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On the indicator plurality function

By ANNA BAHYRYCZ (Kraków) and ZENON MOSZNER (Kraków)

Abstract. A solution of the conditional functional equation

f(x) · f(y) 6= 0 =⇒ f(x + y) = f(x) · f(y),

for which there exists a number r ∈ R(1)\{1} such that

f(rx) = f(x),

where f : R(n) := [0,∞)n\{0} → R(n), 0 := (0, . . . , 0) ∈ Rn and x + y := (x1 + y1,
. . . , xn + yn), x · y := (x1y1, . . . , xnyn), rx := (rx1, . . . , rxn), for x = (x1, . . . , xn) ∈
R(n), y = (y1, . . . , yn) ∈ R(n), is called an indicator plurality function.

We study under which assumptions this function f must have its values in the set
0(n) := {0, 1}n\{0}.

1. Introduction

F. S. Roberts, generalizing a description of the social choice, which
was introduced by him in [5], [6], considers the following conditional equa-
tion

(1) f(x) · f(y) 6= 0 ⇒ f(x + y) = f(x) · f(y),

where f : R(n) := [0,∞)n\{0} → R(n), 0 := (0, . . . , 0) ∈ Rn and x + y :=
(x1+y1, . . . , xn+yn), x·y := (x1y1, . . . , xnyn) for x = (x1, . . . , xn) ∈ R(n),
y = (y1, . . . , yn) ∈ R(n).
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In the paper [2] the following description of all solutions f=(f1, . . . , fn)
of this equation was given:

(2) fν(x) =
{ exp aν(x) for x ∈ Zν ,

0 for x ∈ R(n)\Zν ,

where aν : Rn → R is an additive function (ν = 1, . . . , n) and the sets Zν

satisfy the conditions

Z1 ∪ · · · ∪ Zn = R(n),(3)

ij 6= 0 ⇒ Zi1
1 ∩ · · · ∩ Zin

n + Zj1
1 ∩ · · · ∩ Zjn

n ⊂ Zi1j1
1 ∩ · · · ∩ Zinjn

n ,(4)

where i = (i1, . . . , in), j = (j1, . . . , jn) ∈ {0, 1}n, E1+E2 = {x+y : x ∈ E1

and y ∈ E2} for E1, E2 ⊂ Rn and, here and subsequently E1 := E,
E0 := R(n)\E for E ⊂ R(n).

For further reference we denote the whole above description (including
(2), (3) and (4)) by (A).

Therefore, the sets Zν , (it is known that Zν ∪ {0} are cones over the
field Q of rational numbers) and the additive functions aν : Rn → R are
the parameters giving the solution of the equation (1).

A solution of the equation (1) satisfying the additional condition

(5) ∃r ∈ R(1) : [r 6= 1 and ∀x ∈ R(n) : f(rx) = f(x)],

we call shortly an indicator plurality function.
Z. Moszner proved in [3] that every function f : R(n) → R(n)

satisfying the condition (1) and the condition (5) with some r being an
algebraic number must have values in the set 0(n) := {0, 1}n\{0}. A. Ba-
hyrycz in [1] showed that the above result holds for a transcendental
number r for n = 1, 2. However, when n ≥ 3, for every transcendental
number r there exists an indicator plurality function having values outside
the set 0(n).

From the description (A) of the solutions of the equation (1) it follows
that an indicator plurality function has all its values in the set 0(n) if and
only if all the additive functions aν are identically equal to zero.

We notice that condition (5) imposes on the functions aν and the sets
Zν the conditions

rZν = Zν ,(6)

aν(rx) = aν(x) for x ∈ Zν .(7)
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Now the following question arises: Does there exist a necessary and
sufficient condition imposed on the cones Zν satisfying (6) for which ful-
filment of the condition (7) by the additive functions would imply their
vanishing?

All linear spaces and all cones in this paper are considered over the
field Q, unless we assume differently.

First, we will prove the following

Lemma 1. We assume that Z ⊂ R(n)∪{0} is a cone and for a r 6= 1:

rZ = Z.

