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Higher-order generalizations of Hadamard’s inequality

By MIHALY BESSENYEI (Debrecen) and ZSOLT PALES (Debrecen)

Abstract. In this paper we derive generalizations of Hadamard’s classical in-
equality for higher-order convex functions. In the proof the remainder formula of the
Hermite—Fejér interpolation and a smoothing technique is used.

1. Introduction

Hadamard’s classical inequality [2] provides the following lower and
upper estimates for the integral average of a convex function f : [a,b] — R:

f<a+b> - bia/abf(x)dxg f(a) + f(b)

2 2

An account of various generalizations of Hadamard-type inequalities can
be found in a recent book [1] by S. S. DRAGOMIR and C. E. M. PEARCE.
Interesting historical remarks are due to MITRINOVIC and LACKOVIC [6].

If f:[a,b] — R is supposed to be monotone increasing, an analogous
“Hadamard-type” inequality can trivially be derived:

b
f@) < s [ Fla)dn < £0)
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Our goal is to generalize these inequalities when f : [a,b] — R is n-mono-

tone or, in other terms, (n — 1)-convez, that is,

flxo) .. f(zn)
1 o 1
(—1)” xo . In > 0
mg‘fl o x""l
whenever a < g < -+ < z, < b. Obviously, a function is 1-monotone if

and only if it is monotone increasing; similarly, a function is 2-monotone
if and only if it is convex.

In a series of papers [8]-[18], T. Poproviciu introduced and investi-
gated the notion of higher-order convexity. A summary of these results
can be found in the book [19] and also in [5]. In our investigations, we
need the following two results of T. Poproviciu. The first characterizes
n-monotonicity in terms of the nth derivative of f.

Theorem A ([5, Theorem 1. p. 387]). Assume that f : ]a,b] — R
is an n times differentiable function. Then f is n-monotone if and only if
f () >0 forallz € |a,b].

The second result states that, for n > 2, n-monotonicity implies reg-
ularity properties of f.

Theorem B ([5, Theorem 1. p. 391)). Assume that f: Ja,b[ — R is
an n-monotone function and n > 2. Then f is (n — 2) times differentiable

and f("=2) is continuous.

Applying Theorem A, we will be able to prove Hadamard-type in-
equalities by using Gauss-type quadrature formulae and their remainder
terms for smooth enough functions.

For the general case, when f : [a,b] — R is supposed to be contin-
uous only and n-monotone, a smoothing technique is developed to get
Hadamard-type inequalities. As an application, we derive Hadamard-type

inequalities for 3-, 4-, 5-, 6-, 8, 10-, and 12-monotone functions.
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2. Gauss-type quadrature formulae and remainder terms

Let f,g: [a,b] = R and p: [a,b] — |0, 400 [ be continuous functions.
The functions f and g are said to be p-orthogonal on |a,b] if

b
(.9, ;:/ fgp=0.
a
We say that a system of polynomials is an orthogonal polynomial system

on [a, b] with respect to the weight function p if each member of the system
is p-orthogonal to the others on [a, b]. Define the moments of p by

b
M, :—/ " p(z)dz (n=0,1,2,...).

It is easy to check, that

1 mo e My —1
T m My,
P,(x) := : )
" m, ... Mop_1

is the nth degree member of the orthogonal polynomial system on [a,b]
with respect to the weight function p, since it is immediate to see that P,
is p-orthogonal to the polynomials 1,z,...,z" 1.

Let us consider the following

b n
(1) [ @tz =3 cur6)

k=1

b n
(2) / F)p(a)de = cof(a) + 3 ex (&)
a k=1

b n
(3) / Fp(@)de =3 e f(€) + cns F0)

k=1
b n
(@) [ H@pw)n = cof(@) + Y auf(6) + eun 0
@ k=1
Gauss-type quadrature formulae, where the constants cg,c1,...,Cn, Cot1

and &1,...,&, € Ja,b[ are to be determined so that (1)—(3), and (4) be
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exact when f is a polynomial of degree at most 2n — 1, 2n, 2n, and 2n+ 1,
respectively. We shall distinguish four cases.

Case A.

