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On the frequency of k-deficient numbers

By JEAN-MARIE DE KONINCK (Quebec) and IMRE KATAI (Budapest)

Abstract. A number n is said to be k-deficient if o(n) < kn. We prove that,
given k > 1 and a function H(z) satisfying H(z)/(logloglog x - log loglog log ) — 400
then, if n is sufficiently large, there is always a k-deficient number between n and
n+ H(n).

§1. Introduction

Let o(n) stand for the sum of the divisors of the positive integer n.
A number n is called deficient if o(n) < 2n. It is well known that roughly
% of the positive integers are deficient. Using a method developed by
GALAMBOS [2] and KATATI [3], SANDOR [4] proved that if n is sufficiently
large, then there is always a deficient number between n and n + log?® n.

Given a real number k > 1, we shall say that a number n is k-deficient
if o(n) < kn. The density of the set of k-deficient numbers exists and
steadily decreases to 0 as k — 17. We shall prove that, given k > 1 and a
function H(z) satisfying
(1) lim __H@) = +o0

z—oo logs - log,

(where log, z stands for the function logx iterated ¢ times), then, if n >
ng = no(k, H), there is always a k-deficient number between n and n +
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Also, letting

(2) f(n) = Z; for each n > 2
pln

and given two real numbers 7 > 0 and 0 < £ < 1, we shall prove that there
exists a sequence {x,} tending to 400 such that

min fn)>n (v=1,2,...).

azvgngaz,j—k% logs 0

§2. Main results

Theorem 1. Let f be as in (2) and H = H(x) as in (1), then

(3) lim min f(n)=0.

r—o0 x<n<z+H

Theorem 2. If H = H(x) satisfies (1), then

(4) lim  min o(n) =1.

r—oox<n<lz+H N
Thus, given any real number k > 1, there exist ng = no(k) such that,
for all integers n > ng, the interval [n,n + H(n)] contains at least one

k-deficient number.

Theorem 3. Given two real numbers n > 0 and 0 < £ < 1, there
exists a sequence {z,} tending to +oo such that

(5) min f(n)>n (r=1,2,...).

r,<n<z,+ 1-¢ logs x,

n

§3. Preliminary results

e

In this paper, we use the following notations. For each z > e , we
let H = H(z) be a function satisfying (1). Let € > 0 be arbitrarily small
but fixed throughout the text. For each x > e, we set Y = Y(x,¢e) =
2(log )1/ (1+2),
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Letting f be as in (2), we define f;(n), 1 < i < 4, for each integer
n > 2, by

A=Y 0 Rm=3

pln pln

p<Y p2Y
(6) . .
f3(n): Z Ea f4(n): Z ];7

pln pln

H<p<Y p<H

sothat f = fi+ fa=fo+ f3 + fa.
Given H = H(z) and a real number 4, 0 < § < 1, let

(7) M= M(6,H) = {nelz,x+ H]:pln) > H},

where p(n) stands for the smallest prime factor of n. We write #M to de-
note its cardinality. Finally ¢ stands for a positive constant, not necessarily
the same at each occurence.

We shall be using the following known estimates, which are all conse-
quences of the Prime Number Theorem:

®) [[p=cron,

p<z

1
(9) Zf =loglogz + ¢+ o(1),

p<z
(10) H 1-— L (I1+0(1)) <’ (here v is Euler’s constant)
e p) log z’ 7

1 1
11 — .
(11) Zp2<<:1clogau
p>x

Lemma 1. There exists a real number xy such that if x > xq, then
fa(n) < 2¢ for all n < 2z.

PROOF. Write 2 = p; < pa < ... for the sequence of all primes.
Given n < 2z, let ¢, ... ,q, be the prime divisors of n which are larger
than Y. Then, writing s = m(Y"), we have, using (8),

PID2- - DsiGa -G < P1pa-..psn < 2ze?Y < me®Y
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provided z is large enough. Moreover since psy; < g; for each positive
integer j, we have

(12) PID2 - - Pstr < P1P2 - Dsqiq2 - - - G < wE?
and
L1
(13) faln) > —.
=1 Ds+j

Clearly inequality (12) implies that

s+r
Zlogpj <logz +2Y,
j=1

while it follows from (8) that

r+s
> logp; = (14 0(1))psr-
j=1

Whence, combining these last two relations, we have
(14) Poir < (14 0(1))(logz 4 2Y).

