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Common fixed point theorems
for single-valued and multi-valued mappings

By ZEQING LIU (Liaoning), YUGUANG XU (Yunnan)

and YEOL JE CHO (Chinju)

Abstract. In this paper, we prove some common fixed point theorems for single-
valued and multi-valued mappings which extend, improve and unify a multitude of the
corresponding results by Fisher [1]–[10], Fisher and Sessa [11], Jungck [12], Kim,
Kim, Leem and Ume [14], Liu [15], Ohta and Nikaido [16] and others. At the same
time, we correct errors for the results in [14], [16] and [18].

1. Introduction

Let (X, d) be a metric space and f , g be selfmappings of X. Let
W and N denote the sets of nonnegative integers and positive integers,
respectively. For x, y ∈ X and A, B ⊂ X, we define some notations as
follows:

Of (x) = {fnx : n ∈ W}, Of (x, y) = Of (x) ∪Of (y),

Of,g(x) = {fngmx : n, m ∈ W}, Of,g(x, y) = Of,g(x) ∪Of,g(y),

D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B},
δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B}, δ(A,A) = δ(A),

H(A,B) = max
{
sup{D(a, B) : a ∈ A}, sup{D(A, b) : b ∈ B}},
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CB(X) = {A : A is a nonempty bounded closed subset of X},
CL(X) = {A : A is a nonempty closed subset of X},
B(X) = {A : A is a nonempty bounded subset of X},

Cf = {h : h : X → X is a mapping satisfying hf = fh},

Hf =
{

h : h : X → X is a mapping satisfying

h
( ⋂

n∈N

fn(X)
)
⊂

⋂

n∈N

fn(X)
}

.

The mapping f is called a closed mapping if y = fx whenever {xn}n∈N ⊂
X such that limn→∞ xn = x and limn→∞ fxn = y for some x, y ∈ X. For
each t ∈ [0,+∞), [t] denotes the largest integers not exceeding t. Let

Φ = {φ : φ : [0, +∞) → [0, +∞) is upper semicontinuous
and nondecreasing and φ(t) < t for t > 0}.

A number of generalizations of the well-known Banach contraction princi-
ple have received much attention in recent years. For instance, see [1]–[22].
Kim, Kim, Leem and Ume [14] considered the following conditions:
(1.1) there exists m, n ∈ N and r ∈ [0, 1) such that, for every x, y ∈ X,

d((fg)mx, (fg)ny) ≤ rδ(Of,g(x, y)),

(1.2) there exists m, n ∈ W such that, for any distinct x, y ∈ X,

d((fg)mx, (fg)ny) < δ(Of,g(x, y)),

and established two common fixed point theorems. Rehman and Ah-
mad [18] extended the principle to multivalued mappings.

In this paper, we consider the following more general conditions (1.3)
and (1.4) instead of (1.1) and (1.2), respectively:
(1.3) there exists m, n, p, q ∈ N and φ ∈ Φ such that, for any x, y ∈ X,

d(fmgnx, fpgqy) ≤ φ(δ(Of,g(x, y))),

(1.4) there exists m,n, p, q ∈ W with m + p, n + q ∈ N such that, for any
x, y ∈ X with fmgnx 6= fpgqy,

d(fmgnx, fpgqy) < δ

( ⋃

h∈Hfg

h(Of,g(x, y))
)

,
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and obtain common fixed point theorems. On the other hand, we point out
that Theorem 2.4 of [14] is false and all the results of [18] are meaningless.

Lemma 1.1 [20]. Let φ ∈ Φ. Then, for every t > 0, φ(t) < t if and

only if limn→∞ φn(t) = 0, where φn denotes the composition of φ with

itself n times.

Lemma 1.2. Let f be a closed mapping from a compact metric space

(X, d) into itself and A =
⋂

n∈N fn(X). Then

(i) {fn : n ∈ W} ⊂ Cf ⊂ Hf ;

(ii) A is a nonempty compact subset of X;

(iii) A = f(A);

(iv) δ(fnX) ↓ δ(A) as n →∞.

