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On zeros of reciprocal polynomials

By PIROSKA LAKATOS (Debrecen)

Abstract. The purpose of this paper is to show that all zeros of the reciprocal
polynomial

Pm(z) =
mX

k=0

Akzk (z ∈ C)

of degree m ≥ 2 with real coefficients Ak ∈ R (i.e. Am 6= 0 and Ak = Am−k for all

k = 0, . . . ,
�

m
2

�
) are on the unit circle, provided that the “coefficient condition”

|Am| ≥
m−1X
k=1

|Ak −Am|

is satisfied.
Moreover, if the “coefficient condition” holds, then all zeros eiuj , (j = 1, 2, . . . , m)

can be arranged such that����ei 2πj
m+1 − eiuj

���� <
π

m + 1
(j = 1, . . . , m).

If m = 2n + 1 is odd, then −1 = eiun+1 is always a zero, and all zeros of P2n+1 are
single.
If m = 2n is even, if the “coefficient condition” holds with equality and if

sgn A2n = sgn(−1)k+1(Ak −A2n) = sgn(−1)n+1 An −A2n

2
(k = 1, 2, . . . , n− 1),

then un = un+1 = π, the number −1 = eiun = eiun+1 is a double zero of P2n.
Otherwise all zeros of P2n are single.
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1. Introduction

The Coxeter transformation was introduced in the representation the-
ory of finite dimensional algebras (see [2]). The characteristic polynomial
of the Coxeter transformation of an oriented graph whose underlying graph
is a wild star is a Salem polynomial (see [3], [4]).

Allowing circles in the underlying graph, the spectral properties of the
Coxeter transformations get much more complicated. These properties are
related to polynomials of the form

l(zm + zm−1 + · · ·+ z + 1) +
(
zk + zm−k

)
(z ∈ C)

where m, k are fixed non-negative integers with m ≥ 2, 1 ≤ k ≤ [
m
2

]
and

l is a fixed real number.
The zeros of the first expression l(zm + zm−1 + · · ·+ z + 1) are

εj = ei j
m+1 2π (j = 1, 2, . . . ,m)

the (m + 1)st roots of unity except 1, they are on the unit circle. It is
surprising that adding zk + zm−k to the first expression the polynomial
obtained inherits this property. Moreover, not just all zeros remain on the
unit circle but they move away from εj just a little even if we add a linear
combination

∑[ m
2 ]

k=1 ak(zk+zm−k) to the expression l(zm+zm−1+· · ·+z+1),
provided that |l| is large enough. This leads to the main result of the paper:
giving a sufficient condition for reciprocal polynomials to have all of their
zeros on the unit circle and also giving the location of the zeros.

Our basic tool is a transformation of semi-reciprocal polynomials
called the Chebyshev transformation. Although this transformation seems
to be well known we could not find a suitable reference. In Section 2, based
on [1], we summarize the properties of the Chebyshev transformation. In
Section 3 we formulate our results and prove them. In Section 4 we discuss
the necessity of our sufficient condition.

2. The Chebyshev transformation

A polynomial p of the form p(z) =
∑m

j=0 ajz
j (z ∈ C) where aj ∈ C

are given numbers with am 6= 0, aj = am−j

(
j = 0, . . . ,

[
m
2

])
is called a

reciprocal polynomial of degree m.
We need a more general class of reciprocal polynomials (of even de-

gree).
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Definition 1. A polynomial p of the form

(1) p(z) =
2n∑

j=0

ajz
j (z ∈ C)

where n ∈ N, a0, . . . , a2n ∈ R and

(2) aj = a2n−j (j = 0, . . . , n− 1)

is called a real semi-reciprocal polynomial of degree at most 2n. If a2n 6= 0
we call p a real reciprocal polynomial of degree 2n.

Denote byR2n the set of all real semi-reciprocal polynomials of degree
at most 2n.

If p ∈ R2n, p 6= o (o =the zero polynomial), then there is an integer k,
0 ≤ k ≤ n, such that

(3)
a2n = a2n−1 = · · · = an+k+1 = 0 = an−k−1 = · · · = a0

but an+k = an−k 6= 0.

Hence

(4) p(z)=
2n∑

j=0

ajz
j = zn

[
an+k

(
zk +

1
zk

)
+ · · ·+ an+1

(
z +

1
z

)
+ an

]
.

