
Publ. Math. Debrecen

61 / 3-4 (2002), 603–612

Near-ring extensions with a common ideal

By GARY F. BIRKENMEIER (Lafayette), MARK FARAG (Staten Island),
and HENRY E. HEATHERLY (Lafayette)

Abstract. This paper considers the inheritance of certain properties by subnear-
rings and supernear-rings, with the focus being on prime ideals, 3-prime ideals, and
various radicals. Playing a key role in this is a common nonzero ideal shared by the
near-ring and its subnear-ring. Sharper results are obtained when this common ideal is
essential.

1. Introduction

This paper considers the inheritance, upward and downward, of cer-
tain properties of a near-ring and its subnear-rings. The main objects of
interest are prime and 3-prime ideals, semiprime ideals, and certain hered-
itary radicals. The hypothesis of a nonzero ideal shared by the near-ring
and subnear-ring of interest plays a crucial role. Some of the results ob-
tained have the flavor of “lying over” theorems for rings; however, these
near-ring results are different in detail and require considerably different
proof techniques from those in the ring situation. The A-ideals introduced
in [3] are useful in obtaining the “lying over” results in Section 3. As might
be expected, the distributively generated (d.g.) case is more amenable to
analysis.

In Section 2, we give large classes of natural examples and construction
techniques to motivate the theory that is subsequently developed. Exam-
ples are also given in Section 4 to supplement the theory of centralizing
extensions developed there.
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Throughout this paper, S will be a (left) near-ring and R a nonzero
subnear-ring of S. If X is a nonempty subset of S, then rS(X) = {a ∈ S |
Xa = 0}, the right annihilator of X in S. The sets gp(X) and ngp(X) are
the subgroup and normal subgroup of (S, +) generated by X, respectively.
Also, 〈X〉S and nrS(X) are the ideal and subnear-ring generated by X in
S, respectively. For any group G, G′ denotes the commutator subgroup
of G. In particular, S′ is the commutator subgroup of (S, +). A nonzero
ideal I of S is called ideal essential in S if whenever Y is a nonzero ideal
of S, Y ∩ I 6= 0.

The concepts of prime ideal and prime near-ring are covered exten-
sively in the literature [10]. Here, we use P(N) for the prime radical of a
near-ring N . An ideal X of N is called 3-prime if whenever a, b ∈ N are
such that aNb ⊆ X, then a ∈ X or b ∈ X. Also, N is a 3-prime near-ring
if 0 is a 3-prime ideal of N . The 3-prime radical is denoted by P3(N). It
is well-known that every 3-prime ideal is prime, but the converse fails to
hold even for finite d.g. near-rings [2, Example 1.17]. For more on 3-prime
ideals and the 3-prime radical, see [8].

Let S be a near-ring with unity, 1, and suppose that R is a subnear-
ring of S such that 1 ∈ R. Let X be a nonempty subset of CS(R) = {s ∈
S | sr = rs for all r ∈ R} with 1 ∈ X. Observe that gp(RX) = gp(XR) is
a left R-subgroup containing R which need not be a right R-subgroup nor
a subnear-ring. We say that S is a (finite) centralizing extension of R if
there exists some (finite) subset X of CS(R) with 1 ∈ X and S = gp(RX).
Such extensions will be considered in Section 4.

2. Examples and constructions

In this section we give some natural examples and some constructions
which illustrate the phenomenon of extensions with a common ideal. In
the first example, both the subnear-ring and its extension are d.g. We first
recall some terminology and background information.

Let (G,+) be a group, not necessarily abelian, and let K be a nonzero
subgroup of G. Then H(G,K) = gp(Hom(G, K)) is a d.g. near-ring and
is a left E(G)-subgroup of the near-ring E(G) = gp(End G). (The first
in-depth study of H(G,K) is found in [5]; also, see [6].) If K is normal in
G, then H(G,K) is a left ideal of E(G), and if K is fully invariant in G,
then H(G,K) is an ideal of E(G).
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Example 2.1. Take K 6= G with K fully invariant in G. Then the
identity mapping, 1G, is not in H(G, K). However, H(G,K) is a common
ideal in the near-ring E(G) and the subnear-ring gp(H(G,K) ∪ {1G}),
each of which is a d.g. near-ring with unity. More generally, one can take
R = gp(H(G,K)∪X), where X is a subsemigroup of (EndG, ◦) containing
1G but X is small enough so that R 6= E(G).

