Publ. Math. Debrecen 61 / 3-4 (2002), 595–602

On the frequency of k-deficient numbers

By JEAN-MARIE DE KONINCK (Quebec) and IMRE KÁTAI (Budapest)

Abstract. A number n is said to be k-deficient if $\sigma(n) < kn$. We prove that, given k > 1 and a function H(x) satisfying $H(x)/(\log \log \log x \cdot \log \log \log \log x) \to +\infty$ then, if n is sufficiently large, there is always a k-deficient number between n and n + H(n).

$\S1.$ Introduction

Let $\sigma(n)$ stand for the sum of the divisors of the positive integer n. A number n is called *deficient* if $\sigma(n) < 2n$. It is well known that roughly $\frac{3}{4}$ of the positive integers are deficient. Using a method developed by GALAMBOS [2] and KÁTAI [3], SÁNDOR [4] proved that if n is sufficiently large, then there is always a deficient number between n and $n + \log^2 n$.

Given a real number k > 1, we shall say that a number n is k-deficient if $\sigma(n) < kn$. The density of the set of k-deficient numbers exists and steadily decreases to 0 as $k \to 1^+$. We shall prove that, given k > 1 and a function H(x) satisfying

(1)
$$\lim_{x \to \infty} \frac{H(x)}{\log_3 x \cdot \log_4 x} = +\infty$$

(where $\log_{\ell} x$ stands for the function $\log x$ iterated ℓ times), then, if $n > n_0 = n_0(k, H)$, there is always a k-deficient number between n and n + H(n).

Key words and phrases: sum of divisors, deficient numbers.

Mathematics Subject Classification: 11A25, 11N37, 11N60.

Research of the first author supported in part by a grant from CRSNG.

Also, letting

(2)
$$f(n) = \sum_{p|n} \frac{1}{p} \quad \text{for each } n \ge 2$$

and given two real numbers $\eta > 0$ and $0 < \xi < 1$, we shall prove that there exists a sequence $\{x_{\nu}\}$ tending to $+\infty$ such that

$$\min_{x_{\nu} \le n \le x_{\nu} + \frac{1-\xi}{\eta} \log_3 x_{\nu}} f(n) > \eta \quad (\nu = 1, 2, \dots).$$

§2. Main results

Theorem 1. Let f be as in (2) and H = H(x) as in (1), then

(3)
$$\lim_{x \to \infty} \min_{x \le n \le x + H} f(n) = 0.$$

Theorem 2. If H = H(x) satisfies (1), then

(4)
$$\lim_{x \to \infty} \min_{x \le n \le x+H} \frac{\sigma(n)}{n} = 1.$$

Thus, given any real number k > 1, there exist $n_0 = n_0(k)$ such that, for all integers $n \ge n_0$, the interval [n, n + H(n)] contains at least one k-deficient number.

Theorem 3. Given two real numbers $\eta > 0$ and $0 < \xi < 1$, there exists a sequence $\{x_{\nu}\}$ tending to $+\infty$ such that

(5)
$$\min_{x_{\nu} \le n \le x_{\nu} + \frac{1-\xi}{\eta} \log_3 x_{\nu}} f(n) > \eta \qquad (\nu = 1, 2, \dots).$$

\S **3.** Preliminary results

In this paper, we use the following notations. For each $x \ge e^{e^{e^{e}}}$, we let H = H(x) be a function satisfying (1). Let $\varepsilon > 0$ be arbitrarily small but fixed throughout the text. For each $x \ge e$, we set $Y = Y(x,\varepsilon) = 2(\log x)^{1/(1+\varepsilon)}$.

Letting f be as in (2), we define $f_i(n)$, $1 \le i \le 4$, for each integer $n \ge 2$, by

$$f_1(n) = \sum_{\substack{p|n \\ p < Y}} \frac{1}{p}, \qquad f_2(n) = \sum_{\substack{p|n \\ p \ge Y}} \frac{1}{p},$$
$$f_3(n) = \sum_{\substack{p|n \\ H \le p < Y}} \frac{1}{p}, \qquad f_4(n) = \sum_{\substack{p|n \\ p < H}} \frac{1}{p},$$

so that $f = f_1 + f_2 = f_2 + f_3 + f_4$.

(6)

Given H = H(x) and a real number δ , $0 < \delta < \frac{1}{2}$, let

(7)
$$\mathcal{M} = \mathcal{M}(\delta, H) = \{n \in]x, x + H] : p(n) > H^{\delta}\},$$

where p(n) stands for the smallest prime factor of n. We write $\#\mathcal{M}$ to denote its cardinality. Finally c stands for a positive constant, not necessarily the same at each occurrence.