Let Tj be the jth Chebyshev polynomial of the first kind, defined by

Tj(cosx) = cos jx (j = 0, 1, . . . ).

With z + 1
z = x we have zj + 1

zj = Cj(x) (j = 1, 2, . . . ) (see e.g. [6], p. 224)
where

Cj(x) := 2Tj

(x

2

)
(x ∈ C, j = 1, 2, . . . )

are the normalized Chebyshev polynomials of the first kind. For us it will
be now more convenient to define C0 by

C0(x) := T0(x) (x ∈ C).

Hence, from (4)

(5) p(z) = zn
k∑

j=0

an+jCj(x) = an+k zn
k∏

j=1

(x− αj)
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where αj ∈ C (j = 1, . . . , k) are the zeros of the polynomial
k∑

j=0

an+jCj(x).

Equation (5) remains true in the case when k = 0, i.e. p(z) = anzn if we
agree that

(6)
0∏

j=1

bj := 1.

Going back to the variable z we get that

p(z) = an+k zn−k
k∏

j=1

z

(
z +

1
z
− αj

)
= an+k zn−k

k∏

j=1

(z2 − αj z + 1).

With this we have justified

Proposition 1. Every non-zero polynomial p ∈ R2n has the decom-

position

(7) p(z) = an+k zn−k
k∏

j=1

(z2 − αj z + 1)

where α1, . . . , αk ∈ C, an+k 6= 0 for some k with 0 ≤ k ≤ n and the

convention (6) is adopted. If p ∈ R2n is a reciprocal polynomial of degree

2n, then (7) holds with k = n.

Definition 2. The Chebyshev transform of a non-zero polynomial p ∈
R2n having the decomposition (7) is defined by

(8) T p(x) = an+k

k∏

j=1

(x− αj)

(with (6) adopted) while for the zero polynomial p = o let

(9) T o(x) = 0.

It is clear that T mapsR2n into the set Pn of all polynomials of degree
≤ n with real coefficients.
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Proposition 2. The Chebyshev transform T is an isomorphism of the

(real) vector space R2n onto Pn.

Proof. (i) T preserves the addition and the multiplication by a real
constant. Using (5) and (3) (to include also the zero coefficients into the
sum) we can write T p into the form

T p(x) = an+k

k∏

j=1

(x− αj) =
k∑

j=0

an+jCj(x) =
n∑

j=0

an+jCj(x)

and the last form of T p is valid also for the zero polynomial. Taking now
another q ∈ R2n with q(z) =

∑2n
j=0 bjz

j (bj = b2n−j for j = 0, . . . , n − 1)
and constants α, β ∈ R we have

(αp + βq)(z) =
2n∑

j=0

(αaj + βbj)zj

thus

T (αp + βq)(x) =
n∑

j=0

(αan+j + βbn+j)Cj(x)

= α

n∑

j=0

an+jCj(x) + β

n∑

j=0

bn+jCj(x) = α (T p(x)) + β (T q(x)) .

(ii) T maps onto Pn. Every polynomial r̃ ∈ Pn can uniquely be
written as a (real) linear combination of C0, C1, . . . , Cn in the form r̃(x) =∑n

j=0 An+jCj(x) (An+j ∈ R). With r(z) :=
∑2n

j=0 Ajz
j where Aj :=

A2n−j for j = 0, . . . , n−1 we have r ∈ R2n and T r = r̃ proving our claim.

(iii) T is one-to-one. Namely, if T p = T q for p, q ∈ R2n, then T p −
T q = T (p− q) = o hence, by (8), (9) p− q = o, p = q. ¤

Lemma 1. (i) Let p be a real reciprocal polynomial of degree 2n.

Then all zeros of p are on the unit circle if and only if all zeros of its

Chebyshev transform T p are in the closed interval [−2, 2].

(ii) Moreover, if all zeros αj of T p are in [−2, 2], written as αj =
2 cos uj with uj ∈ [0, π] (j = 1, 2, . . . , n), then all zeros of p are given by

e±iuj (j = 1, 2, . . . , n).
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The multiplicity of αj 6= ±2 is the same as the multiplicities of eiuj and
e−iuj (j = 1, 2, . . . , n) while in the case of αj = ±2 the multiplicities of
the corresponding zeros eiuj = ±1 of p are doubled.

