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Formal languages and primitive words1
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Dedicated to Professor Lajos Tamássy on his 70th birthday

Abstract. The mathematical theory of formal languages has a very important
role in theoretical computer science. In this paper we study various formal language
problems related to the class of all primitive words over a fixed alphabet. Some results
and problems are presented.

1. Introduction

The interest in combinatorial properties of words over a finite alphabet
dates back to at least as far as Thue’s 1906 and 1912 papers (see [20] and
[21]). There exist a number of sistematical studies on combinatorics of
words (see, for example, [6], [13], [19]). The concept of primitive words
is defined and the unique existence of primitive roots is proved in [14].
Disjunctive languages are introduced in [17]. Disjunctive languages and
primitive words are intensivity studied in [18] and [19]. Primitive words
are considered with respect to the Chomsky-hierarchy in [10] and [11].
Classical works on formal languages and automata with respect to the
Chomsky-hierarchy are, for example, [3], [4], [6], [7], [15] and [16]. In this
paper we overview some results and problems on formal languages and
primitive words.

1This paper was presented at the Conference “Sesiunea Anuală de Comunicări Sţiinţifice
Universitatea Oradea”, Oradea, Roumania, 6-8 June, 1991.
2The work of the first and second authors was supported in part by the Hungarian
National Science Foundation “OTKA”, Grants Nos. 1654/91, 1655/91 and 4295/92,
and Nos. 334/88 and 4295/92, respectively.
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2. Preliminaries

In this part we provide some notions and notations on formal lan-
guages. (For notions and notations not defined here see, for example, [6],
[7], [15], [16], [19].) The elements of an alphabet X are called letters (X
is supposed to be finite and nonempty). A word over an alphabet X is a
finite string consisting of letters of X. The string consisting of zero letters
is called the empty word , written λ. The length of a word w, in symbols
|w|, means the number of letters in w when each letter is counted as many
times as it occurs. By definition, |λ| = 0. At the same time, for any set H,
|H| denotes the cardinality of H. If u and v are words over an alphabet X,
then their catenation uv is also a word over X. Catenation is an associative
operation and the empty word λ is the identity with respect to catenation:
wλ = λw = w for any word w. For a word w and natural number n, the
notation wn means the word obtained by catenating n copies of the word
w. w0 equals the empty word λ. wm is called the m-th power of w for any
nonnegative integer m. A word p is primitive iff it is nonempty and not of
the form wn for any word w and n ≥ 2. Throughout this paper, the set of
all primitive words over X is denoted by Q. Let X∗ be the set of all words
over X, moreover, let X+ = X∗−{λ}. X∗ and X+ are a free monoid and
a free semigroup, respectively, generated by X under catenation. Every
subset L of X∗ is called a (formal) language over X. L is said to be dense
iff X∗uX∗ ∩ L 6= ∅ for any u ∈ X∗. (For u ∈ X∗ we use the shorthand u
instead of {u}.) Obviously, a dense language is an infinite language. It can
easily be seen that Q is a dense language, whenever |X| ≥ 2. Throughout
this paper, ⊆ and ⊂ denote (set-theoretic) inclusion and proper inclusion,
respectively, and N stands for the set {0, 1, 2, ...}.

Let L ⊆ X∗. The congruence relation PL on X∗, called the principial
congruence determined by L, is defined as u ≡ v(PL) if and only if xuy ∈
L ⇔ xvy ∈ L for any x, y ∈ X∗. A language L ⊆ X∗ is said to be regular
iff PL has finite index, i.e., the number of the equivalence classes of PL is
finite. In opposition to regular languages, a language L ⊆ X∗ is disjunctive
iff every congruence class of PL consists of a single element. It is clear that
every disjunctive language is a dense language.

3. Chomsky classification of grammars

A generative (Chomsky-type) grammar [4] is an ordered quadruple
G = (VN , VT , S, P ) where VN and VT are disjoint alphabets, S ∈ VN , and
P is a finite set of ordered pairs (u, v) such that v is a word over the
alphabet V = VN ∪ VT and u is a word over V containing at least one
letter of VN . The elements of VN are called nonterminals and those of VT
terminals. S is called the start symbol . Elements (u, v) of P are called
productions and are written u → v. A word u over V derives directly
a word v, in symbols, u ⇒ v, iff there are words u1, u2, u3, v1 such that
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u = u2u1u3, v = u2v1u3, and u1 → v1 belongs to P . w derives z, or in
symbols, w ⇒ ∗z (w really derives z, or in symbols, w ⇒ +z) iff there is
a finite sequence of words

w0, w1, ..., wk, k ≥ 0 (k > 0)

over X where w0 = w, wk = z and wi ⇒ wi+1 for 0 ≤ i ≤ k − 1. In other
words, ⇒ ∗(⇒ +) is the reflexive transitive closure (the transitive closure)
of the binary relation ⇒. The (formal) language L(G) generated by G is
defined by

L(G) = {w | w ∈ V ∗
T , S ⇒ +w}.

