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Conservative semisprays on Finsler manifolds

By CSABA VINCZE (Debrecen)

Abstract. In this paper we present a general theory of conservative torsion-free
horizontal endomorphisms (nonlinear connections) on a Finsler manifold (M, E). Since
their torsion vanishes these endomorphisms can always be written in the form

h =
1

2

�
1 + [J, S]

�
,

where S is a semispray on M . This means that all of problems can be formulated in
terms of semisprays as well. For example their existence problem will be completely
solved including a representative process to construct such kind of horizontal endo-
morphisms. Moreover, putting a positive definite two-dimensional Finsler manifold
(or special types of Finsler manifolds such as Riemannian and Randers manifolds of
dimension n) we characterize all of them under the condition divS = 0.

1. Introduction

In their work [8] the authors constructed special Finsler connections
on a Finsler manifold starting out from torsion-free conservative horizon-
tal endomorphisms. Among others it was proved that for any conservative
torsion-free horizontal endomorphism h there exists a unique Finsler con-
nection (D,h) on M such that

(i) D is metrical;

(ii) the (v)v-torsion of D vanishes;

(iii) the (h)h-torsion of D vanishes.
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As we can see in [8] the rules of calculation with respect to these con-
nections are formally the same as those with respect to the classical Cartan
connection. Moreover, adding a further condition to ones above we can get
it back yet. Of course this is not the only example of such kind of Finsler
connections. It is well-known (see e.g. [9]) that the so-called Wagner con-
nections have a similar character. Actually we can say that a Wagner
connection is a “Cartan connection with nonvanishing (h)h-torsion”, i.e.
it is a generalized Cartan connection. A necessary and sufficient condition
for a Wagner connection to coincide with the classical Cartan connection
is just that the Wagner endomorphism arises from a semispray, i.e. its tor-
sion vanishes. Due to an explicit relation between the (canonical) Barthel
endomorphism of (M,E) and a Wagner endomorphism the problem of ex-
istence is solved. We can easily construct Wagner connections on a Finsler
manifold starting out from a smooth function α ∈ C∞(M). However,
apart from the Barthel endomorphism the analogous problem is open in
case of conservative torsion-free horizontal endomorphisms.

The purpose of this paper are the following:

– to give a necessary and sufficient condition for a torsion-free horizontal
endomorphism to be conservative;

– to give a process to construct such kind of horizontal endomorphisms;

– to characterize them in case of two-dimensional Finsler manifolds (or
Riemannian and Randers manifolds of dimension n) under the condi-
tion div S = 0.

(We emphasize again that these questions can also be formulated in
terms of semisprays!)

1. Preliminaries

1.1. Throughout the paper we use the terminology and conventions de-
scribed in [8] (see also [2], [3] and [9]). Now we briefly summarize the
basic notation.

(i) M is an n (> 1)-dimensional, C∞, connected, paracompact manifold,
C∞(M) is the ring of real-valued smooth functions on M .

(ii) π : TM → M is the tangent bundle of M , π0 : TM → M is the
bundle of nonzero tangent vectors.
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(iii) X(M) denotes the C∞(M)-module of vector fields on M .

(iv) Ωk(M) (k ∈ N+) is the module of (scalar) k-forms on M , Ω◦(M) :=
C∞(M).

(v) Ψk(M) (k ∈ N+) is the C∞(M)-module of vector k-forms on M ,
Ψ◦(M) := X(M).

(vi) ιX , LX (X ∈ X(M)) and d are the insertion operator , the Lie-
derivative (with respect to X) and the exterior derivative, respec-
tively.

1.2. We shall apply some simple facts of the Frölicher–Nijenhuis calculus
of vector-valued forms. Recall that if K ∈ Ψ1(M), Y ∈ X(M) then their
Frölicher–Nijenhuis bracket [K, Y ] ∈ Ψ1(M) acts as follows:

(1) [K,Y ](X) = [K(X), Y ]−K[X, Y ] (X ∈ X(M)).

For the derivation dK induced by K we have:

(2) dKf = df ◦K (f ∈ C∞(M)).

1.3. Vertical apparatus. Semispray, spray. Let us consider the tangent
bundle π : TM → M . Xv(TM) denotes the C∞(TM)-module of vertical
vector fields on TM , C ∈ Xv(TM), J ∈ Ψ1(TM) are the Liouville vector
field and vertical endomorphism, respectively. We have:

(3)





Im J = Ker J = Xv(TM), J2 = 0,

[C, J ] = −J (i.e. J is homogeneous of degree 0),

dJ = dJ ◦ LC − LC ◦ dJ .

