On the frequency of \boldsymbol{k}-deficient numbers

By JEAN-MARIE DE KONINCK (Quebec) and IMRE KÁTAI (Budapest)

Abstract

A number n is said to be k-deficient if $\sigma(n)<k n$. We prove that, given $k>1$ and a function $H(x)$ satisfying $H(x) /(\log \log \log x \cdot \log \log \log \log x) \rightarrow+\infty$ then, if n is sufficiently large, there is always a k-deficient number between n and $n+H(n)$.

§1. Introduction

Let $\sigma(n)$ stand for the sum of the divisors of the positive integer n. A number n is called deficient if $\sigma(n)<2 n$. It is well known that roughly $\frac{3}{4}$ of the positive integers are deficient. Using a method developed by Galambos [2] and Kátai [3], Sándor [4] proved that if n is sufficiently large, then there is always a deficient number between n and $n+\log ^{2} n$.

Given a real number $k>1$, we shall say that a number n is k-deficient if $\sigma(n)<k n$. The density of the set of k-deficient numbers exists and steadily decreases to 0 as $k \rightarrow 1^{+}$. We shall prove that, given $k>1$ and a function $H(x)$ satisfying

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{H(x)}{\log _{3} x \cdot \log _{4} x}=+\infty \tag{1}
\end{equation*}
$$

(where $\log _{\ell} x$ stands for the function $\log x$ iterated ℓ times), then, if $n>$ $n_{0}=n_{0}(k, H)$, there is always a k-deficient number between n and $n+$ $H(n)$.

Mathematics Subject Classification: 11A25, 11N37, 11N60.
Key words and phrases: sum of divisors, deficient numbers.
Research of the first author supported in part by a grant from CRSNG.

Also, letting

$$
\begin{equation*}
f(n)=\sum_{p \mid n} \frac{1}{p} \text { for each } n \geq 2 \tag{2}
\end{equation*}
$$

and given two real numbers $\eta>0$ and $0<\xi<1$, we shall prove that there exists a sequence $\left\{x_{\nu}\right\}$ tending to $+\infty$ such that

$$
\min _{x_{\nu} \leq n \leq x_{\nu}+\frac{1-\xi}{\eta} \log _{3} x_{\nu}} f(n)>\eta \quad(\nu=1,2, \ldots) .
$$

§2. Main results

Theorem 1. Let f be as in (2) and $H=H(x)$ as in (1), then

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \min _{x \leq n \leq x+H} f(n)=0 . \tag{3}
\end{equation*}
$$

Theorem 2. If $H=H(x)$ satisfies (1), then

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \min _{x \leq n \leq x+H} \frac{\sigma(n)}{n}=1 \tag{4}
\end{equation*}
$$

Thus, given any real number $k>1$, there exist $n_{0}=n_{0}(k)$ such that, for all integers $n \geq n_{0}$, the interval $[n, n+H(n)]$ contains at least one k-deficient number.

Theorem 3. Given two real numbers $\eta>0$ and $0<\xi<1$, there exists a sequence $\left\{x_{\nu}\right\}$ tending to $+\infty$ such that

$$
\begin{equation*}
\min _{x_{\nu} \leq n \leq x_{\nu}+\frac{1-\xi}{\eta} \log _{3} x_{\nu}} f(n)>\eta \quad(\nu=1,2, \ldots) . \tag{5}
\end{equation*}
$$

§3. Preliminary results

In this paper, we use the following notations. For each $x \geq e^{e^{e^{e}}}$, we let $H=H(x)$ be a function satisfying (1). Let $\varepsilon>0$ be arbitrarily small but fixed throughout the text. For each $x \geq e$, we set $Y=Y(x, \varepsilon)=$ $2(\log x)^{1 /(1+\varepsilon)}$.