Theorem 1. Let P, be the nth degree member of the orthogonal
polynomial system on [a,b] with respect to the weight function p. Then
(1) is exact for polynomials f with deg f < 2n — 1 if and only if &1,...,&,
are the zeros of P,, and

B b P,(x)
(5) Ck —/a —(x—fk)P,’l(ﬁk)p(x)dx'

Furthermore, &1, ... ,&, are pairwise distinct elements of ]a,b[, and ¢ > 0
forallk=1,...,n.

This theorem follows easily from well known results in numerical anal-
ysis [3], [4], [20]. For the sake of completeness, we provide a proof.

PROOF. Assume that &, ...,&, are the zeros of P,,. Denote by Ly :
[a,b] — R (k =1,...,n) the primitive Lagrange interpolation polynomials:
P () :
ey drF &k
Li(z):={ (&= &)P)(&)
1 if x = fk

If @ is a polynomial with deg @ < 2n — 1, then using Euclidean algorithm
@ can be written in the form

Q=PP,+R
such that deg P,deg R < n — 1. The inequality deg P < n — 1 implies that
<P7 Pn>g = 07

while deg R < n — 1 yields that R is equal to its Lagrange interpolation
polynomial:

R=) R(&)Lk.
k=1
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Therefore, by the definition of ¢1,..., ¢, in (5),

/abczpz/abPPnp+/abRp=§R(sk>/abLkp

n

= ZC&R(&@) = ch (P(&k)Pn(&k) + R(&)) = Z crQ(&r)-
k=1 s

k=1

That is, (1) is exact for polynomials of degree at most 2n — 1.

Conversely, assume that (1) is exact for polynomials of degree at most
2n — 1. Let Q(z) := (. — &) ...(x — &,) and let be P a polynomial with
deg P < n —1. Then deg PQ < 2n — 1, thus

b
/ PQp= e P(E)Q(E) + - + en P(6)Q(En) = 0.

Therefore, @) is p-orthogonal to P. Using the uniqueness of P,,, we get that
P, = a,Q and &, ...,&, are the zeros of P,. Furthermore, (1) is exact
if we substitute f := Ly and f := L2, respectively. The first substitution
gives (5), while the second one shows the nonnegativity of c. O

Case B. Denote by p, the weight function defined by

pa(2) = (z —a)p(z) (2 € [a,b]).

Theorem 2. Let P, be the nth degree member of the orthogonal
polynomial-system on [a,b] with respect to the weight function p,. Then
(2) is exact for polynomials f with deg f < 2n if and only if &1, ...,&, are
the zeros of P,

b
(6) co = Pl() / P2(2)p(x)dx

1 b P,(z)(x —a)
™ * T —a /a (z — §k)P/1(§k)p(x)dx'

Furthermore, &1, . . ., &, are pairwise distinct elements of | a,b|, and ¢ > 0
forallk=0,1,...,n.
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PROOF. Assume that (2) is exact for polynomials of degree at most
2n. If P is a polynomial with deg P < 2n — 1, then

b b
| Pru= [ @-aP@p@)is = a6~ PE)++enln - a)P(E).
Applying Theorem 1 to the weight function p, and the constants

Cask = k(& — a)

we get, that &,...,&, are the zeros of P,, and the constants ¢, (k =
1,...,n) can be computed by the formula (5). Substituting f := P? into

(2), we obtain that
1 /b )
CO0 = —5 < P P
pPia) Jo "

Thus, we get that (6) and (7) are valid and ¢, > 0 for k=1,...,n

Conversely, assume that &, ...,&, are the zeros of P,, and the con-
stants ¢q,. .., ¢, are given by the formula (7) and ¢y = f: p—(c1+...4cpn).
If P is a polynomial with deg P < 2n, then there exists a polynomial @)
with deg @Q < 2n — 1 such that

P(z) = Q(x)(z — a) + P(a).
By Theorem 1,
b
| @pa=carQ(e) + -+ can@lén)

holds. Thus
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which yields that (2) is exact for polynomials of degree at most 2n. There-
fore, substituting f := P2 into (2), we get (6). O

Case C. Denote by p® the weight function defined by
P(a) = b—)p(x)  (x € [a,b]).