The vertical lift of a vector field X ∈ X(M) is denoted by Xv.

Definition. A mapping S : v ∈ TM → S(v) ∈ TvTM is said to be a
semispray on M if it satisfies the conditions:

(Spr1) S is smooth on TM ,

(Spr2) JS = C.

A semispray is called a spray if it is homogeneous of degree 2, i.e.

(Spr3) [C,S] = S.

(Note that (Spr3) implies for any spray to be a vector field of class
C1 on TM .)
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The vertical and complete lifts of a function α ∈ C∞(M) are given by

(4) αv := α ◦ π, αc := Sαv,

where S is an arbitrary semispray on M , respectively. For any X ∈ X(TM)

(5) J [JX, S] = JX.

(For a proof see [2], p. 295.)

Remark 1. In the sequel we shall consider forms over TM or TM .
Differentiability of vector (and scalar) k-forms will be required only over
TM , unless otherwise stated.

1.4. Horizontal endomorphisms ([2], [3] and see also [8])

Definition. A vector 1-form h ∈ Ψ1(TM) is said to be a horizontal
endomorphism on M if the following conditions are satisfied:

(He1) h is smooth over TM ,

(He2) h is a projector, i.e. h2 = h,

(He3) Ker h = Xv(TM).

The associated semispray of h is defined by the formula

(6) Sh := h(S),

where S is an arbitrary semispray on M . The tension of h is the vector
1-form

H := [h,C] ∈ Ψ1(TM).(7)

The vector 2-form

t := [J, h] ∈ Ψ2(TM)(8)

is said to be the torsion of h. If H = 0, then h is called homogeneous.

Remark 2. It is a well-known fact (see e.g. [2]) that a horizontal en-
domorphism h arises from a semispray, i.e. it has a form

(9) h =
1
2
(
1 + [J, S]

)
,

if and only if its torsion vanishes.
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J and h are obviously related as follows:

(10) h ◦ J = 0, J ◦ h = J

and, furthermore, any horizontal endomorphism h determines an almost
complex structure F ∈ Ψ1(TM) (F 2 = −1, F is smooth on TM) such that

(11) F ◦ J = h, F ◦ h = −J.

(For the details see e.g. [2].)

1.5. Finsler manifolds

Definition. Let a function E : TM → R be given. The pair (M,E),
or simply M , is said to be a Finsler manifold with energy function E if
the following conditions are satisfied:

(F0) ∀v ∈ TM : E(v) > 0, E(0) = 0,

(F1) E is of class C1 on TM and smooth on TM ,

(F2) C(E) = 2E (i.e. E is homogeneous of degree 2),

(F3) the fundamental form ω := ddJE ∈ Ω2(TM) is symplectic.

The mapping

(12)

{
g : Xv(TM)× Xv(TM) → C∞(TM),

(JX, JY ) → g(JX, JY ) := ω(JX, Y )

is a well-defined, nondegenerate symmetric bilinear form which is said to
be the Riemann-Finsler metric of (M, E). The Finsler manifold is called
positive definite if g is positive definite.

We have the following important identities:

(13) ιCω = dJE, LCω = ω

(i.e. the fundamental form ω is homogeneous of degree 1).

The fundamental lemma of Finsler geometry [2]. On a Finsler mani-
fold (M,E) there is a unique horizontal endomorphism h such that

(B1) h is conservative, i.e. dhE = 0,

(B2) h is homogeneous,

(B3) h is torsion-free, i.e. t = 0.
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Explicitly,

(14) h =
1
2
(
1 + [J, S]

)
,

where S is the canonical spray defined by the formula

(15) ιSω = −dE.

h is called the Barthel endomorphism of the Finsler manifold (M,E).
Let h be an arbitrary horizontal endomorphism on M , ν := 1 − h.

The mapping

(16)
{

gh : X(TM)× X(TM) → C∞(TM),

(X,Y ) → gh(X, Y ) := g(JX, JY ) + g(νX, νY )

is a well-defined pseudo-Riemannian metric on TM which is said to be the
prolongation of g along h.

Definition. The tensor field C satisfying the condition

ω(C(X,Y ), Z) :=
1
2
LJX(J∗gh)(Y, Z)

(
X,Y, Z ∈ X(TM)

)

is called the first Cartan tensor of the Finsler manifold.