Letting f be as in (2), we define $f_{i}(n), 1 \leq i \leq 4$, for each integer $n \geq 2$, by

$$
\begin{align*}
f_{1}(n)=\sum_{\substack{p \mid n \\
p<Y}} \frac{1}{p}, & f_{2}(n)=\sum_{\substack{p \mid n \\
p \geq Y}} \frac{1}{p}, \\
f_{3}(n)=\sum_{\substack{p \mid n \\
H \leq p<Y}} \frac{1}{p}, & f_{4}(n)=\sum_{\substack{p \mid n \\
p<H}} \frac{1}{p}, \tag{6}
\end{align*}
$$

so that $f=f_{1}+f_{2}=f_{2}+f_{3}+f_{4}$.
Given $H=H(x)$ and a real number $\delta, 0<\delta<\frac{1}{2}$, let

$$
\begin{equation*}
\left.\mathcal{M}=\mathcal{M}(\delta, H)=\{n \in] x, x+H]: p(n)>H^{\delta}\right\} \tag{7}
\end{equation*}
$$

where $p(n)$ stands for the smallest prime factor of n. We write $\# \mathcal{M}$ to denote its cardinality. Finally c stands for a positive constant, not necessarily the same at each occurence.

We shall be using the following known estimates, which are all consequences of the Prime Number Theorem:
(8) $\prod_{p \leq x} p=e^{(1+o(1)) x}$,
(9) $\sum_{p \leq x} \frac{1}{p}=\log \log x+c+o(1)$,
(10) $\prod_{p \leq x}\left(1-\frac{1}{p}\right)=(1+o(1)) \frac{e^{-\gamma}}{\log x}, \quad$ (here γ is Euler's constant)
(11) $\sum_{p>x} \frac{1}{p^{2}} \ll \frac{1}{x \log x}$.

Lemma 1. There exists a real number x_{0} such that if $x \geq x_{0}$, then $f_{2}(n)<2 \varepsilon$ for all $n \leq 2 x$.

Proof. Write $2=p_{1}<p_{2}<\ldots$ for the sequence of all primes. Given $n \leq 2 x$, let q_{1}, \ldots, q_{r} be the prime divisors of n which are larger than Y. Then, writing $s=\pi(Y)$, we have, using (8),

$$
p_{1} p_{2} \ldots p_{s} q_{1} q_{2} \ldots q_{r} \leq p_{1} p_{2} \ldots p_{s} n \leq 2 x e^{\frac{3}{2} Y} \leq x e^{2 Y}
$$

provided x is large enough. Moreover since $p_{s+j} \leq q_{j}$ for each positive integer j, we have

$$
\begin{equation*}
p_{1} p_{2} \ldots p_{s+r} \leq p_{1} p_{2} \ldots p_{s} q_{1} q_{2} \ldots q_{r} \leq x e^{2 Y} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{2}(n) \leq \sum_{j=1}^{r} \frac{1}{p_{s+j}} \tag{13}
\end{equation*}
$$

Clearly inequality (12) implies that

$$
\sum_{j=1}^{s+r} \log p_{j} \leq \log x+2 Y
$$

while it follows from (8) that

$$
\sum_{j=1}^{r+s} \log p_{j}=(1+o(1)) p_{s+r} .
$$

Whence, combining these last two relations, we have

$$
\begin{equation*}
p_{s+r} \leq(1+o(1))(\log x+2 Y) . \tag{14}
\end{equation*}
$$

Furthermore if follows from (13), (9) and (14) and that

$$
\begin{aligned}
f_{2}(n) & =\sum_{i=1}^{r} \frac{1}{q_{i}} \leq \sum_{i=1}^{r} \frac{1}{p_{s+i}} \leq \log \frac{\log p_{s+r}}{\log Y} \\
& \leq \log \frac{\log (\log x+2 Y)}{\log \left(2(\log x)^{1 /(1+\varepsilon)}\right)}<2 \varepsilon,
\end{aligned}
$$

if x is sufficiently large.
Lemma 2. Given $0<\delta<\frac{1}{2}$ and letting \mathcal{M} be as in (7), there exist two positive constants $c_{1}=c_{1}(\delta)$ and $c_{2}=c_{2}(\delta)$ such that $\lim _{\delta \rightarrow 0} c_{1}(\delta)=$ $\lim _{\delta \rightarrow 0} c_{2}(\delta)=1$ and

$$
\begin{equation*}
c_{1} \leq \frac{\# \mathcal{M}}{H \prod_{p \leq H^{\delta}}\left(1-\frac{1}{p}\right)} \leq c_{2} . \tag{15}
\end{equation*}
$$

Proof. This result follows easily from classical sieve theory, for instance by using Lemma 2.1 of Elliott [1].