Theorem 3. Let P, be the nth degree member of the orthogonal
polynomial system on [a, b] with respect to the weight function p®. Then
(3) is exact for polynomials f with deg f < 2n if and only if &1, ...,&, are
the zeros of P,

b —x
(8) Ck ! / Fu(@)(b ~ o) p(x)dx

T bh—& o (- &) P&
and
1 b
(9) Cnt1 = Pﬁ(b)/a P2 (x)p(x)de.
Furthermore, &1, . .., &, are pairwise distinct elements of | a,b[, and ¢, > 0

forallk=1,...,n,n+ 1.

HINT. Applying a similar argument as in the previous proof for the
weight function p®, one can get the statement of the theorem. O

Case D. Denote by p® the weight function defined by

pa(@) = (b—2)(x—a)p(z)  (x € la,b]).

Theorem 4. Let P, be the nth degree member of the orthogonal
polynomial-system on [a,b] with respect to the weight function p%. Then
(4) is exact for polynomials f with deg f < 2n+ 1 if and only if &1,...,&,
are the zeros of P,

(10 % = G—arpae ). PR - Do),
o b Pu(@)(b— 2)(z — a)
W e = aE@-—al, @-arE MO
and
b
(12) ni = T | Pi@)e - aplayis
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Furthermore, &1, . . ., &, are pairwise distinct elements of | a,b|, and ¢, > 0
forallk=0,1,...,n, n+ 1.

HinT. Using Theorem 2 or Theorem 3 and applying a similar argu-
ment as in the previous proof for the weight-function p%, one can get the
statement of the theorem. A more direct proof can also be done by using
Theorem 3. For deriving (10) and (12), substitute f(x) := (b — z)P?(x)
and f(z) := (x — a)P2(x) into (4). O
Remainder term for the Hermite interpolation formula. Let f : [a, b] =R
be a differentiable function, x1,...,x, be pairwise distinct elements of
[a,b], and 1 < r < n be a fixed integer. Denote by H the Hermite inter-
polation polynomial satisfying the following conditions:

H(zy) = f(zxg) (k=1,...,n)
H' (z) = fl(zr) (k=1,...,7).

We recall that degH = n +r — 1. From a well known result, (c.f. [3,
Section 5.3, pp. 230-231]), if f is (n + r)-times differentiable then, for all
x € |a, b], there exists i such that

(13) f(a) = H(z) = 22l g

(n+r)!

where
wi(x) = (x —21) - (x — xp).

3. Smoothing n-monotone functions

It is well known that there exists a function ¢ which possesses the
following properties:

(i) ¢ : R — Ry is C*, i.e., it is infinitely many times differentiable;
(ii) suppy C [~1,1];
(i) fy 0 =1.
Using ¢, we define for all € > 0 the function . by

e =20(2)  @em.
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Then, one can easily check that ¢, satisfies the following conditions:
(") v : R — Ry is C;
(ii’) supp e C [—¢,¢];
(iii’) fp e = 1.
Let I C R be a nonempty open interval, f : I — R be a continuous

function, and € > 0. We will denote the convolution of f and . by fe,
that is,

foa) = / Fe-(z—y)dy  (z€R),

where f(y) = f(y) if y € I, otherwise f(y) = 0. We recall, that f. — f
uniformly as € — 0 on each compact subinterval of I, and f. is infinitely
many times differentiable on R; these important results can be found for
example in [21, p. 549].

Theorem 5. Let I C R be a nonempty open interval, f : I — R be an
n-monotone continuous function. Then, for all compact subintervals [a, b]
of I, there exists a sequence of n-monotone and C* functions (fi) which
converges uniformly to f on [a,b).