Remark 3. It is easy to check that C is independent of the choice of h

and
(i) it is semibasic,
(ii) its lowered tensor

C[(X, Y, Z) := g(C(X, Y ), JZ)

is totally symmetric,
(iii) C◦ := ιS C = 0 (S is an arbitrary semispray on M).

Let a smooth function ϕ : TM → R (or ϕ : TM → R) be given. Since
the fundamental form ω is symplectic, there exists a unique vector field
gradϕ ∈ X(TM) such that

(17) ιgrad ϕω = dϕ;

this vector field is called the gradient of ϕ.
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Lemma 1. The gradient vector field of a vertical lift αv := α ◦ π

(α ∈ C∞(M)) has the following properties:

(i) grad αv ∈ Xv(TM), [C, grad αv] = − gradαv (i.e. it is homogeneous

of degree 0),

(ii) grad αv(E) = αc,

(iii) ιF grad αvC = − 1
2 [J, gradαv].

For a proof see [7] and [9]. ¤

Definition [4]. Let (M,E) be a Finsler manifold and consider the vol-
ume form

w :=
(−1)n(n+1)/2

n!
ωn

on TM . The divergence of a vector field X ∈ X(TM) is the function div X

given by formula

(18) (div X)w = LXw.

Lemma 2 [7]. For any function ϕ ∈ C∞(TM)

(19) div(grad ϕ) = 0; div C = n.

2. Conservative vector fields on a Finsler manifold

In what follows, we will denote the canonical spray and the Barthel
endomorphism of a Finsler manifold (M,E) by Sh and h, respectively. (It
is well-known that the canonical spray is just the semispray associated
with h.)

Definition. Let (M, E) be a Finsler manifold. A horizontal endomor-
phism h̃ on M is said to be conservative (with respect to the energy func-
tion E) if

dehE = 0.

A semispray S̃ is called conservative if the induced horizontal endo-
morphism

h̃ :=
1
2
(
1 + [J, S̃]

)
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is conservative.
A vector field V ∈ Xv(TM) is conservative if the semispray

S̃ := Sh + V

is conservative:

Proposition 1. A vector field V ∈ Xv(TM) is conservative if and

only if

(20) ιV ω = dJ(V E),

or in an equivalent form, a semispray S̃ is conservative if and only if

ιeSω + dE = dJ(S̃E).

Proof. For any vector field X ∈ X(TM),

iV ω(X)− dJ(V E)(X) = ω(V, X)− JX(V E) = ddJE(V, X)− JX(V E)

= V (JX(E))− J [V, X](E)− JX(V E)

= −[JX, V ](E) + J [X, V ](E)
(1)
= −[J, V ](X)(E).

On the other hand if S̃ := Sh + V and h̃ is the induced horizontal
endomorphism then we get:

dehE(X) = h̃(X)(E) =
1
2
(1 + [J, S̃])(X)(E)

(14)
= h(X)(E) +

1
2
[J, V ](X)(E)

(B1)
=

1
2
[J, V ](X)(E),

which implies our statement. ¤

Corollary 1. If V ∈ Xv(TM) is a conservative vector field then the

following homogeneity properties are valid:

(21) C(V E) = V (E); LC(dJ (V E)) = 0; [C, V ] = −V.

Proof. From the hypothesis it follows that

0 =
1
2
(
1 + [J, Sh + V ]

)
(Sh)(E) = h(Sh)(E) +

1
2
[J, V ](Sh)(E)
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(B1)
=

1
2
[J, V ](Sh)(E)

(1)
=

1
2
[C, V ](E)− 1

2
J [Sh, V ](E)

(5)
=

1
2
[C, V ](E) +

1
2
V (E).

So we get

0 = [C, V ](E) + V (E) = C(V E)− V (CE) + V (E)

(F2)
= C(V E)− V (E) ⇒ C(V E) = V (E).

Consequently,

LC(dJ(V E))
(3)
= dJLC(V E)− dJ(V E) = dJ(V E)− dJ(V E) = 0.

Finally,

ι[C,V ] ω = LC ιV ω − ιV LC ω
(13)
= LC ιV ω − ιV ω

(20)
= LC(dJ(V E))− ιV ω = −ιV ω ⇒ [C, V ] = −V. ¤

Corollary 2. Let S̃ be a conservative semispray; V := S̃ − Sh. Then

[C, S̃] = S̃ − 2V,

i.e. the deviation of S̃ is just −2V .