Lemma 3. Letting f_{3} be as in (6), we have

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{\# \mathcal{M}} \sum_{n \in \mathcal{M}} f_{3}(n)=0 \tag{16}
\end{equation*}
$$

Proof. If x is sufficiently large, then, using (9),

$$
\begin{aligned}
\sum_{x<n \leq x+H} f_{3}(n) & \leq \sum_{H \leq p<Y}\left(\left[\frac{x+H}{p}\right]-\left[\frac{x}{p}\right]\right) \\
& \leq \sum_{H \leq p<Y} \frac{1}{p} \ll \log \frac{\log Y}{\log H} .
\end{aligned}
$$

Then, using the left inequality of (15) followed by (10), we get that, due to the choice of $H(x)$ given by (1) and denoting by $\rho(x)$ the quotient $\frac{H(x)}{\log _{3} x \log _{4} x}$,

$$
\begin{aligned}
\frac{1}{\#} \mathcal{M} \sum_{n \in \mathcal{M}} f_{3}(n) & \leq c \delta \frac{\log H}{H} \cdot \log \left(\frac{\log Y}{\log H}\right) \ll \frac{\log H}{H} \log \log Y \\
& \ll \frac{\log _{4} x}{\rho(x) \cdot \log _{3} x \log _{4} x} \cdot \log _{3} x=\frac{1}{\rho(x)}=o(1),
\end{aligned}
$$

as $x \rightarrow \infty$, which proves (16).
Lemma 4. Letting f_{4} be as in (6), we have

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{\# \mathcal{M}} \sum_{n \in \mathcal{M}} f_{4}(n)=0 \tag{17}
\end{equation*}
$$

Proof. We write

$$
\sum_{n \in \mathcal{M}} f_{4}(n) \leq \sum_{H^{\delta}<p<\sqrt{H}} \frac{1}{p} \sum_{\substack{\frac{x}{p}<m \leq \frac{x}{p}+\frac{H}{p} \\ p(m)>H^{\delta}}} 1+\sum_{\sqrt{H \leq p \leq H}} \frac{H}{p^{2}}=\Sigma_{1}+\Sigma_{2},
$$

say. Applying Lemma 2 to estimate the inner sum of Σ_{1}, we get, using (11),

$$
\Sigma_{1} \leq \frac{2 c_{2}}{\delta} \sum_{p>H^{\delta}} \frac{H}{p^{2} \log H} \leq \frac{H}{\delta \log H} \frac{1}{H^{\delta} \log H^{\delta}}=\frac{H^{1-\delta}}{\delta^{2} \log ^{2} H} .
$$

Since it is clear that $\Sigma_{2}<c \sqrt{H}$, it follows from the left inequality of (15), that

$$
\begin{aligned}
\frac{1}{\# \mathcal{M}} \sum_{n \in \mathcal{M}} f_{4}(n) & \leq \frac{c \delta \log H}{H}\left(\frac{H^{1-\delta}}{\delta^{2} \log ^{2} H}+\sqrt{H}\right) \\
& \ll \frac{1}{\delta H^{\delta} \log H}+\frac{\log H}{\sqrt{H}}=o(1) \quad(x \rightarrow \infty),
\end{aligned}
$$

which proves (17).

§4. Proof of the main results

Proof of Theorem 1. Recalling that $f=f_{2}+f_{3}+f_{4}$ and using Lemmas 1, 3 and 4, estimate (3) follows.

