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Monomials and binomials over finite fields
as R-orthomorphisms

By WUN-SENG CHOU (Taipei) and HARALD NIEDERREITER (Singapore)

Abstract. We give criteria for both monomials and binomials of the form
ax(q+1)/2 + bx to be R-orthomorphisms of the finite field Fq of odd order q. We also
prove existence theorems for R-orthomorphisms of this form.

1. Introduction

Throughout this paper, q is a prime power and Fq is the finite field
of order q. The polynomial f(x) ∈ Fq[x] is called a permutation polyno-
mial of Fq if the function σ : Fq −→ Fq, defined by σ : a 7−→ f(a), is
a permutation of Fq. Permutation polynomials of finite fields have been
studied extensively (see [4, Chapter 7]). One important and useful class of
permutation polynomials is the class of so-called orthomorphisms. Recall
that f(x) is an orthomorphism of Fq if both f(x) and f(x)−x are permu-
tation polynomials of Fq. Orthomorphisms have interesting applications,
for instance to the construction of orthogonal Latin squares (see [9, Chap-
ter 22]) and cryptology (see [8]). Orthomorphisms of Fq are also closely
connected with complete mapping polynomials of Fq, since f(x) ∈ Fq[x]
is an orthomorphism of Fq if and only if −f(x) is a complete mapping
polynomial of Fq. Complete mapping polynomials of Fq were first studied
by Niederreiter and Robinson [6], [7].

In this paper we consider a special class of orthomorphisms. Let
R be a nonempty set of positive integers. Then f(x) is called an R-
orthomorphism of Fq if each polynomial f (r)(x) is an orthomorphism of Fq,
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where r ∈ R and f (r)(x) is the rth iterated composition of f(x) with
itself. The definition of R-orthomorphisms is given explicitly by Co-

hen, Niederreiter, Shparlinski, and Zieve [1]. They also present
examples of both linearized and sublinearized polynomials that are R-
orthomorphisms. In fact, some special types of R-orthomorphisms have
been used in combinatorial design theory (see [2]).

In Section 2 we study monomials as R-orthomorphisms. Especially,
we consider the monomial f(x) = ax(q+1)/2 as a concrete example, where
q is odd. We show that for any positive integer k and any sufficiently
large q ≡ 1 mod 4 there exists an Rk-orthomorphism of Fq of this form,
where Rk = {1, 2, . . . , k}. We study the special kind of binomials f(x) =
ax(q+1)/2+bx in Section 3. We show in this section that if R is finite and q

is sufficiently large, then there is at least one ordered pair (a, b) ∈ F ∗q ×F ∗q
such that the polynomial f(x) = ax(q+1)/2 + bx is an R-orthomorphism of
Fq. Here the lower bound on q is smaller than that in a comparable result
in [1, Theorem 3].

2. Monomials as R-orthomorphisms

In this section, f(x) is a monomial f(x) = axn ∈ Fq[x] with a 6= 0.
Then, for any positive integer i, we have f (i)(x) = ani−1+···+n+1xni

. So,
f (i)(x) is a permutation polynomial of Fq if and only if gcd(ni, q − 1) = 1
(and thus, gcd(n, q − 1) = 1). The following is a criterion for f(x) to be
an R-orthomorphism. By the above remarks, the proof is obvious.

Lemma 2.1. The monomial f(x) = axn ∈ Fq[x], a 6= 0, is an R-

orthomorphism of Fq if and only if gcd(n, q − 1) = 1 and for each m ∈ R,

the equation
xnm − ynm

x− y
= a−(nm−1+···+n+1)

has no solution in Fq × Fq \ {(α, α) : α ∈ Fq}.
From this lemma, it is trivial that for n = 1, f(x) = ax ∈ Fq[x] is an

R-orthomorphism of Fq if and only if a 6= 0, 1 and R contains no multiple
of the (multiplicative) order ord(a) of a. So, if R = Rk = {1, 2, . . . , k},
then f(x) = ax, a 6= 0, is an Rk-orthomorphism of Fq if and only if
1 ≤ k < ord(a). For n > 1, let em = gcd(nm−1 + · · · + n + 1, q − 1) and
dm = gcd(n− 1, q−1

em
).
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Lemma 2.2. Let f(x) = axn ∈ Fq[x] with a 6= 0 and n > 1 and let
m be a positive integer. Then f (m)(x)− x has a root in F ∗q if and only if
ord(a) divides (q − 1)/dm.

