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On the frequency of k-deficient numbers

By JEAN-MARIE DE KONINCK (Quebec) and IMRE KÁTAI (Budapest)

Abstract. A number n is said to be k-deficient if σ(n) < kn. We prove that,
given k > 1 and a function H(x) satisfying H(x)/(log log log x · log log log log x) → +∞
then, if n is sufficiently large, there is always a k-deficient number between n and
n + H(n).

§1. Introduction

Let σ(n) stand for the sum of the divisors of the positive integer n.
A number n is called deficient if σ(n) < 2n. It is well known that roughly
3
4 of the positive integers are deficient. Using a method developed by
Galambos [2] and Kátai [3], Sándor [4] proved that if n is sufficiently
large, then there is always a deficient number between n and n + log2 n.

Given a real number k > 1, we shall say that a number n is k-deficient
if σ(n) < kn. The density of the set of k-deficient numbers exists and
steadily decreases to 0 as k → 1+. We shall prove that, given k > 1 and a
function H(x) satisfying

(1) lim
x→∞

H(x)
log3 x · log4 x

= +∞

(where log` x stands for the function log x iterated ` times), then, if n >

n0 = n0(k, H), there is always a k-deficient number between n and n +
H(n).
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Also, letting

(2) f(n) =
∑

p|n

1
p

for each n ≥ 2

and given two real numbers η > 0 and 0 < ξ < 1, we shall prove that there
exists a sequence {xν} tending to +∞ such that

min
xν≤n≤xν+ 1−ξ

η log3 xν

f(n) > η (ν = 1, 2, . . . ).

§2. Main results

Theorem 1. Let f be as in (2) and H = H(x) as in (1), then

(3) lim
x→∞

min
x≤n≤x+H

f(n) = 0.

Theorem 2. If H = H(x) satisfies (1), then

(4) lim
x→∞

min
x≤n≤x+H

σ(n)
n

= 1.

Thus, given any real number k > 1, there exist n0 = n0(k) such that,

for all integers n ≥ n0, the interval [n, n + H(n)] contains at least one

k-deficient number.

Theorem 3. Given two real numbers η > 0 and 0 < ξ < 1, there

exists a sequence {xν} tending to +∞ such that

(5) min
xν≤n≤xν+ 1−ξ

η log3 xν

f(n) > η (ν = 1, 2, . . . ).

§3. Preliminary results

In this paper, we use the following notations. For each x ≥ eeee

, we
let H = H(x) be a function satisfying (1). Let ε > 0 be arbitrarily small
but fixed throughout the text. For each x ≥ e, we set Y = Y (x, ε) =
2(log x)1/(1+ε).
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Letting f be as in (2), we define fi(n), 1 ≤ i ≤ 4, for each integer
n ≥ 2, by

(6)

f1(n) =
∑

p|n
p<Y

1
p
, f2(n) =

∑

p|n
p≥Y

1
p
,

f3(n) =
∑

p|n
H≤p<Y

1
p
, f4(n) =

∑

p|n
p<H

1
p
,

so that f = f1 + f2 = f2 + f3 + f4.
Given H = H(x) and a real number δ, 0 < δ < 1

2 , let

(7) M = M(δ,H) = {n ∈ ]x, x + H] : p(n) > Hδ},
where p(n) stands for the smallest prime factor of n. We write #M to de-
note its cardinality. Finally c stands for a positive constant, not necessarily
the same at each occurence.

We shall be using the following known estimates, which are all conse-
quences of the Prime Number Theorem:

∏

p≤x

p = e(1+o(1))x,(8)

∑

p≤x

1
p

= log log x + c + o(1),(9)

∏

p≤x

(
1− 1

p

)
= (1 + o(1))

e−γ

log x
, (here γ is Euler’s constant)(10)

∑
p>x

1
p2
¿ 1

x log x
.(11)

Lemma 1. There exists a real number x0 such that if x ≥ x0, then
f2(n) < 2ε for all n ≤ 2x.

Proof. Write 2 = p1 < p2 < . . . for the sequence of all primes.
Given n ≤ 2x, let q1, . . . , qr be the prime divisors of n which are larger
than Y . Then, writing s = π(Y ), we have, using (8),

p1p2 . . . psq1q2 . . . qr ≤ p1p2 . . . psn ≤ 2xe
3
2 Y ≤ xe2Y ,
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provided x is large enough. Moreover since ps+j ≤ qj for each positive
integer j, we have

(12) p1p2 . . . ps+r ≤ p1p2 . . . psq1q2 . . . qr ≤ xe2Y

and

(13) f2(n) ≤
r∑

j=1

1
ps+j

.

Clearly inequality (12) implies that

s+r∑

j=1

log pj ≤ log x + 2Y,

while it follows from (8) that

r+s∑

j=1

log pj = (1 + o(1))ps+r.

Whence, combining these last two relations, we have

(14) ps+r ≤ (1 + o(1))(log x + 2Y ).

Furthermore if follows from (13), (9) and (14) and that

f2(n) =
r∑

i=1

1
qi
≤

r∑

i=1

1
ps+i

≤ log
log ps+r

log Y

≤ log
log(log x + 2Y )

log(2(log x)1/(1+ε))
< 2ε,

if x is sufficiently large.