Proof. Let g be in Cf . Then

g(A) = g
( ⋂

n∈N

fn(X)
)
⊂

⋂

n∈N

gfn(X) ⊂
⋂

n∈N

fn(X) = A,

which implies that g ∈Hf and so Cf ⊂Hf . Obviously {fn : n∈W} ⊂ Cf .
Assume that {xn}n∈N is a sequence in X with limn→∞ fxn = a ∈ X.

The compactness of X ensures that there exists a subsequence {xnk
}k∈N

such that limk→∞ xnk
= t ∈ X and so the closedness of f implies that

a = ft. Thus f(X) is a closed subset of X. Since X is compact, so
is f(X). Similarly, we infer that fn(X) is compact for any n ≥ 2. It
is easy to see that A is a nonempty compact subset of X. It follows
from (i) that f(A) ⊂ A. Conversely, for any a ∈ A and n ∈ N , there
exists an ∈ fn−1(X) with fan = a. From the compactness of X, we may
(by selecting a subsequence, if necessary) assume that limn→∞ an = t ∈
X. In view of {ak}k≥n+1 ⊂ fn(X) and the compactness of fn(X), we
immediately conclude that t ∈ fn(X) for all n ∈ N . That is, t ∈ A.
Since ft = a, then A ⊂ f(A). Therefore, we have A = f(A). Since
{δ(fn(X))}n∈N is nonincreasing and bounded in below, {δ(fn(X))}n∈N

is convergent. By the compactness of fn(X), there exist xn, yn ∈ fn(X)
such that d(xn, yn) = δ(fn(X)). Of course, we may extract subsequences
{xnk

}k∈N , {ynk
}k∈N of {xn}, {yn} such that xnk

→ x, ynk
→ y as k →∞,

respectively. Note that xni , yni ∈ fnk(X) and that fnk(X) is closed for
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i ≥ k ≥ 1. This implies that x, y ∈ fnk(X) for k ∈ N . Consequently,
x, y ∈ ⋂

k∈N fnk(X) = A. It follows that

δ(A) ≤ lim
k→∞

δ(fnk(X)) = lim
k→∞

d(xnk
, ynk

) = d(x, y) ≤ δ(A),

which implies that

δ(A) = lim
k→∞

δ(fnk(X)) = lim
n→∞

δ(fn(X)).

This completes the proof. ¤

2. Common fixed point theorems for single-valued mappings

Now, we give some common fixed point theorems for commuting
single-valued mappings.

Theorem 2.1. Let f , g be commuting mappings from a complete

metric space (X, d) into itself and fg be closed. Assume that Of,g(x) is

bounded for all x ∈ X and (1.3) holds. Then f and g have a unique

common fixed point w ∈ X and limi→∞(fg)ifagbx = w for all x ∈ X and

a, b ∈ {0, 1}. Moreover,

max{d((fg)ifagbx,w) : a, b ∈ {0, 1}} ≤ φ[ i
k ](δ(Of,g(x)))

for all i ∈ N , where k = max{m,n, p, q}.

Proof. For any i, j, s, t, h ∈ W , it follows from (1.3) that

d(f i+k+sgi+k+tx, f i+k+jgi+k+hx)

≤ φ(δ(Of,g(f i+k−m+sgi+k−n+tx, f i+k−p+jgi+k−q+hx)))

≤ φ(δ(Of,g(f i+sgi+tx, f i+jgi+hx)))

≤ φ(δ(Of,g((fg)ix))),

which implies that

(2.1) δ(Of,g((fg)i+kx)) ≤ φ(δ(Of,g((fg)ix)))
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for all i ∈ W . We now write i = sk + t for some s, t ∈ W with t ≤ k − 1.
(2.1) ensures that

δ(Of,g((fg)ix)) ≤ φ(δ(Of,g((fg)(s−1)k+tx)))(2.2)

≤ φ2(δ(Of,g((fg)(s−2)k+tx)))

≤ · · ·
≤ φs(δ(Of,g((fg)tx)))

≤ φs(δ(Of,g(x))).