Proof. The polynomial f (m)(x)− x has a root in F ∗q if and only if

anm−1+nm−2+···+n+1xnm−1 = 1

has a root in F ∗q . If g is a primitive element of Fq and a = gs for some
s > 0, then the last statement is equivalent to the existence of a positive
integer t satisfying

1 = gs(nm−1+···+n+1)+t(nm−1) = g(nm−1+···+n+1)(s+t(n−1)).

Thus, f (m)(x) − x having a root in F ∗q is equivalent to s + y(n − 1) ≡ 0
mod (q − 1)/em having a solution t, which is equivalent to dm | s, and thus
ord(a) dividing (q − 1)/dm. ¤

The above lemma gives a necessary condition for a monomial to be
an R-orthomorphism.

Corollary 2.3. If f(x) = axn ∈ Fq[x], with n > 1 and a 6= 0, is
an R-orthomorphism of Fq, then for all m ∈ R, ord(a) does not divide
(q − 1)/dm.

We omit the proof because it is obvious. In the following, we consider
the special kind of monomial f(x) = ax(q+1)/2 ∈ Fq[x], a 6= 0, q odd.
Moreover, we take R = Rk with a positive integer k. We first establish
the following result on the iterates f (r)(x).

Lemma 2.4. Let f(x) = ax(q+1)/2 ∈ Fq[x] with a ∈ F ∗q and q odd.
Then, as functions on Fq, the iterates of f are given by

f (4s+1)(x) = a4s+1x(q+1)/2,

f (4s+2)(x) = a(q−1)/2+4s+2x,

f (4s+3)(x) = a(q−1)/2+4s+3x(q+1)/2,

f (4(s+1))(x) = a4(s+1)x,

for any nonnegative integer s.

Proof. This is shown by straightforward induction, using the fact
that xq = x as a function on Fq. ¤
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Notice that f(x) is a permutation polynomial of Fq if and only if q ≡ 1
mod 4, because we need gcd((q + 1)/2, q − 1) = 1. From now on in this
section, we assume that q ≡ 1 mod 4.

It follows from Lemma 2.4 that for an even positive integer m,
f (m)(x) − x is a permutation polynomial of Fq if and only if ord(a) does
not divide m if m ≡ 0 mod 4, or m + q−1

2 if m ≡ 2 mod 4. Notice that
if cm = gcd(m, q− 1), then gcd(q− 1, q−1

2 + m) = cm if q ≡ 1 mod 8, and
gcd(q − 1, q−1

2 + m) = 2cm if q ≡ 5 mod 8.
For the consideration of f (m)(x) − x for odd positive integers m, we

recall the following result from [4, Theorem 7.11]. We denote by η the
quadratic character of Fq, with the convention η(0) = 0.

Lemma 2.5. For odd q, the polynomial x(q+1)/2 + bx ∈ Fq[x] is a
permutation polynomial of Fq if and only if η(b2 − 1) = 1.

Thus, for an odd positive integer m, it follows from Lemmas 2.4
and 2.5 that f (m)(x)− x is a permutation polynomial of Fq if and only if
η(a2m − 1) = 1.

Theorem 2.6. Let q be a prime power with q ≡ 1 mod 4, let k be a
positive integer, and let Rk = {1, 2, . . . , k}. Suppose that

q ≥ 2b(k−3)/2c(k + 1)2q1/2 + 2b(k−7)/2c(5k2 + 12) + 1.