Proof of Theorem 2. First observe that, for all $n \geq 2$,

$$
\begin{aligned}
\frac{\sigma(n)}{n} & =\prod_{p^{\alpha} \| n}\left(1+\frac{1}{p}+\frac{1}{p^{2}}+\cdots+\frac{1}{p^{\alpha}}\right) \\
& =\exp \left\{\sum_{p^{\alpha} \| n} \log \left(1+\frac{1}{p}+\frac{1}{p^{2}}+\cdots+\frac{1}{p^{\alpha}}\right)\right\} \\
& <\exp \left\{2 \sum_{p \mid n} \frac{1}{p}\right\}=\exp \{2 f(n)\}
\end{aligned}
$$

where we used the fact that $\log \frac{1}{1-y}<2 y$ for all positive real numbers $y \leq \frac{1}{2}$. The result then follows from Theorem 1 .

Proof of Theorem 3. It is enough to prove that given an arbitrary large number X, there exists a number $x>X$ and a particular integer n satisfying

$$
\frac{x}{2}<n<x \quad \text { and } \quad \min _{n \leq m \leq n+r} f(m)>\eta,
$$

where $r:=\left[\frac{1-\xi}{\eta} \log _{3} x\right]+1$.
So we start with a large number $x>X$ with r defined as above. Then, using (9), we have

$$
S:=\sum_{p<(1-\xi) \log x} \frac{1}{p}=\log _{3} x+O(1) .
$$

We now split the sum S into r sums S_{i} in such a way that each subsum S_{i} is larger than η. For each $1 \leq i \leq r$, let \wp_{i} be the set of primes appearing in the sum S_{i} and set $P_{i}=\prod_{p \in \wp_{i}} p$. Using (8), we have that

$$
\begin{equation*}
Q:=\prod_{i=1}^{r} P_{i}=\prod_{p<(1-\xi) \log x} p<e^{(1-\xi / 2) \log x}=x^{1-\xi / 2} \tag{18}
\end{equation*}
$$

provided x has been chosen large enough. Then consider the system of congruences

$$
\left\{\begin{array}{l}
n \equiv 0\left(\bmod P_{1}\right), \\
n \equiv-1\left(\bmod P_{2}\right), \\
\\
\vdots \\
n \equiv-r+1\left(\bmod P_{r}\right) .
\end{array}\right.
$$

By the Chinese Remainer Theorem, this system of congruences has a solution $n_{0}<Q<x^{1-\xi / 2}$, because of (18).

Since $n_{0}+s Q$, with $s=0,1,2, \ldots$, are all solutions of this system, let us choose s such that

$$
\frac{x}{2}<n:=n_{0}+s Q<x
$$

such a choice being possible because of (18). For such an integer n, we then have that for each integer $m \in[n, n+r-1]$, we have $f(m) \geq \sum_{\substack{p \mid m \\ p \in \wp_{i}}} \frac{1}{p}>\eta$ for the appropriate integer i, thus completing the proof of Theorem 3 .

§5. Final remark

It is clear that one can obtain similar results when $f(n)$ is replaced by $f_{\alpha}(n):=\sum_{p \mid n} \frac{1}{p^{\alpha}}($ for a fixed $\alpha>0)$ and $\sigma(n)$ by $\sigma_{\alpha}(n):=\sum_{d \mid n} d^{\alpha}$.

References

[1] P. D. T. A. Elliott, Probabilistic Number Theory I, Springer-Verlag, 1979.
[2] J. Galambos, On a conjecture of Kátai concerning weakly composite numbers, Proc. Amer. Math. Soc. 96 (1986), 315-316.
[3] I. KÁtai, A minimax theorem for additive functions, Publ. Math. Debrecen 30 (1983), 249-252.
[4] J. SÁndor, On a method of Galambos and Kátai concerning the frequency of deficient numbers, Publicationes Mathematicae 39 (1991), 155-157.

```
JEAN-MARIE DE KONINCK
DEPARTMENT OF MATHEMATICS AND STATISTICS
LAVAL UNIVERSITY
QUEBEC, QC G1K 7P4
CANADA
IMRE KÁTAI
DEPARTMENT OF COMPUTER ALGEBRA
EÖTVÖS LORÁND UNIVERSITY
PÁZMÁNY PÉTER SÉTÁNY I/D
H-1117 BUDAPEST
HUNGARY
```

(Received November 20, 2001; revised January 8, 2002)