Proof. (i) Necessity. Suppose that all zeros of p are on the unit cir-
cle. They can be arranged in conjugate pairs (β1, β̄1), (β2, β̄2) . . . (βn, β̄n).
By assumption |βj |2 = βj β̄j = 1, β̄j = 1

βj
(j = 1, . . . n), hence

p(z) = a2n

n∏

j=1

(z − βj)(z − β̄j) = a2n

n∏

j=1

(
z2 − (βj + β̄j)z + 1

)

and

T p(x) = a2n

n∏

j=1

(
x− (βj + β̄j)

)
.

It is clear that |βj + β̄j | = |2Re (βj)| ≤ 2|βj | = 2.
(i) Sufficiency. Assume that the Chebyshev transform has the form

T p(x) = a2n

n∏

j=1

(x− αj)

where a2n 6= 0 and αj ∈ [−2, 2] (j = 1, . . . , n). Then

p(z) = a2n

n∏

j=1

(
z2 − αjz + 1

)
.

Since αj ∈ [−2, 2] we have z2 − αjz + 1 = (z − βj)(z − β̄j) with βj β̄j =
1 = |βj |2 proving that all zeros β1, β̄1, β2, β̄2 . . . βn, β̄n of p are on the unit
circle.

(ii) We have αj = 2 cos uj = βj + β̄j . Writing βj as eiqj (here we
may suppose that 0 ≤ qj ≤ π) we obtain that 2 cos uj = eiqj + e−iqj =
2 cos qj hence uj = qj (j = 1, 2, . . . , n). The statement concerning the
multiplicities is obvious. ¤

3. Results and proofs

Theorem 1. All zeros of the (real reciprocal) polynomial

(10) hm(z) = l(zm + zm−1 + · · ·+ z + 1) +
[ m

2 ]∑

k=1

ak

(
zm−k + zk

)
(z ∈ C)
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of degree m where l, a1, . . . , a[ m
2 ] ∈ R, l 6= 0, m ∈ N, m ≥ 2, are on the

unit circle if

(11) |l| ≥ 2
[ m

2 ]∑

k=1

|ak|.

Moreover, if (11) is satisfied, then for even m = 2n all zeros of hm can be

given as

eiuj , e−iuj (j = 1, 2, . . . , n)

where

j − 1
2

m + 1
2π <uj <

j + 1
2

m + 1
2π (j = 1, 2, . . . , n− 1)

n− 1
2

m + 1
2π <un ≤ π.

In the last inequality un ≤ π, we have equality if and only if

(12)
|l| = 2

[ m
2 ]∑

k=1

|ak| and sgn l = sgn(−1)k+1 sgn ak

for all k = 1, 2, . . . , n.

If (12) holds, then −1 = eiπ = e−iπ is a double zero of hm and all other

zeros are single.

For odd m = 2n + 1 all zeros of hm are single, they can be given as

−1, eiuj , e−iuj (j = 1, 2, . . . , n)

where
j − 1

2

m + 1
2π < uj <

j + 1
2

m + 1
2π (j = 1, 2, . . . , n).

Remark 1. The statement concerning the location of the zeros of hm

can also be formulated as follows.
If (11) is satisfied, then all the zeros eiuj (j = 1, 2, . . . , m) of hm can

be arranged such that

∣∣εj − eiuj
∣∣ <

π

m + 1
(j = 1, . . . , m)
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where, as in the introduction, εj are the (m+1)st roots of unity, except 1.
Namely, for even m = 2n, let uj (j = 1, 2, . . . , n) be the same as in

Theorem 1 and un+j := 2π − un+1−j (j = 1, 2, . . . , n). If (12) does not
hold, then all zeros of hm are single. If (12) holds, then un = un+1 = π

and −1 = eiun = eiun+1 is a double zero and all other zeros are single.
For odd m = 2n + 1 let uj (j = 1, 2, . . . , n) be the same as in The-

orem 1, un+1 := π and un+1+j := 2π − un+1−j (j = 1, 2, . . . , n). The
number −1 = eiun+1 is always a zero and all zeros are single.

Proof. The basic idea of our proof is the following. Assume that
(11) holds and let

xj = 2 cos
j + 1

2

m + 1
2π (j = 0, . . . ,

[
m
2

]
).

