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On the second variation formula
for biharmonic maps to a sphere

By C. ONICIUC (lasi)

Abstract. We compute the nullity for the following weakly stable biharmonic
maps: the identity map 1:S™ — S™ and the canonical inclusion % : S™ — S™.

1. Introduction

A map ¢ : (M,g) — (N,h) between two Riemannian manifolds is
harmonic if it is a critical point of the energy E(¢) = 3 [}, |d¢|*vg. The
map ¢ is harmonic if and only if its tension field 7(¢) = trace Vd¢ vanishes.
In the same way, as suggested by J. EELLS and J. H. SAMPSON in [6],
a map ¢ is biharmonic if it is a critical point of the bienergy E2(¢) =
3 Jaur I7(®)[Pvg. G. Y. JIANG has obtained in [7], [8] the first and second
variation formula. He has proved that the map ¢ is biharmonic if and
only if

72(¢) = J(7(¢)) = 0,

where J is the Jacobi operator of ¢. Of course, any harmonic map is
biharmonic.

B. Y. CHEN and S. ISHIKAWA have shown in [3] that there are no
nonharmonic biharmonic submanifolds of R3. In the same way, in [2],
the authors have proved that there are no such submanifolds in N3(—1),
where N3(—1) is a 3-dimensional manifold with negative constant sectional
curvature —1.
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In [1] the authors have given the classification of nonharmonic bihar-
monic submanifolds of S3. They are: circles, spherical helices and parallel
spheres. Then, in [2], the authors have given some methods to construct ex-
amples of nonharmonic biharmonic submanifolds of the unit n-dimensional
sphere S™, for n > 3. In this case the family of such submanifolds is much
larger.

A harmonic map is an absolute minimum of the bienergy and hence
stable. The goal of this paper is to find the second variation formula for
biharmonic maps ¢ : (M, g) — S™ and then to compute the nullity for the
simplest two biharmonic maps: the identity map 1 : S® — S™ and the
canonical inclusion 4 : S™ — S™ (Theorem 2.4 and Theorem 2.5).

Notation. We shall work in the C*° category, i.e. manifolds, metrics,
connections, maps will be assumed to be smooth. By (M™, g) we shall in-
dicate a connected manifold of dimension m, without boundary, endowed
with a Riemannian metric g. We shall denote by V the Levi-Civita con-
nection of (M, g). For vector fields X, Y, Z on M we define the Riemann
curvature operator by R(X,Y)Z = [Vx,Vy|Z — V(x y)Z. The indices i,
7, k, [ take the values 1,2,...,m.

2. The second variation formula of the bienergy

Let ¢ : (M,g) — (N,h) be a smooth map between two Riemannian
manifolds. Assume that M is compact and orientable. The tension field
of ¢ is given by 7(¢) = trace Vd¢ and the bienergy is defined by

Bao) = 5 [ Ir(@)Po.

The map ¢ is called biharmonic if it is a critical point of the bienergy. As
we said in the introduction, the first variation formula is given by

where v, is the volume element, V is the variational vector field corre-
sponding to the variation {¢;}+cr of ¢, and

(2.1) To(p) = —AT(p) — trace RN(dd)~, T(¢))do- .
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Now, let ¢ : (M, g) — S™ be a biharmonic map. We consider a smooth
variation {¢s ;}stecr of ¢ with two parameters s and ¢, i.e. we consider the
smooth map ® given by

O:RxRxM—S", &(s,t,p) = ¢s.:(p),

where ®(0,0,p) = o,0(p) = ¢(p), Vp € M.
The corresponding variational vector fields V and W are given by

d d n
Vip) = s S:0¢s,0(p) =d®g,0,p) <8s> € Typ)S"”,
and
d ) .
Wi(p) = @L:O%,t@) =d®0p) | z; ) € TowS"

V and W are sections of ¢~'TS", i.e. VW € C(¢~1TS™).
The Hessian of Fs at its critical point ¢ is defined by

82
H(E)o(V.W) = 5

Es(¢s,t).

(s,t)=(0,0)

Theorem 2.1. Let ¢ : (M, g) — S™ be a biharmonic map. Then the
Hessian of the bienergy Es at ¢ is given by