Proof. Using the homogeneity property

[C,Sh] = Sh

of the canonical spray, an easy calculation shows that

[C, S̃]− S̃ = [C, V ]− V
(21)
= −2V. ¤

Corollary 3. Consider a torsion-free conservative horizontal endo-

morphism h̃ given by the formula

h̃ =
1
2
(1 + [J, S̃]),
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where S̃ is a conservative semispray; V := S̃ − Sh.

Then

(i) the associated semispray of h̃ coincides with the canonical spray Sh,

(ii) H̃ = [J, V ].

Proof. It is well-known (see [2]) that the associated semispray of h̃

is just

S̃ +
1
2
S̃∗,

where S̃∗ denotes the deviation of S̃. Compare this relation with Corol-
lary 2 we get our first statement.

Using Grifone’s decomposition formula (see also [2]) (i) implies that

h̃ = h +
1
2
H̃.

On the other hand

h̃ =
1
2
(1 + [J, S̃]) =

1
2
(1 + [J, Sh]) +

1
2
[J, V ] = h +

1
2
[J, V ],

and thus

H̃ = [J, V ]. ¤

Remark 4. The converse of the previous statement is obviously true:
If h̃ is a torsion-free horizontal endomorphism on M such that

(i) the associated semispray of h̃ coincides with the canonical semispray
Sh, i.e. Seh = Sh,

(ii) the tension of h̃ can be written in the form

H̃ = [J, V ],

where V ∈ Xv(TM) is a conservative vector field, then h̃ is also
conservative.

(Use Grifone’s decomposition formula to prove this observation!)
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Theorem 1. Let (M, E) be a Finsler manifold and suppose that the
function ϕ ∈ C∞(TM) is homogeneous of degree 1, i.e. C(ϕ) = ϕ.

Then the vector field V ∈ Xv(TM) defined by the formula

(22) ιV ω = dJ ϕ

is conservative.

Proof. It is clear from the definition that V is a vertical vector field.
Substituting the canonical spray Sh into (22) we get

ιV ω(Sh) = ω(V, Sh) = −ω(Sh, V ) = −ιSh
ω(V )

(15)
= V (E).

On the other hand

dJ ϕ(Sh)
(2)
= J(Sh)(ϕ)

(Spr2)
= C(ϕ) = ϕ,

using the homogeneity property of ϕ. This means that the vector field V
satisfies the relation

ιV ω = dJ(V E),

i.e., by Proposition 1, V is conservative. ¤
Definition. Let (M, E) be a Finsler manifold. The mapping

∆ : C∞(TM) → C∞(TM)

ϕ → ∆ϕ := − div(J grad ϕ)

is called the Brickell operator of the Finsler manifold (M, E).
(A nice application of the elliptic differential operator ∆ can be found

in Brickell’s paper [1].)

Remark 5. Let
(
U, (ui) n

i=1

)
be a chart on M and consider the induced

chart
(
π−1(U), (xi, yi) n

i=1

)
; xi := ui ◦ π,

yi : v ∈ π−1(U) → yi(v) := v(ui) (1 ≤ i ≤ n)

of the tangent manifold TM . Then we get the following coordinate ex-
pression:

(23) J grad ϕ = −gij ∂ϕ

∂yi

∂

∂yj
,
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where

gij := g

(
∂

∂yj
,

∂

∂yj

)
=

∂2E

∂yi∂yj
; (gij) = (gij)−1.

∆ϕ = gij ∂2ϕ

∂yi∂yj
.(24)

(The proof is an easy straightforward calculation based on the defini-
tions and [4].)

Lemma 3. Let a function ϕ ∈ C∞(TM) be given and suppose that ϕ

is homogeneous of degree 0. Then the following assertions are equivalent:

(i) ϕ = αv
(
α ∈ C∞(M)

)
, i.e. ϕ is a vertical lift;

(ii) ∆ϕ ≥ 0 (or ∆ϕ ≤ 0).

Proof. Since ϕ is homogeneous of degree 0, it attains a maximum
(or a minimum) on each fiber TpM (p ∈ M). So the nontrivial implication
(ii) =⇒ (i) is a special case of Hopf’s strong maximum principle (see [11],
p. 26). ¤

Proposition 2. If V ∈ Xv(TM) is a conservative vector field, then

(25) J grad(V E) = −V

and, consequently,

(26) ∆(V E) = div V.