If m = 2n is an even number, we show that sgn T h2n(xj) = sgn(−1)j sgn l

(j = 0, 1, . . . , n− 1) and T h2n(xn) = 0 if (12) holds, otherwise
sgn T h2n(xj) = sgn(−1)j sgn l (j = 0, . . . , n).

If m = 2n + 1 is odd, then h2n+1(z) = (z + 1)h̄2n(z) with a suit-
able reciprocal polynomial h̄2n from R2n. We show that sgn T h̄2n(xj) =
sgn l sgn(−1)j (j = 0, 1, . . . , n).

Applying Lemma 1 completes the proof.
Case 1: m = 2n. With the notation vj(z) = zj + zj−1 + · · · + 1 =

zj+1−1
z−1 , ej(z) = zj , wj(z) = zj + 1 (j = 0, 1, . . . ) we have

h2n(z) = lv2n(z) +
n∑

k=1

akek(z) · w2n−2k(z),

T h2n(x) = lT v2n(x) +
n∑

k=1

akT (ek · w2n−2k)(x).

The zeros of v2n are the (2n + 1)st roots of unity, except 1: e
2jπi
2n+1

(j = 1, 2, . . . , 2n). They can be arranged into conjugate pairs:(
e

2jπi
2n+1 , e

2(2n+1−j)πi
2n+1

)
=

(
e

2jπi
2n+1 , e−

2jπi
2n+1

)
(j = 1, . . . , n), thus

v2n(z) =
2n∏

j=1

(
z − e

2jπi
2n+1

)
=

n∏

j=1

(
z − e

2jπi
2n+1

)(
z − e−

2jπi
2n+1

)
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=
n∏

j=1

(
z2 − 2 cos

2jπ

2n + 1
z + 1

)
,

T v2n(x) =
n∏

j=1

(
x− 2 cos

2jπ

2n + 1

)
.

Similarly, for each 0 ≤ k ≤ n the zeros of w2n−2k are the (2n−2k) st roots
of −1 : e

(2j−1)πi
2n−2k (j = 1, . . . , 2n−2k). They can be arranged into conjugate

pairs
(
e

(2j−1)πi
2n−2k , e

(2(2n−2k+1−j)−1)πi
2n−2k

)
=

(
e

(2j−1)πi
2n−2k , e−

(2j−1)πi
2n−2k

)
(j = 1, . . . , n−k).

Therefore

w2n−2k(z) =
2n−2k∏

j=1

(
z − e

(2j−1)πi
2n−2k

)
=

n−k∏

j=1

(
z2 − 2 cos

(2j − 1)π
2n− 2k

z + 1
)

,

T (ekw2n−2k)(x) =
n−k∏

j=1

(
x− 2 cos

(2j − 1)π
2n− 2k

)
.

Denote by Un the nth Chebyshev polynomial of the second kind (see
for example in [6]), defined by

Un(cos x) =
sin(n + 1)x

sin x
(n = 0, 1, . . . ).

We claim that

T v2n(x) = Un

(x

2

)
+ Un−1

(x

2

)
,(13)

T (ek · w2n−2k)(x) = 2Tn−k

(x

2

)
.(14)

To justify the first identity we note that

(15)

Un(cos y)+ Un−1(cos y) =
sin(n+ 1)y + sin ny

sin y

= 2
sin (2n + 1)y

2 cos y
2

sin y
=

sin (2n + 1)y
2

sin y
2

.
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The right hand side is zero if and only if y = 2jπ
2n+1 (j ∈ Z \ {0}) hence all

zeros of Un

(
x
2

)
+ Un−1

(
x
2

)
are 2 cos 2jπ

2n+1 (j = 1, . . . , n). Since both sides
of (13) are monics which have the same zeros, they are identical.

The zeros of Tp can be calculated easily from their definition, for p ∈ N
they are

cos
(2j − 1)π

2p
(j = 1, . . . , p).

Thus for k < n the zeros of the monic 2Tn−k

(
x
2

)
are 2 cos (2j−1)π

2n−2k (j =
1, . . . , n−k). They are the same as the zeros of T (ek ·w2n−2k), hence (14)
holds. It also holds for k = n since then both sides of (14) are equal to 2.