Then there exists an a ∈ F ∗q such that f(x) = ax(q+1)/2 ∈ Fq[x] is an
Rk-orthomorphism of Fq.

Proof. For an odd positive integer m, define gm(x) = x2m − 1. For
a positive integer m with m ≡ 0 mod 4, define h0,m(x) = xcm − 1; and
for m ≡ 2 mod 4, define h2,m(x) to be either h2,m(x) = xcm − 1 if q ≡ 1
mod 8, or h2,m(x) = x2cm − 1 if q ≡ 5 mod 8. Now let Ao be the set of
roots in Fq of all polynomials of the form gm(x) for odd integers m with
1 ≤ m ≤ k. It is easy to see that

|Ao| ≤ 2 +
k∑

m=1
m odd

(2m− 2) ≤ k2 + 3
2

.

Also, let Ae be the set of roots in Fq of all polynomials h0,m(x) and h2,m(x)
for even integers m with 1 ≤ m ≤ k. Then it is not difficult to see that

|Ae \ Ao| ≤
k∑

m=1
m≡0 mod 4

(m− 2) ≤ k2

8
.
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Let N be the number of elements a ∈ F ∗q such that f(x) = ax(q+1)/2

is an Rk-orthomorphism. Then

N =
1

2
b k+1

2 c
∑

a∈F∗q \(Ao∪Ae)

k∏

m=1
m odd

(1 + η(a2m − 1))

=
1

2
b k+1

2 c
( ∑

a∈F∗q

k∏

m=1
m odd

(1 + η(a2m − 1))−
∑

a∈Ao∪Ae

k∏

m=1
m odd

(1 + η(a2m − 1))
)

,

and so

N ≥ N1

2b(k+1)/2c −
1
2
|Ao ∪ Ae| ≥ N1

2b(k+1)/2c −
5k2 + 12

16

with

N1 :=
∑

a∈F∗q

k∏

m=1
m odd

(1 + η(a2m − 1)).

We can write

(2.1) N1 = q − 1 +
b(k+1)/2c∑

r=1

∑

1≤m1<···<mr≤k
mj odd

∑

a∈F∗q

η

( r∏

j=1

(a2mj − 1)
)

.

Consider the innermost sum on the right-hand side of (2.1). If the poly-
nomial

∏r
j=1(x

2mj − 1) is a square in Fq[x], then the corresponding sum
is clearly nonnegative. Otherwise by the Weil bound [4, Theorem 5.41],

∣∣∣∣
∑

a∈F∗q

η

( r∏

j=1

(a2mj − 1)
)∣∣∣∣ < 2q1/2

r∑

j=1

mj .

Therefore

N1 > q − 1− 2q1/2

b(k+1)/2c∑
r=1

∑

1≤m1<···<mr≤k
mj odd

r∑

j=1

mj
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= q − 1− 2b(k+1)/2cq1/2
k∑

m=1
m odd

m

≥ q − 1− 2b(k+1)/2cq1/2 (k + 1)2

4
.

Altogether,

N >
q − 1

2b(k+1)/2c −
(k + 1)2

4
q1/2 − 5k2 + 12

16
,

and the desired result follows. ¤

3. R-orthomorphisms of the form ax(q+1)/2 + bx

In this section, we consider q odd and polynomials of the form f(x) =
ax(q+1)/2 + bx ∈ Fq[x] with ab 6= 0. It follows from Lemma 2.5 that f(x)
is a permutation polynomial of Fq if and only if η(b2− a2) = 1. Note that
f is a linear function when restricted to the squares in Fq and another
linear function when restricted to the nonsquares in Fq. This observation
and induction yield the following formulas for the iterates of f as functions
on Fq. If η(b + a) = η(b− a) = 1, then for each positive integer n we have

f (n)(x) =
(b + a)n − (b− a)n

2
x(q+1)/2 +

(b + a)n + (b− a)n

2
x.