It follows from Lemma 1.1 and the boundedness of Of,g(x) and (2.2) that

(2.3) lim
i→∞

δ(Of,g((fg)ix))) = 0,

which means that {(fg)ix}i∈N is a Cauchy sequence in X. By complete-
ness of X, there exists w ∈ X such that limi→∞(fg)ix = w. Note that

d((fg)ifagbx,w) ≤ d((fg)ifagbx, (fg)ix) + d((fg)ix,w)

≤ δ(Of,g((fg)ix)) + d((fg)ix,w)

for a, b∈{0, 1}. By (2.3) we have lim
i→∞

d((fg)ifagbx,w)= 0 for a, b∈{0, 1}.
This implies that

(2.4) w = lim
i→∞

(fg)ix = lim
i→∞

fg(fg)ix.

Since fg is closed, we have w = fgw. For any i, j, s, t ∈ W , by (1.3), we
have

d(f igjw, fsgtw) = d(f i+kgj+kw, fs+kgt+kw)

≤ φ(δ(Of,g(f igjw, fsgtw)))

≤ φ(δ(Of,g(w))),

which means that
δ(Of,g(w)) ≤ φ(δ(Of,g(w))).

From Lemma 1.1, we easily infer that δ(Of,g(w)) = 0. Therefore w =
fw = gw, that is, the point w is a common fixed point of f and g. The
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uniqueness of the common fixed point w of f and g follows immediately
from (1.3). For any p ∈ W and i ∈ N , by (2.2), we have

max{d((fg)ifagbx, (fg)i+px) : a, b ∈ {0, 1}}(2.5)

≤ δ(Of,g((fg)ix)) ≤ φ[ i
k ](δ(Of,g(x))).

Letting p tend to infinity in (2.5), by (2.4), we have

max{d((fg)ifagbx,w) : a, b ∈ {0, 1}} ≤ φ[ i
k ](δ(Of,g(x))).

This completes the proof. ¤

Taking φ(t) = rt in Theorem 2.1, we obtain the following:

Corollary 2.2. Let f , g be commuting mappings from a complete

metric sapce (X, d) into itself and fg be closed. Assume that Of,g(x) is

bounded for all x ∈ X and that there exist m,n, p, q ∈ N and r ∈ [0, 1)
such that

(2.6) d(fmgnx, fpgqy) ≤ rδ(Of,g(x, y))

for all x, y ∈ X. Then f and g have a unique common fixed point w ∈ X

and limi→∞(fg)ifagbx = w for all x ∈ X and a, b ∈ {0, 1}. Moreover,

max{d((fg)ifagbx,w) : a, b ∈ {0, 1}} ≤ r[ i
k ]δ(Of,g(x))

for all i ∈ N , where k = max{m,n, p, q}.

Remark 2.1. Corollary 2.1 with m = n and p = q extends, improves
and unifies Theorem 1 of [8], Theorem 3 of [16] and Theorem 2.1 of [14].

Kim, Kim, Leem and Ume [14] and Ohta and Nikaido [16] proved
the following theorems, respectively:

Theorem KKLU. Let f , g be commuting mappings from a compact

metric space (X, d) into itself and fg be closed. If (1.2) holds, then f and

g have a unique common fixed point w ∈ X and limi→∞(fg)ix = w for all

x ∈ X.
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Theorem ON. Let f be a continuous mappings from a compact met-

ric space (X, d) into itself. Assume that there exists k ∈ W such that

(2.7) d(fkx, fky) < δ(Of (x, y))

for all distinct x, y ∈ X. Then f has a unique fixed point w ∈ X and

limn→∞ fnx = w for all x ∈ X.

First we show, by an example, that (1.2) is not sufficient for the
conclusions of Theorem KKLU.

Example 2.1. Let X = {0, 1} with the usual metric d. Define f, g :
X → X by f(0) = g(1) = 1 and f(1) = g(0) = 0. Then (X, d) is a
compact metric space, f is continuous and fg = gf = f . The continuity
of f ensures that f is closed. Taking m = 1 and n = 2, then we have

d(fgx, (fg)2y) = 0 < 1 = δ(Of,g(x, y))

for all distinct x, y ∈ X. Thus all the conditions of Theorem KKLU are
satisfied. But f and g have no common fixed point in X.