Proof. For any vector field X∈X(TM),

ω(J grad(V E), X)
(12)
= g(J grad(V E), JX) = g(JX, J grad(V E))

(12)
= ω(JX, grad(V E)) = −ω(grad(V E), JX)

(17)
= −JX(V E) = −dJ(V E)(X)

(20)
= −ιV ω(X),

from which it follows that

J grad(V E) = −V. ¤
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Proposition 3. The normalized Liouville vector field C0 := L−1C,

where the function L is defined by the formula E = 1
2L2, is conservative.

Then

∆(C0E) = (n− 1)
1
L

.

(Note that the function L is uniquely determined up to the sign!)

Proof. From (F2) we get immediately the homogeneity property

C(L) = L,

i.e. L is homogeneous of degree 1. According to Theorem 1, this means
that the vector field V ∈ Xv(TM) defined by the formula

iV ω = dJL

is conservative.
Since

ιC ω
(13)
= dJE = dJ

(
1
2
L2

)
= LdJL = L ιV ω,

we get the relation

C = LV ⇒ V =
1
L

C.

On the other hand

∆(C0E)
(26)
= div C0 = div

(
1
L

C

)

(18)
=

1
L

div C + C

(
1
L

)
Lemma 2= n

1
L
− 1

L2
C(L)

= (n− 1)
1
L

. ¤

Remark 6. Since the normalized Liouville vector field can be consid-
ered as a canonical object of a Finsler manifold (M,E) it seems to be
actually the most important example of conservative vector fields. More-
over, by the help of C0, we can construct further canonical ones on (M,E).
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For example, an easy calculation shows that the torsion-free conservative
horizontal endomorphism h0 induced by the conservative semispray

S0 := Sh + C0

and the Barthel endomorphism are related as follows:

(27) h0 = h +
1

2L

(
J − 1

L
dJL⊗ C

)
.

Denote C′ and C′0 the second Cartan tensors belonging to h and h0,
respectively (for the definition see [8]). Then for any vector fields X,Y ∈
X(TM),

C′0(X, Y ) = C′(X, Y ) +
1

2L

{
C(X,Y )− 1

L
JX(L)JY − 1

L
JY (L)JX

}

+
1
L2

[
1
L

JX(L)JY (L)− 1
2
ddJL(JX, Y )

]
C.(28)

Using Theorems 4.3, 4.5 and 4.9 of our stimulating paper [8], pp. 46–
51, these formulas allow one to describe some new (more or less canonical)
Finsler connections on the Finsler manifold (M, E):

– A Berwald-type Finsler connection associated with h0

(see 4.3. Theorem in [8], p. 47);

– A Cartan-type Finsler connection associated with h0

(see 4.5. Theorem in [8], p. 47);

– A Chern–Rund-type Finsler connection associated with h0

(see 4.9. Theorem in [8], p. 50);

– etc. (see for example a Hashiguchi-type Finsler connection associated
with h0; [6]).

(It seems to be an important application of our results to the theory
of Finsler connections.)

By using Theorem 1, the following observations can be easily verified:

(i) For any vector field X ∈ X(M) the vertical lift Xv is conserva-
tive. Moreover, the induced horizontal endomorphism coincides with the
Barthel endomorphism.
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(ii) For any function α ∈ C∞(M) the gradient vector field grad αv

is conservative. Then the induced horizontal endomorphism hα and the
Barthel endomorphism are related as follows

hα = h− ιF grad αvC.

(Use Lemma 1 to derive this relation; see [10], pp. 25–26.)

(iii) The conservative vector fields form a C∞(M)-module by the
“scalar” multiplication

C∞(M)× Xv(TM) → Xv(TM),

(α, V ) → αvV.

3. Conservative vector fields on special Finsler manifolds

We have seen (c.f. Remark 6/(ii)) that for any function α ∈ C∞(M)
the gradient vector field V := grad αv is conservative. Then, as an easy
calculation shows, div V = 0. In what follows we give some analogous
results in case of special Finsler manifolds that it is essentially true vice-
versa: if V is a conservative divergence-free vector field then it can be
expressed (at least locally) as a linear combination of gradient vector fields
with respect to the scalar multiplication introduced in Remark 6/(iii).