PROOF. Choose a,b € I and gy > 0 such that the relation [a — e,
b+ o] C I hold. We show that the function 7. f : [a,b] — R defined by
e f(x):=flx—e)  (z€lab])

is n-monotone on [a,b] for € € |0,e9]. Let a < 29 < -+ < z,, < b and
k <n —1 be fixed. Using induction, we are going to verify the equality

7 f (o) T f(7n) 7 f(x0) e f(Tn)
1 1 1 1
xo T To — € Ty — €
14 :_ :_ _ _
)| g B T @ (- o)
5 y, ) zy,
xofl x?:i_l .’17071 CC;’:_I
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If £ = 1, then this equation obviously holds. Assume, for a fixed positive
integer k < n—2, that the equation remains true. By the binomial theorem,

zk = (lg>5k + (llc)sk_l(:c —e)+--+ <:> (z —e)F,

which means, that (z — €)* is the linear combination of the elements 1,
r—¢,...,(x—¢)k xF. Therefore, adding the adequate linear combination
of the 2nd,. .., (k+1)st rows to the (k+2)nd row, we get that the equation

Tef(flfo) <o Tef(xn) Taf(xo) v Taf(xn)
1 .. 1 1 .. 1
g — € Iy — €& g — € Iy — €
(g — )kt (xp — )1 | (mog— )kt ... (zp—e)F !
b 2" (w0 — )* (2n — o)
g+l k1 i+ k1
! zn—t xpt zn—t

holds. That is, (14) holds for all fixed positive k£ (1 < k < n —1). Par-
ticularly, if k = n — 1, we get the n-monotonicity of 7. f. Using integral
transformation and the previous result,

fa(fL'O) cee fa(l'n)
1 1
| n
xg—l xz‘—l
Fpelzo—1) ... f(t)pe(zn —1)
1 .. 1
R . " .
l‘gil ‘rg_l
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flwo—3s) ... f(z,—29)
1 1

= /(—1)” Zo T ve(s)ds
. :

x Ty
Tsf(ﬂfo) Tsf<xn)
1 ... 1
= /(1)" Zo Tn | pe(s)ds >0
R . . .
xg_l zn—1

and we get, that f. is n-monotone on [a,b] for € € ]0,eq[.

To complete the proof, choose a positive integer ng such that the
relation n—lo < go hold. If g := n01+k (k=1,2,...) and fx := f.,, then
e € ]0,e0 [, thus (fx)52, satisfies the requirements of the theorem. [

4. Generalized Hadamard-inequalities

Our main results concern the cases of odd and even order of convexity
separately. First we deal with odd order convex functions.

Theorem 6. Let, for n > 0,

1 1
L3 ey
1 1
x 3 n+2
Pn (37) = . )
n 1 1
R R T |

then p, has n pairwise distinct roots in ]0,1[. Denote these roots by
A,y A, and

1 v,
o 1= o (x)dz,
o= g J, P

1 1 pn(T)x
Q= — 2 dx (k=1,...,n).
ST oo )



634 M. Bessenyei and Zs. Péles

Then the following inequalities hold for any m = 2n+ 1-monotone function
fila, b = R:

aof(@) + Y arf (1= Ma+ab) < = [ ()
k=1 @

< Zakf()\ka + (1= Ak)b) + an f(b).

k=1

PRrROOF. Observe that p,, is the nth degree orthogonal polynomial on
[0, 1] with respect to the weight function p(z) := x (c.f. the beginning of
Section 2). First we prove the statement for the special case when a = 0,
b=1and f:][0,1] — R is supposed to be m = 2n + 1 times differentiable.
In this case, f**1) >0 on ]0,1[, according to Theorem A.

Let H be the 2nth degree Hermite interpolation polynomial which
possesses the following properties:

H(0) = f(0),
H\) = fOw) (k=1,...,n),
HO) = () (k=1,....n).
By (13), for all z € [0, 1], there exists 7 € ]0,1] such that

z(x— )% (2 — \,)?

(2n + 1)! FE D )

f(@) — H(z) =
therefore, for all z € [0, 1],

f(x) = H(x).

Since H is of degree 2n, applying Theorem 2, we get that
1 1 n
/ f(z)dx > / H(z)dx = agH(0) + Z arH(\)
0 0 1

= o f(0)+ > arf(A).
k=1



Higher-order generalizations of Hadamard’s inequality 635

Now we suppose that a,b € R (a < b), but f : [a,b] — R is still
m = 2n + 1 times differentiable. Define the function F': [0,1] — R by

F(t) == f((1 —t)a+tb).