Next we point out that Theorem ON is meaningless for k = 0. Sup-
pose that δ(X) > 0. Since X is compact, there exist x, y ∈ X with
δ(X) = d(x, y). For k = 0, by (2.7), we have

δ(X) = d(x, y) < δ(Of,g(x, y)) ≤ δ(X),

which is a contradiction. Thus X is a singleton for k = 0.

Now we establish the following result which is a correction of Theorem
KKLU and Theorem ON.

Theorem 2.3. Let f , g be commuting mappings from a compact met-

ric space (X, d) into itself and gf be closed. If (1.4) holds, then f and g

have a unique common fixed point w ∈ X, which is also a unique common

fixed point of Hfg. Moreover, limi→∞(fg)ifagbx = w for all x ∈ X and

a, b ∈ {0, 1}.
Proof. Let A =

⋂
i∈N (fg)i(X). It follows from Lemma 1.2 that

A is a nonempty compact subset of X and tht fg(A) = A. In virtue of
f(A) ⊂ A and g(A) ⊂ A, we have A = fg(A) = gf(A) ⊂ g(A) ⊂ A and
so A = g(A). Similarly A = f(A). Thus fmgn(A) = A = fpgq(A). We
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claim that A is a singleton. If not, then δ(A) > 0. Obviously there exist
a, b, x, y ∈ A with δ(A) = d(a, b), a = fmgnx and b = fpgqy. Using (1.4)
and Lemma 1.2, we obtain

δ(A) = d(fmgnx, fpgqy) < δ

( ⋃

h∈Hfg

h(Of,g(x, y))

)

≤ δ

( ⋃

h∈Hfg

h(A)

)
≤ δ(A),

which is a contradiction. Hence A = {w} for some w ∈ X and fw =
gw = w. Suppose that u is also a common fixed point of f and g. Then
u = (fg)nu for all n ∈ N and hence u ∈ A = {w}, which means that
u = w, that is, w is a unique common fixed point of f and g. It is easy to
verify that w is a unique common fixed point of Hfg. Moreover, Lemma 1.2
ensures that

d((fg)ifagbx,w) ≤ δ((fg)iX) → δ(A) = 0 as i →∞,

where a, b ∈ {0, 1}. Consequently, limi→∞(fg)ifagbx = w for a, b ∈ {0, 1}.
This completes the proof. ¤

From Lemma 1.2 and Theorem 2.3, we have the following:

Corollary 2.4. Let f , g be commuting mappings from a compact
metric space (X, d) into itself and gf be closed. Assume that there exist
m,n, p, q ∈ W , m + p, n + q ∈ N such that

(2.8) d(fmgnx, fpgqy) < δ

( ⋃

h∈Cfg

h(Of,g(x, y))

)

for all x, y ∈ X with fmgnx 6= fpgqy. Then f and g have a unique
common fixed point w ∈ X, which is also a unique common fixed point of
Cfg. Moreover, limi→∞(fg)ifagbx = w for all x ∈ X and a, b ∈ {0, 1}.

Remark 2.2. Corollary 2.4 extends, improves and unifies Theorem 6
of [1], Theorem 4 of [2], Theorem 4 of [3], Theorem 9 of [4], Theorem 2 of [5],
Theorem 4 of [7], Theorem 5 of [9], Theorem 2 of [10] and Theorem 4.2
of [12].

We provide some examples to demonstrate that the hypotheses of
Theorems 2.1 and 2.3, Corollaries 2.2 and 2.4 are necessary.
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Example 2.2. Let X = [1, +∞) with the usual metric d. Define map-
pings f, g : X → X by fx = 2x and gx = 3x for all x ∈ X, respectively.
Then (X, d) is a complete metric space, fg = gf and fg is closed. Further-
more, (1.3) and (2.6) are satisfied with m = p = 1, n = q = 2, φ(t) = 1

2 t
and r = 1

2 . All of the conditions of Theorem 2.1 and Corollary 2.2 are
satisfied except for the boundedness assumption, but f and g have no
common fixed point in X.