Then the conditions

(8) Z ⊂ (r − 1) lin Z

and

(9)
for every additive function a : Z → R : if a(rx) = a(x)

for x ∈ Z, then a = 0 on Z are equivalent.

Proof. We can assume that r > 1.
((8) =⇒ (9)). Let B be a base of the space lin Z, such that B ⊂ Z. Then
every x ∈ lin Z has a representation x =

∑k
i=1 qibi, where k ∈ N (the set

of natural numbers), qi ∈ Q and bi ∈ B. We extend the additive function
a : Z → R to an additive function ā : lin Z → R in the standard way:

ā(x) =
k∑

i=1

qia(bi) for x =
k∑

i=1

qibi.

We will show that ā(rx) = ā(x) for x ∈ lin Z. For x =
∑k

i=1 qibi ∈ lin Z,
by the definition of the function ā and from the fact that a(rz) = a(z) for
z ∈ Z, we obtain

ā(x) =
k∑

i=1

qia(bi) =
k∑

i=1

qia(rbi).

Since rbi ∈ Z for every i ∈ {1, . . . , k}, so rbi =
∑l

j=1 qijbij , where l ∈ N,

qij ∈ Q and bij ∈ B, and a(rbi) =
∑l

j=1 qija(bij) and rx = r(
∑k

i=1 qibi) =∑k
i=1 qirbi =

∑k
i=1 qi(

∑l
j=1 qijbij) =

∑k
i=1

∑l
j=1 qiqijbij .
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Therefore

ā(rx) =
k∑

i=1

l∑

j=1

qiqija(bij) =
k∑

i=1

qi

( l∑

j=1

qija(bij)
)

=
k∑

i=1

qia(rbi) = ā(x),

which was to be proved.
For every x ∈ Z, also 1

r−1x ∈ lin Z and

ā(x) + ā

(
1

r − 1
x

)
= ā

(
r

r − 1
x

)
= ā

(
1

r − 1
x

)
,

hence a(x) = ā(x) = 0.
For the proof of the reverse implication ((9) =⇒ (8)) assume that Z

is not contained in (r− 1) lin Z and we will construct an additive function
a : Z → R, such that a(rx) = a(x) on Z and a 6= 0. We notice that the set
(r − 1) lin Z is a vector space.

From x ∈ (r − 1) lin Z it follows that there exists z ∈ lin Z such that
x = (r−1)z. Since rz ∈ linZ and −z ∈ linZ, we have x ∈ lin Z. From the
above and from the fact that Z 6⊂ (r−1) linZ we conclude that (r−1) lin Z
is a proper subspace of the space lin Z. Let P be a complement of the space
(r − 1) lin Z, i.e. lin Z = (r − 1) lin Z ⊕ P . The function a(x1 + x2) = x2

for x1 ∈ (r − 1) lin Z and x2 ∈ P restricted to Z satisfies all the desired
conditions. In particular, the condition a(rx) = a(x) is fulfilled because
a((r − 1)x) = 0. ¤

We notice that in the above lemma we cannot replace the condition
(8) in the implication (9) =⇒ (8) by the condition Z ⊂ (r − 1)Z.

Example. Define

Z =
{

z ∈ R(1) : z =
∑k

i=1 qir
zi

(r − 1)n
,

where k ∈ N, n ∈ (N ∪ {0})\{1}, qi ∈ Q and
∑k

i=1 qi > 0, zi ∈ Z
}
∪ {0},

where Z is the set of entire numbers.
We will show that Z is a cone. Let z, z∗ ∈ Z. Then

z =
∑k

i=1 qir
zi

(r − 1)n
and z∗ =

∑k
i=1 q∗i rzi

(r − 1)m
,
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where k ∈ N, n, m ∈ (N ∪ {0})\{1}, qi, q
∗
i ∈ Q,

∑k
i=1 qi > 0,

∑k
i=1 q∗i > 0,

zi ∈ Z.
We can assume that m ≤ n. Then

z + z∗ =





∑k
i=1(qi + q∗i )rzi

(r − 1)n
for m = n,

∑k
i=1 qir

zi + (r − 1)n−m
∑k

i=1 q∗i rzi

(r − 1)n
for m < n.