Furthermore if follows from (13), (9) and (14) and that

ET: 1 ET: 1 logps+7"
f2m) 4 T = Psvi ®logY

<lo log(logz +2Y)
=08 log(2(log z:)/(1+2))

< 2e,

if  is sufficiently large.

Lemma 2. Given 0 < § < 3 and letting M be as in (7), there exist
two positive constants ¢; = ¢1(d) and co = ¢3(d) such that lims_,gc1(d) =
lims_,0 c2(0) = 1 and

(15) C1 < #M S Ca.

- H[p<ms (1 N %)
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PROOF. This result follows easily from classical sieve theory, for in-
stance by using Lemma 2.1 of ELLIOTT [1]. O

Lemma 3. Letting f3 be as in (6), we have

(16) lim — > fa(n) =0.

Proor. If z is sufficiently large, then, using (9),

POIOESDY ([‘]”ZH}—[ZD

z<n<zx+H H<p<Y
1 logY
< — 1 .
- Z P <log log H

H<p<Y

Then, using the left inequality of (15) followed by (10), we get that, due

to the choice of H(x) given by (1) and denoting by p(z) the quotient
H(x)
logs xlog, =

—/\/l Z fa(n) <cd loglogY

neM

log H H

log, x

< p(@) logyalog,z

logs x = ,0(1:15) = o(1),

as * — 0o, which proves (16). O

Lemma 4. Letting f4 be as in (6), we have

(17) Jim > faln) =0.

PROOF. We write

1 H
PIRAOESED DEEED DEEE LD Dl SRS
nemM H5<p<\/ﬁp omgz VH<p<H p

p(m)>H°
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say. Applying Lemma 2 to estimate the inner sum of ¥;, we get, using (11),

2¢o H H 1 H'
Yo < — < = .
5 p?logH ~ 6logH Holog HY  §2log® H
p>HS$

Since it is clear that Xy < cv/H, it follows from the left inequality of (15),
that

)
#i\/l Zf4(n)§05logH< H! +\/ﬁ>

2 2
oy H 6%2log” H
1 log H
=o(1
<<(5H510gH+ JH o(1) (z — o0),
which proves (17). O

84. Proof of the main results

PROOF of Theorem 1. Recalling that f = fo 4+ f3 + f4 and using
Lemmas 1, 3 and 4, estimate (3) follows. O

PROOF of Theorem 2. First observe that, for all n > 2,

o(n) ( 11 1>
P S 1+-4+ =4+ 4+ —
n H P p2 pa

p*|n
1 1 1
= exp lo (1+++---+>}
{; : p P p*
p*|In
<exp{221}:exp{2f(n)},
plﬂp

where we used the fact that log ﬁ < 2y for all positive real numbers
y < % The result then follows from Theorem 1. O

PROOF of Theorem 3. It is enough to prove that given an arbitrary
large number X, there exists a number z > X and a particular integer n
satisfying

T
—<n<zx and min m) >
5 ngm§n+Tf( ) >,
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where r := [% logs z] + 1.
So we start with a large number z > X with r defined as above. Then,
using (9), we have

1
S = Z — =logsx + O(1).

p<(1-¢)logx

We now split the sum S into r sums .S; in such a way that each subsum .5;
is larger than 7. For each 1 < ¢ <7, let p; be the set of primes appearing

in the sum S; and set P, = [ . p. Using (8), we have that

(18) Q= HPi = H p < e(17¢/2)loga _ 41-¢/2
=1

p<(1-¢) log=

provided x has been chosen large enough. Then consider the system of
congruences
n =0 (mod P),

n=—1 (mod P),

=—r+1 (mod P,).

By the Chinese Remainer Theorem, this system of congruences has a so-
lution ng < Q < x'7¢/2, because of (18).

Since ng + sQ, with s = 0,1, 2,..., are all solutions of this system, let
us choose s such that

T
§<n::no—i—sQ<x,

such a choice being possible because of (18). For such an integer n, we then

have that for each integer m € [n,n+r— 1], we have f(m) > > | % >
p|lm

PEP:
for the appropriate integer 4, thus completing the proof of Theorem 3. [J

§5. Final remark

It is clear that one can obtain similar results when f(n) is replaced
by fa(n):=>" L (for a fixed a > 0) and o(n) by o,(n) := D 4%

pln p>
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