Then, F' is m-times differentiable and m-monotone on [0, 1]. It is easy to

check that
1 1 b
F(z)dz = dz.
| Faar == [ @

The previous result applied to the function F', yields

n 1 b
aof(a) + Z arf((1=Ap)a+ M\pb) < b—a/ f(x)dx.
k=1 a

Finally, let f : [a,b] — R be an arbitrary m-monotone function. With-
out the loss of generality we may assume that m > 1; by Theorem B, in this
case f is continuous. Choose € > 0. According to Theorem 5, there exists
a sequence of C* functions (f;)$°,; whose members are defined on [a, b],
fi — f uniformly on [a + &,b — €], and f; is m-monotone on [a + €,b — ¢].
Then, applying the previous step on the interval [a + €,b — €], we get

aofila+e)+ Y onfi((1 = M)(a+e) + M(b—¢))

k=1
1 b—e

fi(x)dz.

T b—a—2¢ [,

Letting ¢ — oo and then ¢ — 0, we get the left hand side inequality to be
proved.
Now define the function F : [a,b] — R by

F(z) = —fla+b— ).

Then F' is m-monotone on [a, b]. Using the left hand side inequality for F,
the right hand side inequality for f follows. O

Our second main result offers Hadamard-type inequalities for even-
order convex functions.
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Theorem 7. Let, forn > 1,

1
1 m
1 1
x 5 .« . 71
pa(@)=| "
1 1
.:L'n 7714—1 e o
1 1 1
2-3 n(n+1)
" 1 1
gn(2) == 34 (n+1)(n+2)
n T . .
Zn—1 1 1
m+D(m+2) - (@n-D2n

then p, has n, and ¢, has n — 1 pairwise distinct roots in ]0,1[. Denote
these roots by A1,..., A\, and 1, ..., in—1, respectively. Let

= 1—pn(:z:) T = n
o= | Gt =)

and
= [ @0 -,
A e e LR
= g |, e

then the following inequalities hold for any m = 2n-monotone function
fila,b] = R:

n b
S f (1= A)a+ Aeb) < bla/ F@)dz
k=1 a

n—1

< Bof(@)+ D Bif (1= p)a + pb) + B f (b).

k=1

An inequality analogous to the left hand side inequality was also es-
tablished by T. PopoviCIu in [12].
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PRrROOF. Observe that p,, is the nth degree orthogonal polynomial on
[0,1] with respect to the weight function p(z) := 1; similarly, ¢, is the
(n— 1)st degree orthogonal polynomial on [0, 1] with respect to the weight
function p(x) := (1 — x)x. First, just as before, we prove the statement
for the special case when a =0, b =1 and f : [0,1] — R is supposed to be
m = 2n times differentiable. In this case, f*® > 0 on ]0, 1[ according to
Theorem A.

Let H be the (2n—1)st degree Hermite interpolation polynomial which
possesses the following properties:

H(Ax) = f(Ax),
H/()\k) = f/()\k) (k = 1, v ,n).

By (13), for all = € [0, 1], there exists n € ]0,1[ such that

=M% (- A)? e
Fla) - Hiz) = e L)
Therefore, for all z € [0, 1],
f(x) = H(x).

Since H is of degree 2n — 1, applying Theorem 1, we get that

/ f(x)dz > / H(z)de = axH(A\p) = Y arf(h).
0 0 k=1 k=1

Now let H be the (2n — 1)st degree Hermite interpolation polynomial
which possesses the following properties:

H(0) = f(0),

H(pr) = f(pr),

H'(pe) = /(i) (k=1,...,n—1),
H(1) = f(1).

By (13), for all = € [0, 1], there exists n € ]0,1[ such that

_@-DaE—m)® (= 1) o
f(z) — H(z) = o) FEM ().
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Therefore, for x € [0, 1],
f(z) < H(z).

Since H is of degree 2n — 1, applying Theorem 4, we get that

[ stwyin < [ B = goHO) + Y B () + 5, H)
0 0 k=1

n—1

= Bof(0) + > Brf (i) + Buf(1).

k=1

From this point, an analogous argument as in the previous proof gives the
statement of the theorem, for arbitrary interval [a,b] without differentia-

bility assumptions on the function f. O

5. Applications:
2-, 3-, 4-, 5-, 6-, 8-, 10- and 12-monotone functions

In the subsequent corollaries we state Hadamard-type inequalities in
those cases when the roots of the polynomials in Theorem 6 and Theorem 7

can explicitly be computed.