Example 2.3. Let X = [0, 1] with the usual metric d. Define mappings
f, g : X → X by fx = 1

4 (x3 + 3) and gx = (1 − x)
1
3 for all x ∈ X,

respectively. Then (X, d) is a compact metric space, fgx = 1
4 (4 − x) is

closed and fg(1) = 3
4 6= 0 = gf(1). Take m = n = p = q = 1, φ(t) = 1

2 t
and r = 1

2 . It is easy to verify that f and g satisfy the following:

d(fmgnx, fpgqy) =
1
4
|x− y| ≤ 1

2
|x− y| ≤ φ(δ(Of,g(x, y)))

for all x, y ∈ X and

d(fmgnx, fpgqy) =
1
4
|x− y| < 1

2
|x− y| ≤ δ(Of,g(x, y))

for all x, y ∈ X with fmgnx 6= fpgqy. Thus, the conditions of Theorems 2.1
and 2.3, Corollaries 2.2 and 2.4 are satisfied except for the commutativity
assumption. But f and g however have no common fixed point in X.

Example 2.4. Let X = [0, 1] with the usual metric d. Define mappings
f, g : X → X by f(0) = 1, fx = 1

3x for x ∈ (0, 1] and g = f2. Then f
and g are commuting and (X, d) is a compact metric space. Take m =
n = p = q = 1, φ(t) = 1

2 t and r = 1
2 . Since limi→∞ 1

i = limi→∞ 1
27i =

limi→∞ fg(1
i ) = 0 and 0 6= 1

9 = fg(0), so fg is not closed. For x, y ∈ (0, 1],
we have

d(fgx, fgy) =
1
27
|x− y| ≤ 1

6
|x− y| ≤ 1

2
δ(Of,g(x, y)).

For x = 0, y ∈ [0, 1], we have

d(fgx, fgy) ≤ 1
9

∣∣∣∣1−
1
3
y

∣∣∣∣ <
1
2

=
1
2
δ(Of,g(x, y)).

Thus, the conditions of Theorems 2.1 and 2.3, Corollaries 2.2 and 2.4
are satisfied except for the closedness assumption. But f and g have no
common fixed point in X.
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Theorem 2.5. Let f , g be closed mappings from a compact metric
space (X, d) into itself. Assume that there exist m,n ∈ N such that

(2.9) d(fmx, gny) < δ

( ⋃

h∈Hf

h(Of (x)),
⋃

t∈Hg

t(Og(y))
)

for all x, y ∈ X with fmx 6= gny. Then f and g have a unique common
fixed point w ∈ X, which is also a unique common fixed point of Hf and
Hg. Moreover, limi→∞ f ix = limi→∞ gix = w for all x ∈ X.

Proof. Put A =
⋂

i∈N f i(X) and B =
⋂

i∈N gi(X). In view of
Lemma 1.2, we have f(A) = A 6= ∅, g(B) = B 6= ∅ and A and B are
compact. Thus there exist a, x ∈ A and b, y ∈ B with d(a, b) = δ(A,B),
a = fmx and b = gny. We assert that δ(A,B) = 0. If not, by (2.9) and
Lemma 1.2, we have

d(fmx, gny) < δ

( ⋃

h∈Hf

h(Of (x)),
⋃

t∈Hg

t(Og(y))

)
≤ δ(A,B).

Thus we have

δ(A,B) = d(a, b) = d(fmx, gny) < δ(A,B),

which is a contradiction. Therefore δ(A,B) = 0 and there is some w ∈ X
with A = B = {w}. It is clear that fw = gw = w. The rest of the proof
is identical with the proof of Theorem 2.3. This completes the proof. ¤

Remark 2.3. Theorem 2.3 contains Theorem 2.5 of [15] as a special
case.