We shall be using the following known estimates, which are all consequences of the Prime Number Theorem:

(8)
$$\prod_{p \le x} p = e^{(1+o(1))x},$$
(9)
$$\sum_{p \le x} \frac{1}{2} p = e^{(1+o(1))x},$$
(1)

(9)
$$\sum_{p \le x} \frac{1}{p} = \log \log x + c + o(1)$$

(10)
$$\prod_{p \le x} \left(1 - \frac{1}{p} \right) = (1 + o(1)) \frac{e^{-\gamma}}{\log x}, \quad \text{(here } \gamma \text{ is Euler's constant)}$$

(11)
$$\sum_{p>x} \frac{1}{p^2} \ll \frac{1}{x \log x}.$$

Lemma 1. There exists a real number x_0 such that if $x \ge x_0$, then $f_2(n) < 2\varepsilon$ for all $n \le 2x$.

PROOF. Write $2 = p_1 < p_2 < \ldots$ for the sequence of all primes. Given $n \leq 2x$, let q_1, \ldots, q_r be the prime divisors of n which are larger than Y. Then, writing $s = \pi(Y)$, we have, using (8),

$$p_1 p_2 \dots p_s q_1 q_2 \dots q_r \le p_1 p_2 \dots p_s n \le 2x e^{\frac{3}{2}Y} \le x e^{2Y},$$

provided x is large enough. Moreover since $p_{s+j} \leq q_j$ for each positive integer j, we have

(12)
$$p_1 p_2 \dots p_{s+r} \le p_1 p_2 \dots p_s q_1 q_2 \dots q_r \le x e^{2Y}$$

and

(13)
$$f_2(n) \le \sum_{j=1}^r \frac{1}{p_{s+j}}.$$

Clearly inequality (12) implies that

$$\sum_{j=1}^{s+r} \log p_j \le \log x + 2Y,$$

while it follows from (8) that

$$\sum_{j=1}^{r+s} \log p_j = (1+o(1))p_{s+r}.$$

Whence, combining these last two relations, we have

(14)
$$p_{s+r} \le (1+o(1))(\log x + 2Y).$$

Furthermore if follows from (13), (9) and (14) and that

$$f_2(n) = \sum_{i=1}^r \frac{1}{q_i} \le \sum_{i=1}^r \frac{1}{p_{s+i}} \le \log \frac{\log p_{s+r}}{\log Y}$$
$$\le \log \frac{\log(\log x + 2Y)}{\log(2(\log x)^{1/(1+\varepsilon)})} < 2\varepsilon,$$

if x is sufficiently large.

Lemma 2. Given $0 < \delta < \frac{1}{2}$ and letting \mathcal{M} be as in (7), there exist two positive constants $c_1 = c_1(\delta)$ and $c_2 = c_2(\delta)$ such that $\lim_{\delta \to 0} c_1(\delta) = \lim_{\delta \to 0} c_2(\delta) = 1$ and

(15)
$$c_1 \le \frac{\#\mathcal{M}}{H \prod_{p \le H^{\delta}} \left(1 - \frac{1}{p}\right)} \le c_2.$$

PROOF. This result follows easily from classical sieve theory, for instance by using Lemma 2.1 of ELLIOTT [1]. \Box

Lemma 3. Letting f_3 be as in (6), we have

(16)
$$\lim_{x \to \infty} \frac{1}{\#\mathcal{M}} \sum_{n \in \mathcal{M}} f_3(n) = 0.$$

PROOF. If x is sufficiently large, then, using (9),

$$\sum_{x < n \le x+H} f_3(n) \le \sum_{H \le p < Y} \left(\left[\frac{x+H}{p} \right] - \left[\frac{x}{p} \right] \right)$$
$$\le \sum_{H \le p < Y} \frac{1}{p} \ll \log \frac{\log Y}{\log H}.$$

Then, using the left inequality of (15) followed by (10), we get that, due to the choice of H(x) given by (1) and denoting by $\rho(x)$ the quotient $\frac{H(x)}{\log_3 x \log_4 x}$,

$$\frac{1}{\#}\mathcal{M}\sum_{n\in\mathcal{M}}f_3(n) \le c\delta\frac{\log H}{H}\cdot\log\left(\frac{\log Y}{\log H}\right) \ll \frac{\log H}{H}\log\log Y$$
$$\ll \frac{\log_4 x}{\rho(x)\cdot\log_3 x\log_4 x}\cdot\log_3 x = \frac{1}{\rho(x)} = o(1),$$

as $x \to \infty$, which proves (16).

Lemma 4. Letting f_4 be as in (6), we have

(17)
$$\lim_{x \to \infty} \frac{1}{\#\mathcal{M}} \sum_{n \in \mathcal{M}} f_4(n) = 0.$$

PROOF. We write

$$\sum_{n \in \mathcal{M}} f_4(n) \leq \sum_{H^{\delta} H^{\delta}}} 1 + \sum_{\sqrt{H} \leq p \leq H} \frac{H}{p^2} = \Sigma_1 + \Sigma_2,$$

say. Applying Lemma 2 to estimate the inner sum of Σ_1 , we get, using (11),

$$\Sigma_1 \le \frac{2c_2}{\delta} \sum_{p > H^{\delta}} \frac{H}{p^2 \log H} \le \frac{H}{\delta \log H} \frac{1}{H^{\delta} \log H^{\delta}} = \frac{H^{1-\delta}}{\delta^2 \log^2 H}.$$

Since it is clear that $\Sigma_2 < c\sqrt{H}$, it follows from the left inequality of (15), that

$$\frac{1}{\#\mathcal{M}}\sum_{n\in\mathcal{M}}f_4(n) \le \frac{c\delta\log H}{H}\left(\frac{H^{1-\delta}}{\delta^2\log^2 H} + \sqrt{H}\right)$$
$$\ll \frac{1}{\delta H^\delta\log H} + \frac{\log H}{\sqrt{H}} = o(1) \quad (x \to \infty),$$

which proves (17).