Example 2.2. Let Ω be a subset of End G which contains Inn G and
is closed under composition. Then gp(Ω) is a tame endomorphism near-
ring [10, p. 176]. Let EΩ(G,K) = {α ∈ gp(Ω) | Gα ⊆ K}. Observe
that EΩ(G,K) is a subnear-ring of the d.g. near-ring (gp(Ω), +, ◦). Let
X ⊆ Ω be such that 1G ∈ X and X is closed under composition. Then
R = gp(EΩ(G,K) ∪ X) is a near-ring with unity. If K is an Ω-invariant
subgroup, then EΩ(G,K) is a common ideal of R and gp(Ω). This con-
struction is of particular interest when Ω is EndG, Aut G, or Inn G, where
we require K to be fully invariant, characteristic, or normal in G, respec-
tively. The special case in which K = G′ 6= G, X = {1G}, and Ω = End G

presents interesting group theoretic considerations.

Construction 2.3. Let X be a nonempty subset of S. If I is any ideal
of S, then I is also an ideal of the near-ring nrS(I ∪X). If S has unity, 1,
and if 1 ∈ X, then nrS(I ∪X) has unity as well. In particular, one might
take X = {1}.

Construction 2.4. Let I be a nonzero ideal of R. A standard Zorn’s
lemma argument yields the existence of a subnear-ring W which is maximal
with respect to containing R and having I as an ideal. In principle, there
may be many such subnear-rings. (Note that, in the category of rings,
there is a unique such subring, namely {s ∈ S | sI ⊆ I and Is ⊆ I},
the idealizer of I in S. However, for S a near-ring, this set need not be a
subnear-ring.) When S has unity, a similar Zorn’s lemma argument yields
a subnear-ring with the same unity element and which has the desired
maximality properties.

Further examples illustrating extensions with the pair of near-rings
having a common ideal are available in the many papers that give de-
tailed information on ideals, radicals, and subnear-rings of E(G), A(G) =
gp(Aut G), and I(G) = gp(Inn G) for various classes of groups. For more
information, including further references to the primary literature, see [10,
Chapter 17].
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3. Extensions linked by a common ideal

Throughout this section, we make use of the assumption of a common
nonzero ideal B shared by the two near-rings R ⊆ S to study the trans-
ference of ideal properties. First we need some background information.

Definition 3.1. A nonempty subset Y of a near-ring N is said to satisfy
an n-reverting permutation identity if there exists a natural number n and
a permutation π on {1, 2, . . . , n} such that πn 6= n and

y1 · y2 · · · yn = yπ1 · yπ2 · · · yπn

for each y1, y2, . . . , yn ∈ Y .

Examples of n-reverting permutation identities can be found in [1].
Recall [3] that an ideal I of a near-ring N is called an A-ideal (or

Andrunakievich ideal) if for each ideal K of the near-ring I there exists
m ≥ 1 such that (〈K〉N )m ⊆ K. If each ideal of N is an A-ideal, then
N is called an A-near-ring . It is known [3] that the class of A-near-
rings includes all d.g. near-rings, all strongly regular near-rings, and near-
rings which satisfy various permutation or word identities (e.g., n-reverting
permutation identities). For a d.g. near-ring N , it is known that for any
ideal I of N , then (〈K〉N )4 ⊆ K for each ideal K of I [3].

The first result follows immediately from [3, Corollary 3.3] and will
be useful in the sequel.

Lemma 3.2. Let X be a nonempty subset of a d.g. near-ring T . Then

〈X〉T ⊆ ngpT (TX ∪X ∪ TXT ∪XT ).

Theorem 3.3. Let S be a prime near-ring. Then each of the following

conditions implies that R is prime:

(i) S is d.g. and B is n-reverting;

(ii) S is zero-symmetric and B is an A-ideal of S which is ideal essential

in R.

Proof. Let X and Y be ideals of R such that XY = 0.