3. Remarks on fixed point theorems
of Rehman and Ahmad

In [18], Rehman and Ahmad proved the following:

Theorem RA1. Let (X, d) be a complete metric space and S, T :
X → CB(X) satisfy the following:

(3.1) H(Sx, Ty) ≤ k{D(x, Sx)D(y, Ty)} 1
2

for all x, y ∈ X, where k ∈ (0, 1). Then S and T have a unique common
fixed point w ∈ X.
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Corollary RA2. Let (X, d) be a compact metric space and S, T :
X → CL(X) satisfy (3.1). If S or T is continuous, then S or T has a fixed

point in X.

Theorem RA3. Let (X, d) be a complete metric space and S, T :
X → B(X) satisfy the following:

(3.2) δ(Sx, Ty) ≤ k{H(x, Sx)H(y, Ty)} 1
2

for all x, y ∈ X, where k ∈ [0, 1). Then S and T have a unique common

fixed point w ∈ X.

Corollary RA4. Let (X, d) be a compact metric space and S, T :
X → CL(X) satisfy (3.2). If S or T is continuous, then S or T has a fixed

point in X.

Corollary RA5. Let (X, d) be a compact metric space and S, T :
X → B(X) satisfy (3.2). Then S and T have a unique common fixed

point u ∈ X and Su = Tu = {u}.
Theorem RA6. Let {Tn}n∈N be a sequence of self mappings of a

complete metric space (X, d). If there exists a constant h such that, for

all x, y ∈ X and i, j ∈ N , i, j ∈ N

(3.3) d(Tix, Tjy) ≤ h{d(x, Tix)d(y, Tjy)} 1
2 ,

for some h ∈ (0, 1), then {Tn}n∈N has a unique common fixed point w ∈ X.

Theorem RA7. Let (X, d) and (X, d′) be metric spaces satisfying the

following:

(i) d(x, y) ≤ d′(x, y) for all x, y ∈ X;

(ii) X is complete with respect to d;

(iii) f, g : X → X are self-mappings such that f is continuous with respect

to d and, for all x, y ∈ X,

(3.4) d′(fx, fy) ≤ h{d′(x, fx)d′(y, gy)} 1
2

for some h ∈ [0, 1). Then f and g have a unique common fixed point

w ∈ X.

We assert, by the following results, that Theorems RA1, RA3, RA6,
RA7 and Corollaries RA2∼RA5 are meaningless.
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Theorem 3.1. Let (X, d), S, T and w be as in Theorem RA1. Then

w ∈ Sw = Tw = Sx = Tx for all x ∈ X.

Proof. For any x ∈ X, by (3.1) and Theorem RA1, we have

H(Tx, Sw) ≤ k{D(x, Tx)D(w, Sw)} 1
2 = 0,

which implies that Tx = Sw. Similarly, Sx = Tw. Therefore w ∈ Sw =
Tw = Sx = Tx for all x ∈ X. This completes the proof. ¤

Corollary 3.2. Let (X, d) be a compact metric space and S, T : X →
CL(X) satisfy (3.1). Then there exists w ∈ X such that w ∈ Sw = Tw =
Sx = Tx for all x ∈ X.

Proof. Since (X, d) is a compact metric space, CL(X) = CB(X).
Thus Corollary 3.2 follows from Theorem 3.1. ¤

Theorem 3.3. Let (X, d), S and T be as in Theorem RA3. Then

there exists w ∈ X such that Sx = Tx = {w} for all x ∈ X.

Proof. It is easy to verify that (3.2) is equivalent to the following:

(3.5) δ(Sx, Ty) ≤ k{δ(x, Sx)δ(y, Ty)} 1
2

for all x, y ∈ X, where k ∈ [0, 1). We claim that there exists w ∈ X

such that δ(w, Sw)δ(w, Tw) = 0. Otherwise, δ(x, Sx)δ(x, Tx) > 0 for all
x ∈ X. We consider the following two cases:

Case 1. Suppose that k = 0. (3.5) implies that Sx = Ty for all
x, y ∈ X. Take x ∈ X and y ∈ Sx. Then δ(y, Ty) = δ(y, Sx) = 0, which
is a contradiction.