We notice that
∑k

i=1(qi + q∗i ) =
∑k

i=1 qi +
∑k

i=1 q∗i > 0 for m = n and∑k
i=1 qi + 0 =

∑k
i=1 qi > 0 for m < n. Therefore z + z∗ ∈ Z. It is easily

seen that qz ∈ Z for every q ∈ Q+ and z ∈ Z, hence Z is a cone and
rZ = Z. Let a : Z → R be an additive function, such that a(rx) = a(x)

for x ∈ Z. Let z =
Pk

i=1 qir
zi

(r−1)n ∈ Z. Then 2r
Pk

i=1 qir
zi

(r−1)n+2 ∈ Z and from the
additivity of the function a we obtain

a

(
2r

∑k
i=1 qir

zi

(r − 1)n+2

)
+ a

(∑k
i=1 qir

zi

(r − 1)n

)
= a

(
(r2 + 1)

∑k
i=1 qir

zi

(r − 1)n+2

)
.

Since

a

(∑k
i=1 qir

zi

(r − 1)n+2

)
= a

(
r
∑k

i=1 qir
zi

(r − 1)n+2

)
= a

(
r2

∑k
i=1 qir

zi

(r − 1)n+2

)
,

we get

a

(∑k
i=1 qir

zi

(r − 1)n

)
= 0.

Therefore a(z) = 0 for every z ∈ Z. We notice that 1 ∈ Z (k = 1,
q1 = 1, z1 = 0, n = 0) but 1

r−1 6∈ Z, hence Z 6⊂ (r − 1)Z and obviously
Z ⊂ (r − 1) lin Z.

By Lemma 1 there follows immediately the following

Theorem 1. The indicator plurality function f has its values only in
the set 0(n) if and only if the sets Zν in its description (A) fulfilling the
condition (6) satisfy the condition

Zν ⊂ (r − 1) lin Zν (ν = 1, . . . , n)

with r occurring in (6).
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We notice that for n = 1 we have Z1 = R(1) and the condition (10)
is obviously fulfilled.

This condition is also satisfied for n = 2. This follows from the fact
that for n = 2 the sets Z0

1 ∪ {0} and Z0
2 ∪ {0} are also cones ([2] p. 179)

and from the following

Lemma 2. We assume that Z ⊂ R(n) ∪ {0} and Z0 ∪ {0} are cones.
Then Z ⊂ (r − 1) linZ for every r ∈ R\{1}.

Proof. It is suffices to show that Z ⊂ (r − 1) lin Z for all r > 1.
We take r > 1 and x ∈ Z\{0}. We consider the cases:

1) 1
r−1x ∈ Z. Then

x = (r − 1)
1

r − 1
x ∈ (r − 1)Z ⊂ (r − 1) lin Z.

2) 1
r−1x ∈ Z0. We notice that for every q ∈ Q+ such that 1 < q < r we
have r−q

r−1x ∈ Z. Indeed, if r−q
r−1x ∈ Z0, then because 1

r−1x ∈ Z0 and
Z0 ∪ {0} is a cone, we would have q−1

r−1x ∈ Z0 and

r − q

r − 1
x +

q − 1
r − 1

x =
r − q + q − 1

r − 1
x = x ∈ Z0,

which contradicts the fact that x ∈ Z\{0}. Since r−q
r−1x ∈ Z, − r−q

r−1x ∈
lin Z and

−r − q

r − 1
x + x =

−r + q + r − 1
r − 1

x = (q − 1)
1

r − 1
x ∈ lin Z,

we have 1
r−1x ∈ lin Z, thus x = (r − 1) 1

r−1x ∈ (r − 1) lin Z. ¤
We notice that the converse of Lemma 2 is not true, even if we assume

that Z is a cone satisfying the condition rZ = Z and the condition Z ⊂
(r − 1) lin Z is replaced by a stronger one: Z ⊂ (r − 1)Z.