Next we evaluate T h2n at the points

xj = 2 cos
j + 1

2

m + 1
2π (j = 0, . . . , n)

of the interval [−2, 2]. Since xj = 2 cos yj with yj = j+ 1
2

2n+1 2π we have by
(13), (14)

T h2n(xj) = l
(
Un

(xj

2

)
+ Un−1

(xj

2

))
+

n∑

k=1

2akTn−k

(xj

2

)

= 2

[
l
2 sin 2n+1

2 yj

sin 1
2yj

+
n∑

k=1

ak cos(n− k)yj

]

= 2

[
l
2 (−1)j

sin yj

2

+
n∑

k=1

ak cos(n− k)yj

]
.

If j = 0, 1, . . . , n − 1, then 0 < sin yj

2 < 1,
∑n

k=1 |ak cos(n − k)yj | ≤∑n
k=1|ak| and by (11) the sign of the expression in the bracket is (−1)j sgn l.

If j = n, then yn = π and the expression in the bracket is

l

2
(−1)n +

n∑

k=1

ak(−1)n−k = (−1)n

(
l

2
+

n∑

k=1

ak(−1)k

)
.

Its sign is (−1)n sgn l if in (11) strict inequality holds or if in (11) we have
equality and at least for one k (1 ≤ k ≤ n) we have sgn l = sgn(−1)k sgn ak.
If we have equality in (11) and sgn l = sgn(−1)k+1 sgn ak for all k =
1, . . . , n, then the expression in the bracket is zero.
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Thus either sgn T h2n(xj) = sgn(−1)j sgn l (j = 0, . . . , n) or
sgn T h2n(xj) = sgn(−1)j sgn l (j = 0, 1, . . . , n − 1) and T h2n(xn) = 0.
In both cases T h2n has n distinct zeros in the interval [−2, 2]. Writing
these in the form 2 cos uj with 0 ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ π and applying
Lemma 1 we can complete the proof in the first case.

Case 2: m = 2n + 1. We have h2n+1(z) = (z + 1)h̄2n(z) with

h̄2n(z) = lv̄2n(z) +
n∑

k=1

akzkw̄2n−2k(z)

where

v̄2n(z) = z2n + z2n−2 + · · ·+ z2 + 1 = vn(z2),

w̄2n−2k(z) =
w2n+1−2k(z)

z + 1
=

z2n+1−2k + 1
z + 1

.

Using the factorization of vn we get

v̄2n(z) = vn(z2) =
n∏

j=1

(
z2 − e

2jπi
n+1

)
=

n∏

j=1

(
z − e

jπi
n+1

)(
z − e

jπi
2n+1−πi

)
.

Arranging the zeros of v̄2n into conjugate pairs
(
e

jπi
n+1 , e−

jπi
n+1

)
(j =1, . . . , n)

we have

v̄2n(z) =
n∏

j=1

(
z − e

jπi
n+1

) (
z − e−

jπi
n+1

)
=

n∏

j=1

(
z2 − 2 cos

2jπ

2n + 1
z + 1

)

therefore

T v̄2n(x) =
n∏

j=1

(
x− 2 cos

jπ

n + 1

)
.

We can easily calculate the zeros of w̄2n−2k (we omit this elementary cal-
culation) and obtain the factorization

w̄2n−2k(z) =
n−k∏

j=1

(
z − e

(2j−1)πi
2n−2k+1

)(
z − e−

(2j−1)πi
2n−2k+1

)

=
n−k∏

j=1

(
z2 − 2 cos

(2j − 1)π
2n− 2k + 1

z + 1
)
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therefore

T (ek · w̄2n−2k)(x) =
n−k∏

j=1

(
x− 2 cos

(2j − 1)π
2n− 2k + 1

)
.

Next we show that

T v̄2n(x) = Un

(x

2

)
,(16)

T (ek · w̄2n−2k)(x) = Un−k

(x

2

)
− Un−k−1

(x

2

)
.(17)

where we have to adopt the convention

(18) U−1(x) = 0 (x ∈ C).

The first identity follows from the fact that the zeros of both sides are
the same.