Case 2. Suppose that k ∈ (0, 1). Take x0 ∈ X and select a sequence
{xn}n∈N in X such that x2n+1 ∈ Sx2n for n ∈ W and x2n ∈ Tx2n−1 for
n ∈ N . (3.5) ensures that

δ(x2n, Sx2n) ≤ δ(Sx2n, Tx2n−1) = k{δ(x2n, Sx2n)δ(x2n−1, Tx2n−1)} 1
2 ,

which implies that

δ(x2n, Sx2n) ≤ rδ(x2n−1, Tx2n−1),
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where r = k2 ∈ (0, 1). Similarly, δ(x2n−1, Tx2n−1) ≤ rδ(x2n−2, Sx2n−2).
Set M = max{δ(x2, Sx2), δ(x1, Tx1)}. For m > n ≥ 2, we have

(3.6) max{δ(x2n, Sx2n), δ(x2n−1, Tx2n−1)}
≤ r2 max{δ(x2n−2, Sx2n−2), δ(x2n−3, Tx2n−3)} ≤ r2(n−1)M

and

(3.7) d(xn, xm) ≤
m−1∑

i=n

d(xi, xi+1) ≤
m−1∑

i=n

ri−2M ≤ rn−2

1− r
M.

Since r ∈ (0, 1) and (X, d) is complete, {xn}n∈N is a Cauchy sequence in
X and so it converges to some w ∈ X. Using (3.5), we have

δ(w, Sw) ≤ d(w, x2n+2) + δ(Sw, x2n+2)

≤ d(w, x2n+2) + δ(Sw, Tx2n+1)

≤ d(w, x2n+2) + k{δ(w, Sw)δ(x2n+1, Tx2n+1)} 1
2 .

Letting n tend to infinity, by (3.6), (3.7) and boundedness of S, we imme-
diately obtain δ(w, Sw) = 0, which is also a contradiction.

Consequently, δ(w,Sw)δ(w, Tw) = 0 for some w ∈ X. We assume
without loss of generality, that δ(w,Sw) = 0, that is, Sw = {w}. Using
(3.5), for any x ∈ X, we have

δ(w, Tx) = δ(Sw, Tx) ≤ k{δ(w, Sw)δ(x, Tx)} 1
2 = 0,

which implies that Tx = {w}. Clearly Tw = {w} = Tx = Sw. On the
other hand, by (3.5), we have

δ(w, Sx) = δ(Sx, Tw) ≤ k{δ(x, Sx)δ(w, Tw)} 1
2 = 0.

Therefore, Sx = {w} = Tx. This completes the proof. ¤

Corollary 3.4. Let (X, d) be a compact metric space and S, T : X →
B(X) satisfy (3.2). Then there exists w ∈ X such that {w} = Sx = Tx

for all x ∈ X.

Proof. It follows from the compactness of X that CL(X) ⊂ B(X).
Thus Corollary 3.4 follows from Theorem 3.3. ¤
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Theorem 3.5. Let (X, d), {Tn}n∈N and w be as in Theorem RA6.

Then Tnx = w for all x ∈ X and n ∈ N .

Proof. Theorem RA6 ensures that Tnw = w for all n ∈ N . By (3.2),
for all x ∈ X and i, j ∈ N , we have

d(w, Tjx) = d(Tiw, Tjx) ≤ h{d(w, Tiw)d(x, Tjx)} 1
2 = 0,

which implies that Tjx = w. This completes the proof. ¤

Theorem 3.6. Let (X, d), (X, d′), f, g and w be as in Theorem RA7.

Then fx = gx = w for all x ∈ X.

Proof. In view of (3.3) and Theorem RA7, we have

d′(w, gx) = d′(fw, gx) ≤ h{d′(w, fw)d′(x, gx)} 1
2 = 0,

which implies that w = gx for all x ∈ X. Similarly, fx = w for all x ∈ X.
This completes the proof. ¤

Acknowledgement. The authors thank the referee for his valuable sug-
gestions for the improvement of this paper.