Example. We assume that r > 1 and consider the set Z={(z, 0, . . . , 0)∈
R(n) ∪ {0} : z =

Pk
i=1 qir

zi

(r−1)l , where l ∈ N ∪ {0}, qi ∈ Q, zi ∈ Z}.
It is easy to check that Z is a cone satisfying the condition rZ = Z.

Since 1
r−1z ∈ Z for every z ∈ Z, the condition Z ⊂ (r − 1)Z is satisfied.

Z0 is not closed with respect to addition, because there exists m ∈ N\{1}
such that m

√
r 6∈ Q and then

( m
√

r, 0, . . . , 0), (− m
√

r + [ m
√

r ] + 1, 0, . . . , 0) ∈ Z0
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but

( m
√

r, 0, . . . , 0) + (− m
√

r + [ m
√

r ] + 1, 0, . . . , 0) = ([ m
√

r ] + 1, 0, . . . , 0) ∈ Z,

where [ m
√

r ] is the greatest integer of m
√

r.

The condition (10) for n = 2 follows also by the following

Lemma 3. We assume that Z ⊂ R(2)∪{0} is a cone. Then a subspace

lin Z is a vector space over R.

Proof. We consider the cases:

1) Z = {0}. Then lin Z = {0}.
2) Z 6= {0}. Only two subcases are possible:

a) Z is contained in a line l given by y = ax (a ≥ 0) or in x = 0,
b) Z is contained neither in a line y = ax (a ≥ 0) nor in x = 0.

Ad a) Then lin Z ⊂ l. We will show that l ⊂ lin Z. We assume that l has
a representation y = ax (a ≥ 0) [in case x = 0 the proof runs analogously].
There exists x0 > 0, such that (x0, ax0) ∈ Z (because Z 6= {0} and it is
contained in the line y = ax). We take an arbitrary x > 0. Then we have
(x, ax) ∈ Z ⊂ lin Z or (x, ax) ∈ Z0 = R(2)\Z. If (x, ax) ∈ Z0, then we
choose q ∈ Q+ such that qx < x0. The pair (x0 − qx, a(x0 − qx)) belongs
to R(2). We suppose that (x0−qx, a(x0−qx)) ∈ Z0. Then, since Z0∪{0}
is a cone over Q, we get (qx, aqx) ∈ Z0 and

(x0 − qx, a(x0 − qx)) + (qx, aqx) = (x0, ax0) ∈ Z0

and this contradicts our assumption. Therefore (x0 − qx, a(x0 − qx)) ∈ Z,
hence (qx − x0, a(qx − x0)) ∈ lin Z and since (x0, ax0) ∈ Z, we have
(qx, aqx) ∈ lin Z and thus (x, ax) ∈ lin Z, which was to be proved.

Ad b) There exist points (x1, y1), (x2, y2) ∈ Z such that x1 + x2 > 0 and
the line containing these points has no representation y = ax (a ≥ 0). We
denote by li the line passing through the points (0, 0) and (xi, yi)(i = 1, 2).

Similarly as in the proof of the case a) we get R2 = {l1, l2} ⊂ lin Z,
where {l1, l2} denotes a subspace of the space lin Z spanned by the lines
l1, l2. ¤

It confirms the results from the paper [1] for n = 1, 2. For n ≥ 3
the result of this paper (the existence of an indicator plurality function f

having its values outside the set 0(n)) proves that for every transcendental
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number r ∈ R(1) there exists an indicator plurality function (and so a
cone) for which the conditions (10) are not saisfied.

In the example given in [1], such a cone is a set D ∩ [0, +∞), where
the set D is defined by a long construction on p. 27 in [1], because 1 ∈
D ∩ [0,+∞) and 1

r−1 6∈ lin(D ∩ [0,+∞)) = D.
For an algebraic number r 6= 1 the conditions (10) are satisfied, as it

follows from the following

Lemma 4. If r 6= 1 is an algebraic number and Z is a cone such that

rZ ⊂ Z, then Z ⊂ (r − 1) linZ.