Theorem 2. Let (M, E) be a two-dimensional , positive definite Fin-

sler manifold and suppose that V ∈ Xv(TM) is conservative. Then the

following assertions are equivalent:

(i) div V = 0;

(ii) for any chart
(
U, (ui) 2

i=1

)
on M ,

V = αv
1 grad x1 + αv

2 grad x2

(xi := ui ◦ π, αi ∈ C∞(M), 1 ≤ i ≤ 2).

Proof. First of all we recall that the divergence of a vertical vector
field JX ∈ Xv(TM) can be calculated by the formula

(29) div JX = ˜[J, JX] + 2C̃(X),
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where ˜[J, JX] and C̃ are the semibasic trace of the vector 1-form [J, JX]
and C, respectively.

(For the definitions and proof see [4].)
Using Lemma 1 and (29) we get immediately the implication (ii) =⇒

(i). It remains only to show that (i) =⇒ (ii) is also valid. Let
(
U, (ui) 2

i=1

)
be an arbitrarily fixed chart on M . Then we have the following local
expressions for the vector field V :

V ¹ π−1
0 (U) = V i ∂

∂yi
= βi gradxi,

where V i = gijβj (1 ≤ i ≤ 2).
Formula (20) shows that

V igij =
∂

∂yj
(V E)

and, consequently, βj = ∂
∂yj (V E) (1 ≤ j ≤ 2).

Using this coordinate expression of the functions β1 and β2 the ho-
mogeneity properties (21) give rise to the relations

C(βj) = yi ∂

∂yi
(βj) = 0 (1 ≤ j ≤ 2);(30)

yi ∂

∂yj
(βi) = 0 (1 ≤ j ≤ 2);(31)

∂βi

∂yj
=

∂βj

∂yi
(1 ≤ i, j ≤ 2).(32)

From the hypotesis div V = 0 and (24), (26) we get that

0 = y1y2

(
gij ∂2

∂yi∂yj
(V E)

)
= y1y2

(
gij ∂

∂yi
(βj)

)

(32)
= y1y2

(
g11 ∂

∂y1
(β1) + 2g12 ∂

∂y2
(β1) + g22 ∂

∂y2
(β2)

)

(30),(31),(32)
=

(
− (y2)2g11 + 2y1y2g12 − (y1)2g22

) ∂

∂y2
(β1).

Let K ∈ R \ {0} be an arbitrary nonzero real number and consider a
tangent vector

v = v1 ∂

∂u1
p

+ v2 ∂

∂u2
p

∈ TpM \ {0}
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such that v2 = Kv1.
Suppose that

−(v2)2g11(v) + 2v1v2g12(v)− (v1)2g22(v) = 0, i.e.

±g12(v) =
g11(v)|K|+ g22(v) 1

|K|
2

≥
√

g11(v)g22(v) ⇒ det gij(v) ≤ 0,

which is a contradiction to the condition of positive definiteness. Thus we
get that

∂

∂y2
(β1)

(32)
=

∂

∂y1
(β2) = 0

holds everywhere except at the points of a set of measure zero (in case of
v1 = 0 or v2 = 0). Since the functions β1 and β2 are smooth over π−1

0 (U),
this means that for any tangent vector v ∈ π−1

0 (U)

(33)
∂

∂y2
v

(β1) =
∂

∂y1
v

(β2) = 0.

Using the homogeneity properties (30) of the functions βi (1 ≤ i ≤ 2)
we can deduce the relations

(34)
∂

∂y1
(β1) =

∂

∂y2
(β2) = 0

in a similar manner. (33) and (34) imply the functions β1 and β2 to be
vertical lifts:

βi = αi ◦ π (αi ∈ C∞(M), 1 ≤ i ≤ 2). ¤

Remark 7. (i) Since for any Finsler manifold the canonical spray Sh

is divergence-free, i.e. div Sh = 0, the conditions div V = 0 and div S̃ = 0
(S̃ := Sh + V ) are equivalent. Indeed,

LSh
ωn = ιSh

dωn + dιSh
ωn (F3)

= dιSh
ωn

= nd(ιSh
ω ∧ ωn−1)

(15), (F3)
= 0,

so we get the vanishing of div Sh.
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(ii) It can be easily seen from the proof of Theorem 2 that in case
of div V = 0, the function V (E) is necessarily linear on each fiber TpM

(p ∈ M). Keeping our previous notations, for any chart
(
U, (ui) 2

i=1

)
on M ,

V (E) ¹ π−1(U) = y1αv
1 + y2αv

2.