References

[1] B. Fisher, Results and a conjecture on fixed points, Atti Accad. Naz. Lincei Rend.
Cl. Sci. Fis. Mat. Natur. 92 (1977), 150–153.

[2] B. Fisher, On three fixed point mappings for compact metric spaces, Indian J.
Pure Appl. Math. 8 (1977), 479–481.

[3] B. Fisher, Some theorems on fixed points, Studia Sci. Math. Hungarica 12 (1977),
159–160.

[4] B. Fisher, Theorems on fixed points, Riv. Mat. Univ. Param. 4 (1978), 109–114.

[5] B. Fisher, A fixed point theorem for compact metric spaces, Publ. Math. Debrecen
25 (1978), 193–194.

[6] B. Fisher, Results on common fixed points on bounded metric spaces, Math. Sem.
Notes, Kobe Univ. 7 (1979), 73–80.

[7] B. Fisher, Quasi-contractions on metric spaces, Proc. Amer. Math. Soc. 75 (1979),
321–325.

[8] B. Fisher, Results on common fixed points on complete metric spaces, Glasgow
Math. J. 21 (1980), 165–167.

[9] B. Fisher, Common fixed points of commuting mappings, Bull. Inst. Math. Acad.
Sinica 9 (1981), 399–406.

[10] B. Fisher, A common fixed point theorem for four mappings on a compact metric
space, Bull. Inst. Math. Acad. Sinica 12 (1984), 249–252.



Common fixed point theorems 453

[11] B. Fisher and S. Sessa, A fixed point theorem for commuting mappings, Non-lin-
ear Functional Analysis and its Application: Mathematical and Physical Sciences,
vol. 173, Reidel Publishing Company, 1986, 223–226.

[12] G. Jungck, Common fixed points for commuting and compatible maps on com-
pacta, Proc. Amer. Math. Soc. 103 (1988), 977–983.

[13] K. Kim and K. H. Leem, Note on common fixed point theorems in metric spaces,
Comm. Korean Math. Soc. 11 (1996), 109–115.

[14] K. Kim, T. H. Kim, K. H. Leem and J. S, Ume, Common fixed point theorems
relating to the diameter of orbits, Math. Japonica 47 (1998), 103–108.

[15] Z. Liu, Extensions of a fixed point theorem of Gerald Jungck, Chinese J. Math.
(Taiwan) 21 (1993), 159–164.

[16] M. Ohta and G. Nikaido, Remarks and fixed point theorems in complete metric
spaces, Math. Joponica 39 (1994), 287–296.

[17] S. Park, On general contractive type conditions, J. Korean Math. Soc. 17 (1980),
131–140.

[18] F. U. Rehman and B. Ahmad, Some fixed point theorems in complete metric
spaces, Math. Japonica 36 (1991), 239–243.

[19] B. E. Rhoades, A comparison of various definitions of contractive mappings,
Trans. Amer. Math. Soc. 226 (1977), 259–290.

[20] S. P. Singh and B. A. Meade, On common fixed point theorems, Bull. Austral.
Math. Soc. 16 (1977), 49–53.

[21] M. R. Taskovi�c, Some results in the fixed point theory II, Publ. Inst. Math. 27
(1980), 249–258.

[22] M. R. Taskovi�c, Some new principles in fixed point theory, Math. Japonica 35
(1990), 645–666.

ZEQING LIU
DEPARTMENT OF MATHEMATICS
LIAONING NORMAL UNIVERSITY
DALIAN, LIAONING 116029
P.R. CHINA

YUGUANG XU
DEPARTMENT OF MATHEMATICS
KUNMING JUNIOR NORMAL COLLEGE
KYNMING, YUNNAN 650031
P.R. CHINA

YEOL JE CHO
DEPARTMENT OF MATHEMATICS
GYEONGSANG NATIONAL UNIVERSITY
CHINJU 660–701
KOREA

E-mail: yjcho@nongae.gsnu.ac.kr

(Received July 17, 2001; revised April 16, 2002)