To justify the second we note that

Un−k(cos y)− Un−k−1(cos y) =
sin(n− k + 1)y − sin(n− k)y

sin y

=
2 cos (2n−2k+1)y

2 sin y
2

sin y
=

cos (2n−2k+1)y
2

cos y
2

for all k = 0, . . . , n provided that the convention (18) is adopted.
If k = n, then both sides of (17) are equal to 1 thus (17) holds. For

k < n the right hand side of (17) is zero if and only if y = (2j−1)π
2n−2k+1

(j ∈ Z) hence all zeros of Un−k

(
x
2

) − Un−k−1

(
x
2

)
are 2 cos (2j−1)π

2n−2k+1 (j =
1, . . . , n−k), they are the same as the zeros of T (ek · w̄2n−2k) proving (17).

By the linearity of the Chebyshev transform and by (16), (17) we have

T h̄2n(x) = lT v̄2n(x) +
n∑

k=1

akT (ek · w̄2n−2k)(x)

= lUn

(x

2

)
+

n∑

k=1

ak

[
Un−k

(x

2

)
− Un−k−1

(x

2

)]
.
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Next we evaluate T h̄2n at the points

x̄j = xj = 2 cos
j + 1

2

2n + 2
2π (j = 0, . . . , n)

of the interval [−2, 2]. Since x̄j = 2 cos ȳj with ȳj = j+ 1
2

2n+2 2π we have

T h̄2n(x̄j) = 2

[
l

2
sin(n + 1)ȳj

sin ȳj
+

∑n
k=1 ak cos 2n−2k+1

2 ȳj

2 cos ȳj

2

]

= 2

[
l

2
(−1)j

sin ȳj
+

n∑

k=1

ak

cos 2n−2k+1
2 ȳj

2 cos ȳj

2

]

= 2
l
2 (−1)j +

∑n
k=1 ak sin ȳj

2 cos 2n−2k+1
2 ȳj

sin ȳj
.

Since ȳj ∈ ]0, π[ we have sin ȳj > 0, 0 < sin ȳj

2 < 1, | cos 2n−2k+1
2 ȳj | ≤ 1

for all k = 1, . . . , n therefore the sign of the expression in the bracket is
sgn l sgn(−1)j . Thus sgn

(T h̄2n(xj)
)

= sgn l sgn(−1)j (j = 0, 1, . . . , n)
proving that T h̄2n has n different zeros in [−2, 2]. Writing these zeros in
the form 2 cos uj with 0 ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ π and applying Lemma 1
the proof is completed in the second case as well. ¤

We can formulate Theorem 1 in a more symmetric way. This formu-
lation explains, in a certain way, the appearance of the factor 2 in (11).

Theorem 2. All zeros of the reciprocal polynomial

(19) Pm(z) =
m∑

k=0

Akzk (z ∈ C)

of degree m ≥ 2 with real coefficients Ak ∈ R (i.e. Am 6= 0 and Ak = Am−k

for all k = 0, . . . ,
[

m
2

]
) are on the unit circle, provided that

(20) |Am| ≥
m−1∑

k=1

|Ak −Am|.

If (20) holds, then all zeros eiuj (j = 1, 2, . . . ,m) of Pm can be arranged

such that ∣∣εj − eiuj
∣∣ <

π

m + 1
(j = 1, . . . , m).
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If m = 2n + 1 is odd, then −1 = eiun+1 is always a zero and all zeros

of Pm are single.

If m = 2n is even

(21)





|A2n| =
2n−1∑
k=1

|Ak −A2n| and

sgnA2n = sgn(−1)k+1(Ak −A2n) = sgn(−1)n+1 An −A2n

2
(k = 1, 2, . . . , n− 1)

holds, then un = un+1 = π, the number −1 = eiun = eiun+1 is a double

zero of Pm and all other zeros are single. Otherwise (i.e. if m = 2n, (21)
does not hold) all zeros of Pm are single.

Proof. Comparing the coefficients of zj in hm and Pm we see that
for even m = 2n

A2n = A0 = l, A2n−1 = A1 = l + a1, . . . , An+1 = An−1 = l + an−1,

An = l + 2an

thus l = A2n, ak = A2n−k − A2n = Ak − A2n for k = 1, 2, . . . , n − 1 and
2an = An −A2n. Therefore the condition (11)

|l| ≥ 2
n∑

k=1

|ak|

can be written as

|A2n| ≥ 2
n−1∑

k=1

|Ak −A2n|+ |An −A2n| =
2n−1∑

k=1

|Ak −A2n|

which is the same as (20).
For odd m = 2n + 1 the comparison of the coefficients gives that