According to the implication (i) =⇒ (ii) we can also say that the
condition div V = 0 determines a (locally) finitely generated nontrivial
submodule of the module of conservative vector fields. (The trivial example
of such a submodule is just the module X(M); cf. Remark 6/(i), (iii).)

(iii) An alternative reasoning to prove the implication (i) =⇒ (ii)
can be realized as follows.

From the hypothesis div V = 0 we get immediately that

0
(18)
= LV ω2 = ιV (dω2) + d(ιV ω2)

(F3)
= d(ιV ω2)

= d(2ιV ω ∧ ω)
(20)
= 2(ddJβ) ∧ ω,

where β := V (E).
Using the vanishing of the form (ddJβ) ∧ ω it follows that for any

vector field X ∈ X(M),

ιXv

[
(ddJβ) ∧ ω

]
= ιXh

[
(ddJβ) ∧ ω

]
= 0

and, consequently,

ιXv(ddJβ) ∧ ω = −(ddJβ) ∧ ιXvω,

ιXh(ddJβ) ∧ ω = −(ddJβ) ∧ ιXhω.

By the help of these formulas it can be easily deduced that for any
vector fields X, Y ∈ X(M),

(ddJβ)(Xv, Y h)ω2 = −2ddJβ ∧ ιXv ω ∧ ιY hω.

According to the tensorial character of our result we have:

(ddJβ)(JX, Y )ω2 = −2ddJβ ∧ ιJX ω ∧ ιY ω (X, Y ∈ X(TM)).
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Let now
(
U, (ui) 2

i=1

)
be an arbitrary chart on M and, for brevity, let

us set

∂k :=
∂

∂yk
, δk :=

(
∂

∂uk

)h

, βk := ∂kβ (1 ≤ k ≤ 2).

Then

ddJβ(J grad βk, δk)ω2(∂1, ∂2, δ1, δ2)

= −2ddJβ(J gradβk, δk) det
[
(gij)1≤i,j≤2

]
.

On the other hand

ddJβ ∧ ιJ grad βk
ω ∧ ιδk

ω(∂1, ∂2, δ1, δ2) = gk1

(
(∂2∂2β)(∂1∂kβ)

− (∂1∂2β)(∂2∂kβ)
)

+ gk2

(
(∂1∂1β)(∂2∂kβ)− (∂1∂2β)(∂1∂kβ)

)
.

Since

ddJβ(J gradβk, δk) = (J gradβk)(βk) = ω(gradβk, J gradβk)

= −g(J grad βk, J gradβk) = −‖J gradβk‖2,

we get that

− det
[
(gij)1≤i, j≤2

] ·
2∑

k=1

‖J gradβk‖2 = det
[
(∂i∂jβ)1≤i, j≤2

]
(g11 + g22).

Suppose that

det
[
(∂i∂jβ)1≤i, j≤2

]
(v) 6= 0 (v ∈ TpM).

This means that the mapping

(β1, β2) : TpM → R2

w → (β1, β2)(w) := (β1(w), β2(w))

is a local diffeomorphism at the “point” v ∈ TpM , which contradicts the
homogeneity property of the functions β1, β2. Indeed, these functions
are obviously homogeneous of degree 0 (i.e. “constant along rays”); cf.
Corollary 1.
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The contradiction implies the vanishing of the vector fields J grad β1,
J gradβ2 and, consequently, it follows that β1, β2 are constant on each
fiber TpM (p ∈ M). ¤

Corollary 4. Suppose that (M, E) is a two-dimensional, positive def-

inite Finsler manifold. If V ∈ Xv(TM) is a conservative vector field such

that div V = 0, then the induced horizontal endomorphism

h̃ :=
1
2
(1 + [J, S̃]),

where S̃ := Sh + V , has the following simple form:

h̃ = h− ιFV C.

(Cf. Remark 6/(ii).)

Definition. Let α be a Riemannian metric and β a (nonzero) 1-form
on the manifold M . Consider the functions

(35)





Lα : TM → R, v → Lα(v) := [απ(v)(v, v)]1/2;

β̃ : TM → R, v → β̃(v) := βπ(v)(v);

L := Lα + β̃; E :=
1
2
L2.