H(E2)y(V,W) = /M<I<v>,w>vg,

where
(2.2) I(V) = A(AV) + A{trace(V, d¢-)d¢- — |d¢|*V'}
+2(dr(¢),dp)V + |7(¢) PV
— 2trace(V, dr(¢)-)dp- — 2trace(r (), dV-)dep-
—(1(¢), V)7(9) + trace(dg-, AV )d¢-
+ trace(de-, trace(V, do-)de-)do-
— 2|d¢|? trace(de-, V) de-
+2(dV,dg)7(¢) — |do[* AV + |dg|*V.
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PROOF. We start by computing %}t:OEQ(Q{)s,t). We have

o 1 ,
iz [ @0,

ot
— [ (V4760 70 g0
M

0

a t:OEQ(d)s,t) =

In order to obtain V o T(¢ps,t), let {X;}7, be a geodesic frame field around
an arbitrary point p € M. We obtain

m

Var(6:0) =V g { D (Vxdds(X) - don(Vx, X)) }

1
:Vi{

where ®4(t,p) = ®(s,t,p). Using the formula

%

Ms

(Vix,d®,(X,) - d.(Vx, X0)) |,

=1

Vd®,(Y) — Vgdd,(X) = do,([X,Y]), VX,V € C(®;'TS™),

we obtain, at p and for ¢ = 0, the following

V87(¢st Z{Vavx d®,(X;) — Vf?d‘p (VXiXi)}

=1

— g{v;vxid%(&) — Vv, x,dPs (%) - dcps([gt Vx, XD}

=" V2 Vxdd, (X)) = Y {F (a2, (5 ), 4, (X:))d®, (X:)

=1

+ V.V o d0,(X;) + v[%xi}dcbs(xi)}

— i{RSn(WS, d®4(X;))dPs(X;)

=1

+Vx (Vs () + o, (Lft XD)}

= iRS"(WS,dé (X:))d®,(X;) + ZVX Vx, W,

=1 =1
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= —AW, = > R¥ (d®(X;), W,)d®,(X,),
=1

where

d ) e
Wop) = g _ o) =0y () W€ TS, Wo =

Thus & |,_,E2(¢s,¢) is given by

0 n

67‘ E2(¢s,t) — / <_AW5 — trace RS (d¢s,0'a Ws)d¢s,0'37(¢s,0)>vg
tlt=0 M

_ /M<—AT(¢S,O) — trace B (doy o, 7(s.0))dbs - Wa)y.

Since ¢ is biharmonic, from (2.1) we obtain
H(E2)4(V, W)

_9
- Os

/ <_AT(¢S,O) — trace RSn (d¢s,0',7(¢s,0))d¢s,0', Ws)”g
s=0 J
= [ (¥ g {=Ar(0nn) = trace B (A (02060} s Wty

= [ uw)w,
where

(23) (V) =V 2 {~Ar(¢s0) — trace R (dds,0, T(¢5,0))ds,0-}| -

Next, since

V2 7(bs0)|,_y = —AV — trace RS (d¢-, V)dg-
and
trace RS" (dg-, V)dep- = trace(V, d¢-)do- — |do|?V,
we get
Vo {=A7(ds0) }],_o = AAV) + A{trace(V, d-)d¢- — |do|*V}
(2.4) + 2(d7 (), dp)V + |7(¢)|?V + trace(r(¢), dp-)dV -
— 2trace(V, dr(¢)-)d¢- — trace(r(¢), dV-)d¢- — (1(),V)7(¢),
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and
V o {—trace RY (dgs.0, 7(5,0))dds 0},
= —trace(7(¢), dV-)d¢- + trace(de-, AV )de-
(2.5) + trace(d¢-, trace(V, do-)d¢-)de-
— |do|?* trace(dg-, V)dp- — trace(r(¢), dg-)dV -
+2(dV, dg)7(¢) — |dp[PAV — |dg|? trace(V, dg-)d¢- + |dg|'V.
Now, replacing (2.4) and (2.5) in (2.3), we obtain (2.2). O

Remark 2.2. We note that formula (2.2) can be also deduced from
formula (5.8) in [8].

Corollary 2.3. Let ¢ : (M,g) — S™ be a harmonic Riemannian im-
mersion. Then the operator I of ¢ is symmetric, positive semi-definite and

(2.6) ker I = {V € C(¢1TS") | AV =mV —VT},
where V =V + VN VT € O(TM) and VN € C(NM).
PRrOOF. From (2.2) it follows
I(V) = A(AV) = 2mAV + m?V + AVT + (AV)T + (1 —2m)V7.

First we shall prove that I is symmetric, i.e. (I(V),W) = (V,I(W)),
YV, W € C(¢p=1TS"™), where (V,W) = fM<V, W)ug is the usual inner prod-
uct on the real vector space C(¢~1TS™). Since A is a symmetric operator
and (VT W) = (WT V), in order to prove that I is symmetric we must
show that

/ (AVT £ (AV)T, W, = / (AWT 4+ (AW)T, VYo,
But

/M<AVT,W>vg = /M(VT,AW)vg = /M<VT,(AW)T>UQ

- / V. (AW) Ty,
M
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and

/M<(AV)T,W>vg: / (AV)T, W), = /M<AV,WT>U9

M
= /M(V, AW,

So I is a symmetric operator.
In order to prove that J is positive semi-definite, i.e. (I1(V),V) > 0,
we start with the following remarks

/M<AVT,V>1)9:/ (AV)T VYo,

M
and

I(V) = AAVT + AAVY —2mAVT —2mAVN + VT 4+ m2Vv Y
+AVT + (AV)T + (1 —2m)V7T.