Proof. Since r is an algebraic number, there exists a polynomial of
rational coefficients p1(x) such that p1(r) = 0. Two cases are possible:
p1(1) 6= 0 or p1(1) = 0. If p1(1) 6= 0, then we put p(x) = −p1(x)

p1(1)
. If

p1(1) = 0, then we consider a polynomial p2 obtained by dividing p1(x)
by (x − 1)k, where 1 is a root of order k of the polynomial p1(x) and we
put p(x) = −p2(x)

p2(1)
. For this polynomial p(x) : p(1) = −1 and p(r) = 0,

therefore
p(x) = (x− 1)[αmxm + · · ·+ α1x + α0]− 1,

where αj ∈ Q for every j ∈ {0, . . . , m}.
Since p(r) = 0, for r 6= 1 we obtain

1
r − 1

= αmrm + · · ·+ α1r + α0.

Therefore for every z ∈ Z, where Z is a cone such that rZ ⊂ Z, we have
1

r−1z ∈ lin Z. ¤

We obtain in this way, via the theorem 1, another proof of the above
mentioned results from the paper [3]. In the construction of the solution of
equation (1) satisfying (5) with some transcedental number r, which was
given in [1], the Axiom of Choice is used. Below we will show that one
cannot give this construction without using non-measurable set.

We adopt the following definition (see [4]):
A function f = (f1, . . . , fn) : R(n) → R(n) is called nearly measurable

if for every c ∈ R(n) the sets Ai(c) = {tc ∈ R(n) : fi(tc) 6= 0} for i =
1, . . . , n are Lebesgue linearly measurable.

We will show the
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Theorem 2. If a solution f of equation (1), satisfying (5) with some

r 6= 1, is nearly measurable, then it satisfies the conditions (10), because

Zν ∪ {0} for ν = 1, . . . , n are cones over R.

Proof. Let us fix an arbitrary c ∈ R(n). By (3) and (4) we get

Ai1
1 (c) ∩ · · · ∩Ain

n (c) + Aj1
1 (c) ∩ · · · ∩Ajn

n (c) ⊂ Ai1j1
1 (c) ∩ · · · ∩Ainjn

n (c)

for every i1, . . . , in, j1, . . . , jn ∈ {0, 1} such that (i1j1, . . . , injn) 6= 0 and
A0

1(c)∩ · · · ∩A0
n(c) = ∅. The sets Ai1

1 (c)∩ · · · ∩Ain
n (c) are measurable and

disjoint for different sequences of indices i1, . . . , in, moreover the set of
positive Lebesgue measure D(c) := {tc : t ∈ R(1)} = A1(c)∩ · · · ∩An(c) is
the sum of all such sets, thus there exists a sequence of indices (i1, . . . , in) 6=
0 such that Ai1

1 (c) ∩ · · · ∩Ain
n (c) is of positive measure.

We have

Ai1
1 (c) ∩ · · · ∩Ain

n (c) + Ai1
1 (c) ∩ · · · ∩Ain

n (c) ⊂ Ai1
1 (c) ∩ · · · ∩Ain

n (c),

therefore according to the theorem of Steinhaus [7] there exists a segment
of the half-line D(c) having positive lenght and contained in Ai1

1 (c)∩ · · · ∩
Ain

n (c). Since Ai1
1 (c) ∩ · · · ∩Ain

n (c) is a cone

D(c) = Ai1
1 (c) ∩ · · · ∩Ain

n (c) = Zi1
1 ∩ · · · ∩ Zin

n ∩D(c).

If c ∈ Zk then ik 6= 0 and Zi1
1 ∩ · · · ∩ Zin

n ∩ D(c) ⊂ Zk ∩ D(c), therefore
Zk ∩D(c) = D(c), hence tc ∈ Zk for every t ∈ R(1). Because Zk ∪ {0} is
a cone, it follows that it is a cone over R. ¤

Corollary. A nearly measurable solution of the equation (1) satisfying

(5) with some r 6= 1 must have its values in the set 0(n).
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