose that Cg(A) = 1 and G is Ss-free. Then G is soluble
provided that one of the following conditions holds:

(a) A is nilpotent; (b) Ais S3; (c) (|G|, |A]) = 1.
This corollary implies the main theorems of [P] and [W].

If we appeal to CFSG, we can use a similar proof to prove our main
theorem.
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Theorem 2.4. Let G be a finite group. Let A be an operator group
of G. Suppose that A € EfT(G) and A is m-nilpotent. If Cc(A) = 1, then
G is soluble.

PROOF. Suppose that this is false and consider the counterexample
G with |G|+ |A| minimal. Then (1) to (4) of the proof of Theorem 2.2 are
valid for our proof. We have that G is a simple group with every proper
A-invariant ubgroup soluble and A < Out(G). Furthermore we have that
A is cyclic.

If Aqz@)) = 1, then A is a m-group. A € Eﬁ(G) implies that A is
cyclic.

Now we assume that the normal m(G)-complement A(r(g)) of A is
not the identity group. By [G] 4.239, | Out(G)/G| < 4 when G is one of
the sporadic simple groups, alternative groups or the Tits simple group.
So we know that G is not isomorphic to any of the above simple groups.
By the classification theorem of finite simple groups, we see that G is a
simple group of Chevalley type. By [G] p. 303, Out(G) = DF M, where
D, F, M are the diagonal, the field and the graph automorphism of G
respectively. Since m(A )y ) N7(G) is empty, by [C] p. XV, |Out(G)| =
dfg, f = |F|. By [C] page XVI Table 5 and Table 6, (¢ — 1)q(¢+ 1) | |G|.
Hence 7(d)Un(g) € 7(G). So m(A(r(c)y) € 7(F). Since F is cyclic, there
is a Hall-m(A(r(q)) )-subgroup Fi of F. By our hypothesis, F} is also a
Hall-7 (A (x(c)))-subgroup of Out(G). By Wielandt’s Theorem [R] 9.1.10,
AZ”W(G)), < Fy for some x € Out(G). Without loss of generality, we can
assume that Arq))y € F1 < F. (Werefer to the proof of [W-C] Theorem 2
(2).) Let 1 # (@) = A(x(e)y- Take a prime order element 3 of (a), say
|B] = p. Since 1 # (B) char(a) = Ar(q)y I A, Cq(B) is an A-invariant
proper subgroup of G. By (1), Cg(8) is soluble. By [G-L] 1.2 (5), G is
isomorphic to one of the following simple groups: A;(2P), A;(37), 2A5(2),
p # 2,3, a prime, or 2B(2P), p # 2,5, a prime.

Now we see that A(r(g))y is a cyclic group of order p. By [C] p. XVI
Table 5 and Table 6, d = g = 1 when G is A;(2P) or S.(2P) = 2B(2P).
In these cases, 1 < |A] < |Out(G)| = p is cyclic. If G = A;(3?), then
g=1d=2,f=p Since A # 1, p & 7(G), |[Ar)| = 1 or 2. If
| Az = 2, then Ay = D. By [G] p. 303, A(x(g)y normalizes D.
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Hence A = Ar@)Ar(a))y = Ax(a) X A(x(a)y is a cyclic group of order 2p.
If |Are)| =1, then A is a cyclic group of order p.

Now the only case left is G = 2A5(2P). In this case, d = 3 or 1
and f = 2p. If d = 1 then A is cyclic so we assume that d = 3. Since
{2,3} € 7(G) in this case, we know that p # 2,3. By [G] p. 303, D is
normalized by F' and hence D is the unique nontrivial 3-subgroup of DF'.
If 3 ¢ m(A), then A < F' by conjugation and hence A is cyclic. Now assume
that 3 € m(A) and hence D < A. Since A has normal 7(G)-complement
and cyclic 7(G)-subgroup, we have that A(r(c)) commutes elementwise
with D and F', and hence A = Ao\ Ax(q))y = Ar@) X A=(a)) is a cyclic
group.

Now by the same proofs of ROWLEY [Ro] it follows that G is soluble
and the final contradiction completes our proof. O

According to the proof of Theoremes 2.2 and 2.4, we would like to
pose the following

Conjecture. Let G be a finite group. Let A be an operator group
of G with Cg(A) = 1. Suppose that A € EZ o, and A is n(G)-nilpotent.
Then G is soluble.

Remark 2. We have an example to show that the hypothesis of A €
EQ(G) is necessary. Let A5 = G and A3 = A. Consider A acts on G by
conjugate. Then we have that Co(A) = 1 but G is non-abelian simple.
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