(i) Observe that Bn+1〈X〉S ⊆ BnngpB(BX ∪ BXS). Consider a
product of the form a1 . . . anaxs, where a1, . . . , an, a ∈ B, x ∈ X, and
s ∈ S. Such a product can be rewritten, using the permutation iden-
tity, as either axsa′, where a′ ∈ B or a′′axsa′, where a′, a′′ ∈ B. In
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either case, xsa′ ∈ X, so that the product a1 . . . anaxs is in X. Thus
Bn+1X ∪ Bn+1XS ⊆ X, and hence Bn+1〈X〉S ⊆ X by the preceding
lemma. Similarly, Bn+1〈Y 〉S ⊆ Y . So Bn+1〈X〉SBn+1〈Y 〉S ⊆ XY = 0.
Since S is prime and B 6= 0, we have either X = 0 or Y = 0.

(ii) Since B∩X and B∩Y are ideals of B, there exist positive integers
m,n such that

(〈B ∩X〉S)m(〈B ∩ Y 〉S)n ⊆ (B ∩X)(B ∩ Y ) ⊆ XY = 0.

Since S is prime, it follows that B ∩X = 0 or B ∩ Y = 0. Consequently,
X = 0 or Y = 0. ¤

Corollary 3.4. Let P be a prime ideal of S with B 6⊆ P . Then each

of the following conditions implies that R ∩ P is a prime ideal of R:

(i) S is d.g. and B is n-reverting;

(ii) S is zero-symmetric and B is an A-ideal of S which is ideal essential

in S.

Proof. Let ν be the natural homomorphism from S onto the prime
near-ring S̄ = S/P . Then B̄ = ν(B) is a nonzero ideal of S̄ and of
ν(R + P ) = R̄ = ν(R). Observe that conditions (i) and (ii) are inherited
in the homomorphic image S̄. Applying Theorem 3.3, we get that R̄ is a
prime near-ring. However, P is also an ideal of the near-ring R + P , and
R̄ = (R + P )/P ∼= R/(R ∩ P ). So R ∩ P is a prime ideal of R. ¤

Lemma 3.5. Each of the following conditions implies that B〈QB〉S ⊆
Q for any ideal Q of R:

(i) B2 ⊆ Q;

(ii) S is a centralizing extension of R;

(iii) S is d.g.

Proof. Let Q be any ideal of R. As B is an ideal of S, 〈QB〉S ⊆ B.
So, using (i), B〈QB〉S ⊆ B2 ⊆ Q.

To prove the conclusion using (ii), suppose that S = gp(RX) for
some X ⊆ CS(R), and let a, a′ ∈ B, s1, s2 ∈ S, and q ∈ Q be given.
Then a′qa ∈ Q, so that elements in the generating set of 〈QB〉S satisfy
the desired containment. We complete the proof by showing that elements
resulting from the application of any ideal property to an element satisfying
the desired containment also satisfy the desired containment. To this end,
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let c, d ∈ S be such that yc, yd ∈ Q for any y ∈ B. Then a′(s1 + c− s1) =
a′s1 + a′c− a′s1 and a′s1c are in Q as a′s1 ∈ B ⊆ R. Let s2 =

∑
i εirixi,

where εi ∈ {+1,−1}, ri ∈ R, and xi ∈ X. The term a′[(s1 + c)s2 − s1s2]
can be written as the sum of terms of the form a′s1εirixi or aicεirixi, each
of which is in Q. Since a′(c + d) = a′c + a′d and a′cd are in Q as well, the
desired result follows from (ii).

Assume (iii). We make use of [3, Corollary 3.3]. Note that B(SQB) ⊆
BQB ⊆ Q and B(QBS) ⊆ BQB ⊆ Q. Also, if q ∈ Q, a, a′ ∈ B, and s ∈ S,
then a′(s + qa − s) ∈ Q as in the proof in the previous paragraph. Using
this repeatedly, one obtains B · ngpS(QB) ⊆ Q, whence [3, Corollary 3.3]
gives the result. ¤

The next result is a “lying over” theorem.

Theorem 3.6. Suppose that Q is a prime ideal of R with B 6⊆ Q.

Then each of the following conditions implies that there exists some prime

ideal P of S such that Q = P ∩R:

(i) B2 ⊆ Q;

(ii) S is a centralizing extension of R;

(iii) S is d.g.