If η(b + a) = η(b− a) = −1, then for each positive integer n we have

f (n)(x) = (b2 − a2)(n−1)/2ax(q+1)/2 + (b2 − a2)(n−1)/2bx

whenever n is odd and

f (n)(x) = (b2 − a2)n/2x

whenever n is even. From these formulas, the following criterion is trivial.

Lemma 3.1. Let R be a nonempty set of positive integers. Then the

polynomial f(x) = ax(q+1)/2 + bx ∈ Fq[x] with ab 6= 0 is an R-ortho-

morphism of Fq if and only if one of the following two conditions holds:

(i) η(b + a) = η(b− a) = 1 and η(((b + a)m− 1)((b− a)m− 1)) = 1 for all

m ∈ R;
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(ii) η(b + a) = η(b− a) = −1 and for all m ∈ R, (b2 − a2)m/2 6= 1 if m is
even and η(((b2−a2)(m−1)/2(b+a)−1)((b2−a2)(m−1)/2(b−a)−1))= 1
if m is odd.

Using this lemma, we have the following counting formula which
is closely related to a result of Mendelsohn and Wolk [5] (see also
Evans [3]) for the special case where q is a prime.

Corollary 3.2. If q ≡ 3 mod 4, then there are exactly (q−3)(q−5)
4

orthomorphisms of Fq of the form f(x) = ax(q+1)/2 + bx ∈ Fq[x] with

ab 6= 0. If q ≡ 1 mod 4, then there are exactly (q−5)2

4 orthomorphisms of

Fq of the form f(x) = ax(q+1)/2 + bx ∈ Fq[x] with ab 6= 0.

Proof. From Lemma 3.1, for a, b ∈ F ∗q , the polynomial f(x) =
ax(q+1)/2+bx is an orthomorphism of Fq if and only if η((b−a)(b+a)) = 1
and η((b−a−1)(b+a−1)) = 1. Let N be the number of orthomorphisms
counted in the corollary. After the substitution u = b−a and v = b+a, we
see that N is the number of ordered pairs (u, v) ∈ Fq × Fq with u 6= ±v,
η(uv) = 1, η((u−1)(v−1)) = 1. We can restrict u and v to Gq := Fq\{0, 1}.
Then we can write

(3.1) N = N1 −N2,

where N1 is the number of ordered pairs (u, v) ∈ Gq ×Gq with η(uv) = 1,
η((u−1)(v−1)) = 1, and N2 is the number of ordered pairs (u, v) ∈ Gq×Gq

with u = ±v, η(uv) = 1, η((u− 1)(v − 1)) = 1. We have

N1 =
1
4

∑

u,v∈Gq

[1 + η(uv)][1 + η((u− 1)(v − 1))]

=
(q − 2)2

4
+

1
4

∑

u,v∈Gq

η(uv) +
1
4

∑

u,v∈Gq

η((u− 1)(v − 1))

+
1
4

∑

u,v∈Gq

η(uv)η((u− 1)(v − 1))

=
(q − 2)2

4
+

1
4

( ∑

u∈Gq

η(u)
)2

+
1
4

( ∑

u∈Gq

η(u− 1)
)2

+
1
4

( ∑

u∈Gq

η(u(u− 1))
)2
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=
(q − 2)2

4
+

1
4

+
1
4

+
1
4

=
q2 − 4q + 7

4
,

where we used [4, Theorem 5.48] to evaluate the last character sum.
Now we consider N2. All ordered pairs (u, v) ∈ Gq × Gq with u = v

are counted for N2 and this gives q − 2 ordered pairs. If u = −v, then
the conditions become η(−v2) = 1, η(1− v2) = 1. This is only possible if
q ≡ 1 mod 4, since only then η(−1) = 1. In this case, it remains to count
the number N3 of v ∈ Gq with η(1− v2) = 1. We have