Corollary 1. If f : [a,b] — R is a 2-monotone (i.e. convex) function,
then the following inequalities hold:

(55 <5t [ s 20

Corollary 2. If f : [a,b] — R is a 3-monotone function, then the
following inequalities hold:

b
1 3 2b 1 3 2 b 1
d@+ 5 (50) = o [fwan < 3 (27) + o

3
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Corollary 3. If f : [a,b] — R is a 4-monotone function, then the
following inequalities hold:

f<3+\f 6f) f( ~ V3 3+\/§b>

6

6

Py < £ (a) + f<a+b)+1f(b)-

Corollary 4. If f : [a,b] — R is a 5-monotone function, then the
following inequalities hold:

1 16 + V6 4+f —6
o/ @+ =5 f( 10 10 b)

_ _ b
i 16 36\/6f (4 10\/6a—|— 64;0\/6[)> < bia/a f(x)dl'

. 16—\/5f <6+\/5 +4—\/6b>

36 10 ‘7T 10

16+\f ~V6 446 1
36 ( 0 ‘T b>+9f(b)'

Corollary 5. If f : [a,b] — R is a 6-monotone function, then the
following inequalities hold:

158f<5+f ﬁ) f(a+b>

10 10
5 (5—+15 5+\ﬁ 1 b
+18f< 0 ‘T )‘b—a/f(m)dx
1 5+\f -5
< 5@+ f( 04 2 b)

5 5—vV5  5+45 1
+12f< 10 a + 10 b) +Ef(b)
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In the other cases analogous statements can be formulated by apply-
ing Theorem 7. For simplicity, instead of writing down these corollaries
explicitly, we shall present a list which contains the roots of p,, (denoted
by Ax), and the coefficients ay, for the left hand side inequality, further-
more the roots of ¢, (denoted by uy), and the coefficients (), for the right
hand side inequality, respectively.

Case m = 8. The roots of py:

1 v525+70v30 1 /525 —70v30
2 70 2 70 ’
1 n 525 —70v30 1 N 525 + 70v/30
2 70 T2 70 ’
the corresponding coefficients:
1 30 1_’_\/30 1_1_\/30 1 V30
4 727 4 27 4 27 4 2
The roots of g4:
1 V21 1 n V21l
2 147 27 2 147

the corresponding coefficients:

1 49 16 49 1

20" 180" 45" 180" 20

Case m = 10. The roots of ps:

1 245+ 1470 1 245 — 144/70
2 42 D) 42 ’
1 1 N 245 — 1470 1 N 245 + 14V/70
27 2 42 T2 42 ’

the corresponding coefficients:

322 - 13v/70 322 4+ 1370 64 322 +13v/70 322 — 1370

1800 ’ 1800 T2257 1800 ’ 1800
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The roots of g5:

1 147+ 427 1 /147 —42V7
2 42 T2 42 ’
L, V147 - 2V7 1 L VUTE 427
2 42 T2 42 ’

the corresponding coefficients:

1 14 -7 14+V7 14+V7 14-V7 1

30° 60 60 60 60 30°

Case m = 12 (right hand side inequality). The roots of ¢g:

1 VA495+66V15 1 /495 — 66115
2 66 ) 66 ’
11 N 495 — 66115 1 N V495 + 66115
27 2 66 D) 66 ’

the corresponding coefficients:

1 124 — 74/15 124+ 7/15 128

42’ 700 700 ' 525’
1244+ 715  124—7J/15 1
700 700 42"

During the investigations of the higher-order cases, we were able to
use the symmetry of the roots of the orthogonal polynomials with respect
to 1/2, and therefore the calculations lead to solving at most quadratic
equations. The first case where “casus irreducibilis” appears, is the 7-
monotone case; similarly, this is the reason for presenting only the right
hand side inequality when the function was supposed to be 12-monotone.

Acknowledgement. The authors wish to express their gratitude to AT-
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