Lemma 2. Given 0 < δ < 1
2 and letting M be as in (7), there exist

two positive constants c1 = c1(δ) and c2 = c2(δ) such that limδ→0 c1(δ) =
limδ→0 c2(δ) = 1 and

(15) c1 ≤ #M
H

∏
p≤Hδ

(
1− 1

p

) ≤ c2.
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Proof. This result follows easily from classical sieve theory, for in-
stance by using Lemma 2.1 of Elliott [1]. ¤

Lemma 3. Letting f3 be as in (6), we have

(16) lim
x→∞

1
#M

∑

n∈M
f3(n) = 0.

Proof. If x is sufficiently large, then, using (9),

∑

x<n≤x+H

f3(n) ≤
∑

H≤p<Y

([
x + H

p

]
−

[
x

p

])

≤
∑

H≤p<Y

1
p
¿ log

log Y

log H
.

Then, using the left inequality of (15) followed by (10), we get that, due
to the choice of H(x) given by (1) and denoting by ρ(x) the quotient

H(x)
log3 x log4 x ,

1
#
M

∑

n∈M
f3(n) ≤ cδ

log H

H
· log

(
log Y

log H

)
¿ log H

H
log log Y

¿ log4 x

ρ(x) · log3 x log4 x
· log3 x =

1
ρ(x)

= o(1),

as x →∞, which proves (16). ¤

Lemma 4. Letting f4 be as in (6), we have

(17) lim
x→∞

1
#M

∑

n∈M
f4(n) = 0.

Proof. We write

∑

n∈M
f4(n) ≤

∑

Hδ<p<
√

H

1
p

∑

x
p <m≤ x

p + H
p

p(m)>Hδ

1 +
∑

√
H≤p≤H

H

p2
= Σ1 + Σ2,
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say. Applying Lemma 2 to estimate the inner sum of Σ1, we get, using (11),

Σ1 ≤ 2c2

δ

∑

p>Hδ

H

p2 log H
≤ H

δ log H

1
Hδ log Hδ

=
H1−δ

δ2 log2 H
.

Since it is clear that Σ2 < c
√

H, it follows from the left inequality of (15),
that

1
#M

∑

n∈M
f4(n) ≤ cδ log H

H

(
H1−δ

δ2 log2 H
+
√

H

)

¿ 1
δHδ log H

+
log H√

H
= o(1) (x →∞),

which proves (17). ¤

§4. Proof of the main results

Proof of Theorem 1. Recalling that f = f2 + f3 + f4 and using
Lemmas 1, 3 and 4, estimate (3) follows. ¤

Proof of Theorem 2. First observe that, for all n ≥ 2,

σ(n)
n

=
∏

pα‖n

(
1 +

1
p

+
1
p2

+ · · ·+ 1
pα

)

= exp
{ ∑

pα‖n
log

(
1 +

1
p

+
1
p2

+ · · ·+ 1
pα

)}

< exp
{

2
∑

p|n

1
p

}
= exp

{
2f(n)

}
,

where we used the fact that log 1
1−y < 2y for all positive real numbers

y ≤ 1
2 . The result then follows from Theorem 1. ¤

Proof of Theorem 3. It is enough to prove that given an arbitrary
large number X, there exists a number x > X and a particular integer n

satisfying
x

2
< n < x and min

n≤m≤n+r
f(m) > η,
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where r := [ 1−ξ
η log3 x] + 1.

So we start with a large number x > X with r defined as above. Then,
using (9), we have

S :=
∑

p<(1−ξ) log x

1
p

= log3 x + O(1).

We now split the sum S into r sums Si in such a way that each subsum Si

is larger than η. For each 1 ≤ i ≤ r, let ℘i be the set of primes appearing
in the sum Si and set Pi =

∏
p∈℘i

p. Using (8), we have that

(18) Q :=
r∏

i=1

Pi =
∏

p<(1−ξ) log x

p < e(1−ξ/2) log x = x1−ξ/2,

provided x has been chosen large enough. Then consider the system of
congruences 




n ≡ 0 (mod P1),

n ≡ −1 (mod P2),
...

n ≡ −r + 1 (mod Pr).

By the Chinese Remainer Theorem, this system of congruences has a so-
lution n0 < Q < x1−ξ/2, because of (18).

Since n0 + sQ, with s = 0, 1, 2, . . . , are all solutions of this system, let
us choose s such that

x

2
< n := n0 + sQ < x,

such a choice being possible because of (18). For such an integer n, we then
have that for each integer m ∈ [n, n+r−1], we have f(m) ≥ ∑

p|m
p∈℘i

1
p > η

for the appropriate integer i, thus completing the proof of Theorem 3. ¤

§5. Final remark

It is clear that one can obtain similar results when f(n) is replaced
by fα(n) :=

∑
p|n

1
pα (for a fixed α > 0) and σ(n) by σα(n) :=

∑
d|n dα.
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DEPARTMENT OF COMPUTER ALGEBRA
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