G is regular (or G is of the type 3) iff each production is of one of the two
forms U → vV or U → v where U, V ∈ VN and v ∈ V ∗

T (and then PL(G)

has finite index).

G is context-free (or G is of type 2) iff each production is of the form
X → u where X ∈ VN and u ∈ (VN ∪ VT )∗. G is context-sensitive (or
G is of type 1) iff each production is of the form q1Xq2 → q1uq2, where
q1, q2 ∈ (VN ∪ VT )∗, X ∈ VN , and u ∈ (VN ∪ VT )+, with the possible
exception of the production S → λ whose occurrence in P implies, however,
that S does not occur on the right side of any production in P . Finally, G
is phrase-structure (or G is of type 0) if P has no restriction.

If there exists a generative grammar G of type i(= 0, 1, 2, 3) such that
L = L(G) holds for a language L ⊆ X∗ then we also say that L is of type
i. Li (i = 0, 1, 2, 3) denotes the class of type i languages. It is well-known
that they form the Chomsky-hierarchy with ∅ 6= L3 ⊂ L2 ⊂ L1 ⊂ L0.
It is well-known too that to each language class Li there corresponds a
class Ai (i = 0, 1, 2, 3) of abstract nondeterministic discrete automata in
the sense that for any L ⊆ X∗, L ∈ Li holds iff there is an A ∈ Ai
“accepting”, from among all words of X∗, exactly those belonging to L.
In the latter case we also say that A accepts L. Nondeterminism means
here that A always freely chooses its “next move” from a finite number
of actions possible at that stage of its operation. By definition, A accepts
an (input) word w iff there is a finite sequence of consecutive possible
moves of A during the “processing” of w, leading to an accepting or final
state of A. Deterministic automata are special cases of nondeterministic
automata, in which during the processing of any (input) word, at any stage
at most one next move is possible. A language is called a deterministic
language iff it is accepted by a deterministic automaton. For any type i,
let detLi denote the class of deterministic languages of type i. It is known
that detL3 = L3,detL2 ⊂ L2, and detL0 = L0, but it is a famous open
question, the so-called “lba problem”, whether detL1 = L1 or detL1 ⊂ L1.
Here “lba” is a shorthand for “linear bounded automaton”, as the elements
of A1 are termed. (For a detailed discussion of these notions and results,
see, e.g., [6], [7] or [12].)
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4. Some results and problems related to primitive words

In this section we suppose |X| ≥ 2, and we consider only words, lan-
guages and language classes over X. (The results and problems discussed
in this part are trivial or even untrue if X is a singleton.) We first study
where Q is in the Chomsky-hierarchy.

A typical example of a disjunctive language is Q. Thus Q is not
regular. To prove that Q is not deterministic context-free we use well-
known results.

The following Theorem I, a classical result on the class of context-free
languages, is widely known as “Bar-Hillel’s lemma”, or more precisely,
“Bar-Hillel, Perles and Shamir’s lemma” [1]. Here we formulate
this lemma in its “full”, “modern” form (i.e. m = 0 may stand too in
uvmwxmy). Moreover, we note that the second author of the present
paper showed in [8] that there exist properly context-sensitive, recursive,
recursively enumerable, and non–recursively-enumerable languages that do
satisfy this lemma. (For further combinatorial properties of context-free
languages see, e.g., [2] and [9].)

Theorem I (Bar-Hillel’s lemma, [1]). For each context-free lan-
guage L there exists a positive integer n with the following property: each
word z in L, |z| > n, is of the form uvwxy, where |vwx| ≤ n, |vx| > 0, and
uvmwxmy is in L for all m ≥ 0.

We also use the following

Theorem II (for a proof, see [5] or [7]). L is deterministic context-free
iff X∗−L is deterministic context-free, i.e., L ∈ detL2 iff X∗−L ∈ detL2.

Now we are ready to show the following

Proposition 1. Q is not deterministic context-free, i.e., Q /∈ detL2.