N3 =
1
2

∑

v∈Gq

(1 + η(1− v2))− 1
2

=
q − 3

2
+

1
2

∑

v∈Gq

η(1− v2)

=
q − 3

2
+

1
2

∑

v∈Fq

η(1− v2)− 1
2

=
q − 5

2
,

where we again used [4, Theorem 5.48]. Thus, if q ≡ 1 mod 4, then

N2 = q − 2 +
q − 5

2
=

3q − 9
2

,

whereas N2 = q − 2 if q ≡ 3 mod 4. Recalling (3.1), we get the claimed
result. ¤

The following theorem shows the existence ofR-orthomorphisms of Fq

of the form f(x) = ax(q+1)/2 + bx ∈ Fq[x] for sufficiently large q. The
condition on q in this result is less restrictive than that in the comparable
result in [1, Theorem 3].

Theorem 3.3. Let R be a finite nonempty set of positive integers

and q an odd prime power with

q ≥ 2R+2

(
2 +

∑

m∈R
m

)
,

where R is the cardinality of R. Then there exists at least one ordered

pair (a, b) ∈ F ∗q ×F ∗q such that the polynomial f(x) = ax(q+1)/2 + bx is an

R-orthomorphism of Fq.

Proof. Let N be the number of ordered pairs (a, b) ∈ F ∗q × F ∗q
such that the polynomial f(x) = ax(q+1)/2 + bx is an R-orthomorphism
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of Fq. Let N1 be the number of ordered pairs (a, b) ∈ Fq × Fq such that

η(b + a) = η(b− a) = 1 and

η(((b + a)m − 1)((b− a)m − 1)) = 1 for all m ∈ R.

By using only condition (i) in Lemma 3.1, we see that

N1 ≤ N + #{(a, b) ∈ Fq × Fq : ab = 0, η(b + a) = η(b− a) = 1},

and so

(3.2) N ≥ N1 − q + 1.

Let C := {(a, b) ∈ Fq × Fq : b = ±a} and D be the set of (a, b) ∈ Fq × Fq

with

((b + a)m − 1)((b− a)m − 1) = 0 for some m ∈ R.

Then

N1 =
1

2R+2

∑

(a,b)∈Fq×Fq

(a,b)/∈C∪D

[1 + η(b + a)][1 + η(b− a)]

·
∏

m∈R
[1 + η(((b + a)m − 1)((b− a)m − 1))]

≥ S

2R+2
− 1

2
|C ∪D|

with

S :=
∑

a,b∈Fq

[1+η(b+a)][1+η(b−a)]
∏

m∈R
[1+η(((b+a)m−1)((b−a)m−1))].

By carrying out the substitution u = b+ a and v = b− a in the sum S, we
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obtain

S =
∑

u,v∈Fq

(1 + η(u))(1 + η(v))
∏

m∈R
(1 + η((um − 1)(vm − 1)))

=
∑

u,v∈Fq

(1 + η(u))(1 + η(v))

+
R∑

r=1

∑

m1<m2<···<mr
mj∈R

∑

u,v∈Fq

(1+ η(u))(1+ η(v))
r∏

j=1

η((umj−1)(vmj−1))

=
( ∑

u∈Fq

(1 + η(u))
)2

+
R∑

r=1

∑

m1<m2<···<mr
mj∈R

( ∑

u∈Fq

(1 + η(u))
r∏

j=1

η(umj − 1)
)2

≥ q2.

In view of (3.2), this yields

N ≥ q2

2R+2
− 1

2
|C| − 1

2
|D| − q + 1.

It is clear that |C| = 2q − 1. Furthermore, |D| is the number of (u, v) ∈
Fq × Fq with (um − 1)(vm − 1) = 0 for some m ∈ R. Therefore

|D| ≤ 2q
∑

m∈R
m.

Altogether, we get

N ≥
(

q

2R+2
− 2−

∑

m∈R
m

)
q +

3
2
,

and the desired result follows. ¤
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