If

‖β̃‖ := sup
v∈TM

β̃(v)
Lα(v)

< 1,

then (M, E) is a Finsler manifold which is said to be the Randers manifold
constructed from the Riemann manifold (M,α) by the perturbation with β̃.

Remark 8. Consider a chart
(
U, (ui) n

i=1

)
on M . If

αij := α

(
∂

∂ui
,

∂

∂uj

)
, (αij) := (αij)−1;

βi := β

(
∂

∂ui

)
, βi := αijβj ,

β# ¹ U = βi ∂

∂ui
, b2 := ‖β#‖2α := α(β#, β#)
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then we have the following coordinate expression (see e.g. [5], p. 209):

(36) gij =
Lα

L

(
αij ◦π

)− Lα

L2
(yi(βj ◦π)+yj(βi◦π))+

Lα(b2 ◦ π) + β̃

L3
yiyj .

Theorem 3. Let (M, E) be a positive definite Randers manifold of

dimension n and suppose that V ∈ Xv(TM) is conservative. Then the

following assertions are equivalent:

(i) div V = 0;

(ii) for any chart
(
U, (ui) n

i=1

)
on M ,

V ¹ π−1
0 (U) = γv

1 gradx1 + · · ·+ γv
n gradxn

(xi := ui ◦ π, γi ∈ C∞(M), 1 ≤ i ≤ n).

Proof. The implication (ii) =⇒ (i) is trivial (cf. Theorem 2). To
prove (i) =⇒ (ii) first of all let

V ¹ π−1
0 (U) = δ1 grad x1 + · · ·+ δn gradxn,

where δi ∈ C∞(π−1
0 (U)), 1 ≤ i ≤ n. In a similar manner as in the proof of

Theorem 2, we get that for any indeces i ∈ {1, . . . , n}

(37) δi =
∂

∂yi
(V E).

(Note that the basic properties (30)–(32) of the coefficients are obvi-
ously not depend on the condition of dimensionality!)

The hypothesis div V = 0 and (26) implies that

(38)

0 = ∆(V E)
(24)
= gij ∂2

∂yi∂yj
(V E)

(36),(21)
=

=
Lα

L
(αij ◦ π)

∂2

∂yi∂yj
(V E) ⇒

0 = (αij ◦ π)
∂2

∂yi∂yj
(V E) = ∆α(V E),

where ∆α denotes the Brickell operator of the Finsler (especially Riemann)
manifold (M,Eα); Eα := 1

2L2
α.
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Differentiating (38) by ∂
∂yk it follows that

0 =
∂

∂yk
(∆α(V E))

(37)
= ∆αδk.

Thus Lemma 3 implies the functions δ1, . . . , δk to be vertical lifts, i.e.

δk = γk ◦ π (γk ∈ C∞(M), 1 ≤ k ≤ n). ¤

Corollary 5. Let (M, E) be a positive definite Randers manifold and

suppose that V ∈Xv(TM) is a conservative vector field such that div V = 0.

Then the induced horizontal endomorphism

h̃ =
1
2
(1 + [J, S̃]),

where S̃ := Sh + V , has the following simple form: h̃ = h− ιFV C.
(Cf. Corollary 4.)

Corollary 6. Suppose that (M, E) is a (positive definite) Riemann

manifold and let V ∈ Xv(TM) be a conservative vector field.

Then the following assertions are equivalent:

(i) div V = 0;

(ii) V = Xv (X ∈ X(M)), i.e. V is a vertical lift.

Moreover, the induced horizontal endomorphism h̃ coincides with the

Barthel endomorphism.

Proof. Since a Riemann manifold (M, E) can be considered as a
special Randers manifold with β̃ ≡ 0, Theorem 3 implies the equivalence

(iii) div V = 0

(iv) V ¹ π−1
0 (U) = γv

1 gradx1 + · · · + γv
n gradxn for an arbitrary chart(

U, (ui) n

i=1

)
on M .

Here, of course, all of vector fields grad xi are vertical lifts, i.e.

gradxi = Xv
i (Xi ∈ X(M), 1 ≤ i ≤ n).

(Note that grad xi are just the vertical lifts of Riemannian gradients

gradR ui ∈ X(U) (1 ≤ i ≤ n).)
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Consequently,

V ¹ π−1
0 (U) = γv

1Xv
1 + · · ·+ γv

nXv
n = (γ1X1 + · · ·+ γnXn)v.

The relation h̃ = h is trivial. ¤
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