Thus we have
IW).V) = [ HAAYTYY) 4201 = m)(AVT.V) + (m = D2VT.V)
+{(AAV), VY —2m(AVY VY £ m2 (VN V) }o,
= [ HA@VTLYT) 4201 = m)(AVTVT) + (= VT

+(AAVY), VY —2m(AVN VY £ m?2 |V V)2
+(AAVT), VY +2(1 —m)(AVT, V)
+(AAVY), VT —2m(AVN VT }o,

_ / (AVT 4+ (1= m)VTP + [AVN — VP
M
+2((AVT AVYY 4+ (1 —2m)(AVT V) }o,

= / IAVT + (1 —m)VT + AVN — mVV 2y,
M

= / AV —mV + V7|2,
M
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From the above relation it follows that I is positive semi-definite and ker I
is given by (2.6). O

In the following we shall consider the simplest two cases of biharmonic
maps ¢ : (M, g) — S™. These maps are harmonic Riemannian immersions,
so they are weakly-stable, i.e. the operator I is positive semi-definite.

Theorem 2.4. The identity map 1 : S™ — S™ is weakly-stable and
a) if n =2 then nullity(1) = 6,
b) if n > 2 then nullity(1) = n(nT"H)

PROOF. In this case C(171TS") = C(TS") and AV = — trace V2V.
We shall use X to denote a tangent vector field on S™. By Corollary 2.3,
the operator [ is given by

I(X) = A(AX) — 2(n — 1)AX + (n — 1)2X,
and
I(X)=0 <= AX=(n-1)X.
The Hodge decomposition theorem for C(T'S™) states that
C(IS") ={XeC(TS") |divX =0} {grad f | f € C°(S™)}.

This decomposition of C(T'S™) is orthogonal with respect to the scalar
product on the real vector space C(T'S™), and Ay preserves invariantly
these subspaces, where, using the musical isomorphisms,

Ap(X) = (AX")F,
A being the Laplacian which acts on A(S™).
It is known that
AX =Ag(X)—(n—-1)X
(see [5], [11]), so
I[(X)=0 < Ax(X)=2(n-1)X.

From the Hodge decomposition theorem we write X =Y + grad f, divY =0
and we obtain

Ap(X)=2(n - 1D)X {AHm =2(n—1)Y

Apggrad f =2(n —1)grad f.
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Consequently
Y is a Killing vector field

[(X)=0 < {Af:Q(n—l)f.

It is known that the first eigenvalues of A which acts on C*°(S") are 0, n,
2(n + 1), and the eigenvalue n has the multiplicity n + 1. So 2(n — 1) is
an eigenvalue if and only if n = 2, and in this case its multiplicity is 3.

It is well known too that

1
dim{Y € C(TS") | Yis a Killing vector field} = ”(”;)

Now, the theorem follows. O

Theorem 2.5. The canonical inclusion i : S™ — S™ is weakly-stable
and
a) if m =2 then nullity(¢) = 3n,
b) if m > 2 then nullity(d) = (n — m)(m + 1) + 24D,
PrOOF. Let V € C(NS™) and X,Y € C(TS™). As i is a totally
geodesic map, it results that

VxV =V%V, AV =AYV, VxY =" VxY, AX = —trace®” V2X.
Again, by Corollary 2.3, the operator I is given by
I(V) = AH(ALV) —2mALV + m2V € C(NS™)
{ I(X)=A(AX) - 2(m—1)AX + (m —1)2X € C(TS™),
and
I(V)=0 <= AtV =mV
{ I(X)=0 < AX=(m-1)X.

Now, let {Ey41,- .., E,} be the vector fields which give the trivialisation
of NS™. We have

(27) VxE,+1=...=VxE, =0, VX € C(TSm)
(see [10]). Since any V € C(NS™) can be written as

V=F{Epa+-+[""Ey,
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where f1,..., f"™™ € C°°(S™), from (2.7) we obtain
ALYV =mV = Aft=mft, ..., AfPT = m ™,
So we have
dim{V € C(NS™) | I(V) =0} = (n — m)(m + 1).

Now, using Theorem 2.4 and the fact that the kernel of I splits in the
direct sum of the kernel of I restricted to C(NS™) and the kernel of I
restricted to C(T'S™), we conclude. O

Acknowledgement. Thanks are due to the referee for helpful remarks
and suggestions.
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