A2n+1 = A0 = l, A2n = A1 = l + a1, . . . , An+1 = An = l + an

thus l = A2n+1, ak = A2n+1−k − A2n+1 = Ak − A2n+1 for k = 1, 2, . . . , n
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and (11) can be written as

|A2n+1| ≥ 2
n∑

k=1

|Ak −A2n+1| =
n∑

k=1

(|Ak −A2n+1|+ |A2n+1−k −A2n+1|)

=
2n∑

k=1

|Ak −A2n+1|

proving (20). The statement concerning the location of the zeros follows
from Remark 1. ¤

4. Necessary and sufficient conditions

If the degree m of Pm is small we can easily obtain necessary and
sufficient conditions for all zeros of Pm to be on the unit circle.

If m = 2, then P2(z) = A2z
2 + A1z + A2 = z

(
A2(z + 1

z ) + A1

)
hence

T P2(x) = A2x + A1. The only zero of T P2 is in [−2, 2] if and only if

(22) |A2| ≥ 1
2
|A1|.

This is the criteria for P2 to have all zeros on the unit circle.
If m = 3, then P3(z) = A3z

3 + A2z
2 + A2z + A3 = (z + 1)(A3z

2 +
(A2−A3)z +A3). By (22) the zeros of P3 are on the unit circle if and only
if

(23) |A3| ≥ 1
2
|A2 −A3|.

If m=4, then P4(z)=A4z
4+A3z

3+A2z
2+A3z+A4=z2(A4(z2+ 1

z2 ) +
A3(z + 1

z ) + A2) hence with x = z + 1
z we get that T P4(x) = A4(x2− 2) +

A3x + A2. By Lemma 1 all zeros of P4 are on the unit circle if and only if
the discriminant of T P4 is non-negative:

(24) A2
3 − 4A4(A2 − 2A4) ≥ 0

and

(25) −2 ≤ x1, x2 ≤ 2
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hold where x1 ≤ x2 are the real zeros of T P4. A simple calculation shows
that (24) and (25) are equivalent to

(26)
2
√

max{A2A4 − 2A2
4, 0} ≤ |A3|

≤ min
{

4|A4|, |A4|+ 1
2
A2 sgnA4

}
.

This is the criterion for P4 to have all of its zeros on the unit circle.
For m = 2 (22) holds if and only if

A1 ∈ [−2|A2|, 2|A2|]

while (20) gives only the smaller interval

A1 ∈ [A2 − |A2|, A2 + |A2|] .

This shows that (20) for m = 2 is not necessary. The situation is similar
for m = 3.

For m = 4 the necessary and sufficient condition (26) is non-linear in
the coefficients, while our sufficient condition (20) is linear for all m ≥ 2.
In some special cases we get necessary and sufficient conditions.

Corollary 1. All zeros of the polynomial

l(zm + zm−1 + · · ·+ z + 1) +
(
zk + zm−k

)
(z ∈ C)

where m, k are fixed non-negative integers with m ≥ 2, 1 ≤ k ≤ [
m
2

]
and

l is a fixed positive number, are on the unit circle for all m ≥ 2 and for all

k = 1, 2, . . . ,
[

m
2

]
if and only if l ≥ 2.

Namely, taking m = 2, k = 1 by (22) all zeros of the resulting poly-
nomial lz2 + (l + 2)z + l are on the unit circle if and only if l /∈ (− 2

3 , 2
)

therefore l ≥ 2. On the other hand if l ≥ 2, then by Theorem 1 all zeros of
the polynomial l(zm + zm−1 + · · ·+ z + 1) +

(
zk + zm−k

)
are on the unit

circle.

Remark 2. A preliminary version of some parts of this paper was
reported in [5].

A. Schinzel [7] generalized Theorem 2 to the case of self-inversive
polynomials over C, i.e. polynomials Pm(z)=

∑n
k=0 Akzk for which Ak∈C,
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Am 6= 0, εĀk = Am−k for all k = 0, . . . , m with a fixed ε ∈ C, |ε| = 1. He
proved that all zeros of Pm are on the unit circle, provided that

|Am| ≥ inf
m∑

k=0

|cAk − dm−jAm|,

where the infimum is taken over all c, d ∈ C and |d| = 1.
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