$\S4$. Proof of the main results

PROOF of Theorem 1. Recalling that $f = f_2 + f_3 + f_4$ and using Lemmas 1, 3 and 4, estimate (3) follows.

PROOF of Theorem 2. First observe that, for all $n \ge 2$,

$$\begin{aligned} \frac{\sigma(n)}{n} &= \prod_{p^{\alpha} \parallel n} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \dots + \frac{1}{p^{\alpha}} \right) \\ &= \exp\left\{ \sum_{p^{\alpha} \parallel n} \log\left(1 + \frac{1}{p} + \frac{1}{p^2} + \dots + \frac{1}{p^{\alpha}} \right) \right\} \\ &< \exp\left\{ 2\sum_{p\mid n} \frac{1}{p} \right\} = \exp\left\{ 2f(n) \right\}, \end{aligned}$$

where we used the fact that $\log \frac{1}{1-y} < 2y$ for all positive real numbers $y \leq \frac{1}{2}$. The result then follows from Theorem 1.

PROOF of Theorem 3. It is enough to prove that given an arbitrary large number X, there exists a number x > X and a particular integer n satisfying

$$\frac{x}{2} < n < x$$
 and $\min_{n \le m \le n+r} f(m) > \eta$,

where $r := \left[\frac{1-\xi}{\eta} \log_3 x\right] + 1.$

So we start with a large number x > X with r defined as above. Then, using (9), we have

$$S := \sum_{p < (1-\xi) \log x} \frac{1}{p} = \log_3 x + O(1).$$

We now split the sum S into r sums S_i in such a way that each subsum S_i is larger than η . For each $1 \leq i \leq r$, let φ_i be the set of primes appearing in the sum S_i and set $P_i = \prod_{p \in \varphi_i} p$. Using (8), we have that

(18)
$$Q := \prod_{i=1}^{r} P_i = \prod_{p < (1-\xi) \log x} p < e^{(1-\xi/2) \log x} = x^{1-\xi/2},$$

provided x has been chosen large enough. Then consider the system of congruences

$$\begin{cases}
n \equiv 0 \pmod{P_1}, \\
n \equiv -1 \pmod{P_2}, \\
\vdots \\
n \equiv -r+1 \pmod{P_r}
\end{cases}$$

By the Chinese Remainer Theorem, this system of congruences has a solution $n_0 < Q < x^{1-\xi/2}$, because of (18).

Since $n_0 + sQ$, with s = 0, 1, 2, ..., are all solutions of this system, let us choose s such that

$$\frac{x}{2} < n := n_0 + sQ < x,$$

such a choice being possible because of (18). For such an integer n, we then have that for each integer $m \in [n, n+r-1]$, we have $f(m) \geq \sum_{\substack{p \mid m \\ p \in \wp_i}} \frac{1}{p} > \eta$ for the appropriate integer i, thus completing the proof of Theorem 3. \Box

$\S 5.$ Final remark

It is clear that one can obtain similar results when f(n) is replaced by $f_{\alpha}(n) := \sum_{p|n} \frac{1}{p^{\alpha}}$ (for a fixed $\alpha > 0$) and $\sigma(n)$ by $\sigma_{\alpha}(n) := \sum_{d|n} d^{\alpha}$. 602 Jean-Marie De Koninck and Imre Kátai $\,:\,$ On the frequency \ldots

References

- [1] P. D. T. A. ELLIOTT, Probabilistic Number Theory I, Springer-Verlag, 1979.
- [2] J. GALAMBOS, On a conjecture of Kátai concerning weakly composite numbers, Proc. Amer. Math. Soc. 96 (1986), 315–316.
- [3] I. KÁTAI, A minimax theorem for additive functions, Publ. Math. Debrecen 30 (1983), 249–252.
- [4] J. SÁNDOR, On a method of Galambos and Kátai concerning the frequency of deficient numbers, *Publicationes Mathematicae* **39** (1991), 155–157.

JEAN-MARIE DE KONINCK DEPARTMENT OF MATHEMATICS AND STATISTICS LAVAL UNIVERSITY QUEBEC, QC G1K 7P4 CANADA

IMRE KÁTAI DEPARTMENT OF COMPUTER ALGEBRA EÖTVÖS LORÁND UNIVERSITY PÁZMÁNY PÉTER SÉTÁNY I/D H-1117 BUDAPEST HUNGARY

(Received November 20, 2001; revised January 8, 2002)