Proof. Let P be an ideal of S maximal with respect to P ∩ R ⊆ Q

(such a P must exist by Zorn’s lemma). Then P is a prime ideal of S by
the same argument as in [12, Lemma 2.12.41], and B 6⊆ P . By passing to
S/P and R/(P ∩R), we may suppose without loss of generality that P = 0
and B 6= 0. Since QB ⊆ B, 〈QB〉S ∩ R = 〈QB〉S . From the preceding
lemma, we have that B〈QB〉S ⊆ Q in all three cases. Since B 6⊆ Q, it
follows that 〈QB〉S ⊆ Q, and so 〈QB〉S = 0 by the maximality of P . Thus
Q = 0. So in the general case, Q = P ∩R as desired. ¤

Proposition 3.7. Let S be zero-symmetric and suppose that R is a

3-prime near-ring. Then S̄ = S/rS(B) is a 3-prime near-ring.

Proof. Let b̄, c̄ ∈ S̄ be the respective images of b, c ∈ S under the
natural homomorphism, and suppose that b̄S̄c̄ = {0̄}. Then BbSc = {0},
which implies that BbRc = {0}. If c̄ 6= 0̄, then there is some nonzero
a ∈ B such that ac 6= 0. So BbRac = {0}. As R is 3-prime, this says that
Bb = {0}, or b̄ = 0̄. ¤
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4. Centralizing extensions

This section is concerned with a near-ring analogue to the concept of
centralizing (or liberal) extensions studied in [11].

First we show how centralizing extensions arise naturally for near-
rings by giving a general construction.

Construction 4.1. Let N be a near-ring with unity 1 and let Γ be a
subsemigroup of (D(N), ·), the multiplicative semigroup of right distribu-
tive elements of N , which contains 1. Define the following

DΓ = {d ∈ D(N) | dγ = γd for each γ ∈ Γ};
EΓ = {k ∈ gp(D(N)) | kγ = γk for each γ ∈ Γ};
HΓ = gp(DΓ).

Then gp(EΓ ·Γ) and gp(HΓ ·Γ) are centralizing extensions of the near-rings
EΓ and HΓ, respectively. Observe that gp(HΓ · Γ) is d.g.

For a concrete realization of this construction, let G be a group and
let N be the near-ring of all self-maps on G. In this case, gp(EΓ · Γ) and
gp(HΓ ·Γ) are subnear-rings of the centralizer near-ring NΓ. Furthermore,
if G is finite, then for any choice of Γ, gp(EΓ ·Γ) and gp(HΓ ·Γ) are finite
centralizing extensions of EΓ and HΓ, respectively.

Proposition 4.2. Let S be a near-ring with unity 1, and let R be a

subnear-ring of S with 1 ∈ R. Suppose that φ : S → S̄ is a homomorphism

onto a ring S̄, with K = ker φ ⊆ R. If S is a finite centralizing extension

of R, then for each prime ideal P of R with K ⊆ P , there exists a 3-prime

ideal Q of S such that Q ∩R = P .

Proof. Observe that the quotient R̄ = R/K is a unitary subring of
the ring S̄. Let X be a finite subset of CS(R) such that S = gp(RX).
Then X̄ = φX is a finite subset of CS̄(R̄), say X̄ = {x̄1, x̄2, . . . , x̄n}, such
that S̄ =

∑
i R̄x̄i. Furthermore, any prime ideal P of R with K ⊆ P is a

prime ideal of R̄. Using [11, Theorem 4.1], there is a prime ideal Q̄ of S̄

such that Q̄ ∩ R̄ = P̄ ; then Q, the pre-image of Q̄, is a 3-prime ideal with
K ⊆ Q and Q ∩R = P . ¤

Note that the kernel K plays the role of the common ideal in the above.
The next example illustrates the type of extension under consideration
here.
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Example 4.3. We illustrate Proposition 4.2 with an example connect-
ing Construction 4.1 with group rings. Let G be a finite group and let Γ be
a subsemigroup of (End G, ◦) with 1G ∈ Γ as in the latter part of 4.1. Let
S1 be the group ring K[G], where K is an arbitrary ring with unity, and
let S2 = gp(EΓ · Γ). (Similarly, one could use S2 = gp(HΓ · Γ).) Since a
direct product of centralizing extensions is again a centralizing extension,
S = S1 ⊕ S2 together with the projection mapping φ : S → S1 gives the
situation of Proposition 4.2.

Corollary 4.4. Let S be a d.g. near-ring with unity, 1, and let R be
a unitary subnear-ring of S such that S′ ⊆ R. If S is a finite centralizing
extension of R, then for each prime ideal P of R with S′ ⊆ P , there exists
a 3-prime ideal Q of S such that Q ∩R = P .