Proof. By Theorem II it is enough to prove that X∗ − Q does not
satisfy the conditions of Bar-Hillel’s lemma (Theorem I). Suppose the con-
trary and let a, b ∈ X, a 6= b, n ≥ 1 (with n having the property de-
scribed in Theorem I) such that (an+1bn+1)2 is of the form uvwxy with
|vwx| ≤ n, |vx| > 0, uvmwxmy ∈ X∗ − Q, m ≥ 0. Then for m = 0 we
have

uwy ∈ {aibjasbt | i, j, s, t ≥ 1, (i, j) 6= (s, t)} ⊆ Q,

contradicting uwy ∈ X∗ −Q.

It can easily be seen that Q is accepted by a deterministic linear
bounded automaton. Thus we have the following

Proposition 2. Q ∈ detL1 − detL2.

Conjecture. Q is not context-free, i.e. Q /∈ L2.
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Problem (Ito and Katsura [11]). Does L disjunctive imply L ∩ Q
disjunctive?

We give a negative answer for the case L ∈ detL1 − L2 in

Proposition 3. There is a disjunctive language L ∈ detL1 −L2 such
that L ∩Q is dense but not disjunctive (and L ∩Q ∈ L2).

Proof sketch. Let L = L′ ∪Q(2) where

L′ = {wba|w| | w ∈ X∗}, Q(2) = {q2 | q ∈ Q}.
Similarly to the case of Q, it is easy to see that L too can be accepted by
a deterministic linear bounded automaton, so L ∈ detL1. On the other
hand, L 6∈ L2 can be shown exactly as X∗ − Q 6∈ L2 was shown in the
proof of Proposition 1 above. Further, it can easily be seen that L′ ⊆ Q
(and L′ ∈ L2). So L ∩Q = L′ ∈ L2 (since Q ∩Q(2) = ∅).

For any w ∈ X∗ we have wba|w| ∈ L′ (a, b ∈ X, a 6= b). Thus L′ is
dense. On the other hand, ab ≡ bb(PL′) (a, b ∈ X, a 6= b). Therefore, L′ is
not disjunctive. Finally, by [19] we have that for the disjunctivity of L it
is enough to check the case |w1| = |w2|, w1 6= w2 (w1, w2 ∈ X∗). Indeed,
we obtain w1ba

|w1|w1ba
|w1| ∈ Q(2) ⊆ L and w2ba

|w1|w1ba
|w1| /∈ L.

We note that the above problem is still open for L ∈ L2. We conclude
this paper with proving three further propositions.

Proposition 4. There is a disjunctive language L ∈ L2 such that
L−Q(1) 6= ∅, L ∩Q 6= ∅ (where Q(1) = Q ∪ λ as usual).

Proof. Let L = {xyz | y ∈ X, x, z ∈ X+, |x| = |z|, x 6= z}. It is
easy to see that L ∈ L2. Furthermore, (abb)3 = abbabbabb ∈ L−Q(1) (x =
abba, y = b, z = babb, |x| = |z|, x 6= z). On the other hand we have for
any pair w1, w2 ∈ X∗, with w1 6= w2, |w1| = |w2|, that

w1a
2|w1|+1bw1a

2|w1|+1 /∈ L,

and
w2a

2|w1|+1bw1a
2|w1|+1 ∈ L ∩Q,

so by [19] L is disjunctive. It is clear that even both L−Q(1) and L ∩Q
are infinite.

Proposition 5. There are infinitely many dense languages in L1−L2
and L0 − L1, and continuum-many outside L0.

Proof. Concerning dense languages outside L0, the statement fol-
lows from:

1. there are continuum-many disjuctive languages (see [19]),
2. there are only denumerably many type 0 languages, and
3. disjunctivity implies density (this simply follows from the definitions).
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Concerning the existence of infinitely many dense languages in L1−L2

and L0−L1, let f : N → N be a function and Lf = {af(|w|)bwbaf(|w|)|w ∈
X∗}. By suitably choosing f , Lf will be in L1−L2 or L0−L1, respectively.

Remark. From the above construction we can see that dense languages
can in fact be arbitrarily “thin” in the “statistical sense”.

Proposition 6. There are infinitely many nondisjunctive languages
in L1 − L2 and L0 − L1, and continuum-many outside L0.

Proof. Let again f : N → N be a function and

Lf = {af(n)bf(n)af(n) | n ∈ N}.
Clearly (w1, w2 ∈ Lf − {λ}, w1 6= w2) ⇒ w1 ≡ w2(PLf

) and again by
suitably choosing f , the statement follows.
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L. KOSSUTH UNIVERSITY
H–DEBRECEN

SÁNDOR HORVÁTH
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