Proof. Observe that the quotient S/S′ is a ring and apply Proposi-
tion 4.2. ¤

Corollary 4.5. Let S and R be as in Corollary 4.4. If (S, +) is solv-
able, then

(i) for each prime ideal P of R there exists a 3-prime ideal Q of S
such that Q ∩R = P ; and

(ii) P(S) ∩ R = P3(S) ∩ R ⊆ P(R), where P and P3 are the prime
and 3-prime radicals, respectively.

Proof. Since (S, +) is solvable and S is d.g., S′ is multiplicatively
nilpotent [10, Corollary 9.49]. So S′ is contained in every prime ideal of R
and in every prime ideal of S (S′ is an ideal of R as well). Furthermore,
every prime ideal of S is a 3-prime ideal. Let {Pλ | λ ∈ Λ} be the set of
all prime ideals of R. Since S′ ⊆ Pλ for every λ ∈ Λ, it follows that for a
given λ ∈ Λ there exists a 3-prime ideal Qλ of S such that Qλ ∩ R = Pλ.
So

P(R) =
⋂

λ∈Λ

(Qλ ∩R) =
( ⋂

λ∈Λ

Qλ

)
∩R ⊇ P3(S) ∩R. ¤

5. Radicals

In this final section we assume that S is zero-symmetric and that
R and S have a common nonzero ideal B. We use ideal essentiality of
B in R or in S to obtain the transference of semisimplicity between R
and S of some radicals in general and some specific examples of radicals in
particular. (For details on the radical theory of near-rings, see [9] and [10].)
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Lemma 5.1. Let ρ be a Hoehnke radical satisfying ρ(B) = B∩ρ(S) =
B ∩ ρ(R) and P(S) ⊆ ρ(S).

(i) If B is ideal essential in S and ρ(R) = 0, then ρ(S) = 0.

(ii) If B is ideal essential in S and ρ(S) = 0, then ρ(R) = 0.

(iii) If B is ideal essential in R and ρ(S) = 0, then ρ(R) = 0.

Proof. (i) Assume ρ(S) 6= 0. Then 0 6= B ∩ ρ(S) ⊆ ρ(B). However,
ρ(B) ⊆ B ∩ ρ(R) = 0, a contradiction.

(ii) Observe that ρ(S) = 0 implies that ρ(B) = 0. Thus B ∩ ρ(R) ⊆
ρ(B) = 0. Suppose ρ(R) 6= 0. Then I = 〈ρ(R)〉S ∩ B is a nonzero ideal
of S. Hence I · ρ(R) = 0, and so I2 = 0. By hypothesis, I ⊆ ρ(S) = 0, a
contradiction. Thus ρ(R) = 0.

(iii) Observe that ρ(S) = 0 implies ρ(B) = 0. Then B ∩ ρ(R) ⊆
ρ(B) = 0, and since B is ideal essential in R, we must have ρ(R) = 0. ¤

Note that in Lemma 5.1, the condition P(S) ⊆ ρ(S) was only used
in the proof of part (ii). This lemma applies to many of the most studied
near-ring radicals, as the next result shows.

Proposition 5.2. In either of the following situations, parts (i) through

(iii) of Lemma 5.1 hold.

(i) ρ is either of the Jacobson radicals J2 or J3, or ρ is either the

Brown–McCoy radical or the equiprime radical;

(ii) S and R are eachA-near-rings and ρ is either P, P3, the completely

prime radical, or the upper nil radical.

Proof. Part (i) follows from Lemma 5.1, [7], and [9]. Part (ii) is a
consequence of Lemma 5.1 and [4, Corollary 12]. ¤

Note that if R and S are both d.g., then the statements in (i)–(iii) of
Lemma 5.1 hold for the four radicals mentioned in (ii) of Proposition 5.2.
Examples of such d.g. near-rings R and S with an appropriate nonzero
common ideal B can be found among the endomorphism near-rings in
Section 2 and in [10, Chapter 11].

Another consequence of Proposition 5.2(ii) is the following: if S is
d.g. and semiprime and B is essential among nilpotent ideals of R (i.e.,
B ∩X 6= 0 for each nonzero nilpotent ideal X of R), then R is semiprime.
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