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Jensen’s equation and bisymmetry

By GYULA MAKSA (Debrecen)

Abstract. In this note we give short proofs for some known results on the Jensen
equation and characterizations of quasi-linear means by the bisymmetry, and of quasi-
arithmetic means as given by Kolmogorov [6], Nagumo [9] and de Finetti [5].

1. Introduction

Let I ⊂ R (the reals) be an interval of positive length, n be a fixed

positive integer and α ∈ ]0, 1[ be fixed. The Jensen equation is

(1) f(αu + (1− α)v) = αf(u) + (1− α)f(v)

where f : In → R and (1) holds for all u, v ∈ In. A function B : In → I

is n-bisymmetric if n ≥ 2 (fixed) and

(2) B
(
B(x11, . . . , x1n), . . . , B(xn1, . . . , xnn)

)

= B
(
B(x11, . . . , xn1), . . . , B(x1n, . . . , xnn)

)
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holds for all xij ∈ I (i, j = 1, . . . , n). In what follows we consider equation
(2) as application of the function B : In → I to the matrix




x11 x12 . . . x1n

x21 x22 . . . x2n
...

xn1 xn2 . . . xnn


 .

An element (λ1, . . . , λn) ∈ Rn is called an n-weight if λk ∈ ]0, 1[ (k =
1, . . . , n) and

∑n
k=1 λk = 1. Throughout the paper, for n ≥ 2, CSIR(In)

denotes the class of all continuous functions g : In → R that are strictly
increasing in each variable and n-reflexive, that is,

g(x, . . . , x) = x for all x ∈ I.

In this note we are interested in solutions of (1) and (2) belonging to
the class CSIR(In). These solutions are known (see Münnich–Maksa–

Mokken [8] and its references). Our aim is to simplify the proofs by
pointing out the important role played by the Jensen equation (1) in char-
acterizing quasi-linear means by bisymmetry and quasi-arithmetic means
by the axioms of Kolmogorov [6], Nagumo [9] and de Finetti [5].

2. Solutions of the Jensen equation belonging to CSIR(In)

These solutions can be obtained from the case n = 2 (see Aczél [1])
by induction on n as in [8] or from more general results (see e.g. Kucz-

ma [7] for α = 1
2 and Daróczy–Maksa [4] for α 6= 1

2 ). Here we give an
elementary proof, without induction, of the following.

Lemma. Suppose that f ∈ CSIR(In) is a solution of equation (1) for

an α ∈ ]0, 1[ . Then

(3) f(u) =
n∑

k=1

λkuk

for all u = (u1, . . . , un) ∈ In and for an n-weight (λ1, . . . , λn).

Proof. Let u = (u1, . . . , un), v = (v1, . . . , vn) ∈ In, a, b ∈ I, a < b

and k ∈ {1, . . . , n} be fixed. Integrate both sides of (1) on [a, b] with
respect to vk.
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Then we have that

1
1− α

∫ αuk+(1−α)b

αuk+(1−α)a

f(αu1 + (1− α)v1, . . . ,

k
^

t , . . . , αun + (1− α)vn) dt

= α(b− a)f(u1, . . . , uk, . . . , un) + (1− α)
∫ b

a

f(v1, . . . , vk, . . . , vn) dvk,

whence we get the existence and continuity of the partial derivative func-
tion ∂kf . Therefore f is continuously differentiable. Differentiating both
sides of (1) with respect to uk and with respect to vk we obtain that
∂kf(αu + (1 − α)v) = ∂kf(u) and ∂kf(αu + (1 − α)v) = ∂kf(v), respec-
tively. Thus f ′(u) = f ′(v), that is, f ′ is constant. Therefore there exists
(λ0, λ1, . . . , λn) ∈ Rn+1 such that

f(u) =
n∑

k=1

λkuk + λ0, (u = (u1, . . . , un) ∈ In).

Since f is reflexive and strictly monotone increasing in each variable we
have that λ0 = 0 and (λ1, . . . , λn) is an n-weight. ¤

3. n-bisymmetric elements of CSIR(In)

The basic tool for finding all n-bisymmetric functions belonging to
CSIR(In) is the classical theorem of J. Aczél for the case n = 2 (see
[1], [2], [3]). The extension of this result to n > 2 in the not necessarily
symmetric case was first proven in [8]. Here we present a much simpler
proof than in [8].

Theorem. A function B ∈ CSIR(In) is a solution of (2), if and only

if, there exist an n-weight (λ1, . . . , λn) and a continuous and strictly in-

creasing function ϕ : I → R such that

(4) B(x1, . . . , xn) = ϕ−1

( n∑

k=1

λkϕ(xk)
)

(x1, . . . , xn ∈ I).
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Proof. The “if” part is obvious. The “only if” part is true for n = 2
(see e.g. [1]). Let x, y, u, v ∈ I and apply B to the n× n matrix




x y . . . y

u v . . . v
...

...
...

u v . . . v


 .

Then, with the definition

(5) M(x, y) = B(x, y, . . . , y), (x, y ∈ I)

(2) implies that

M
(
M(x, y),M(u, v)

)
= M

(
M(x, u),M(y, v)

)
.

Since M ∈ CSIR(I2) we can apply Aczél’s theorem (see [1], [2], [3]) to
get

(6) M(x, y) = ϕ−1
(
αϕ(x) + (1− α)ϕ(y)

)
(x, y ∈ I)

for a ϕ : I → R strictly increasing and continuous function and for an
α ∈ ]0, 1[ . Let now (x1, . . . , xn), (y1, . . . , yn) ∈ In and apply B to the
n× n matrix 



x1, y1 . . . y1

x2 y2 . . . y2
...

...
xn yn . . . yn


 .

Then, by (5) and (6), we obtain that

(7) B
(
ϕ−1(αϕ(x1) + (1− α)ϕ(y1)

)
, . . . , ϕ−1

(
αϕ(xn) + (1− α)ϕ(yn))

)

= ϕ−1
(
αϕ(B(x1, . . . , xn)) + (1− α)ϕ(B(y1, . . . , yn))

)
.

Let J = ϕ(I). Then J ⊂ R is an interval of positive length, and for
all u1, . . . , un ∈ J , with the substitutions xk = ϕ−1(uk) (k = 1, . . . , n) and
with the definition

(8) f(u1, . . . , un) = ϕ
(
B(ϕ−1(u1), . . . , ϕ−1(un))

)

equation (7) goes over into Jensen equation (1). Applying our lemma we
have (3) with some n-weight (λ1, . . . , λn). Thus (8) and (3) imply (4).

¤
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4. Remarks on the characterizations of quasi-linear
and quasi-arithmetic means

In the sense of Kolmogorov [6], Nagumo [9], and de Finetti [5] a
quasi-arithmetic mean is a sequence (Bn) of functions Bn : In → I (n ≥ 2)
with the property that there exists a strictly increasing and continuous
function ϕ : I → R such that

(9) Bn(x1, . . . , xn) = ϕ−1

(
1
n

n∑

k=1

ϕ(xk)
)

for all positive integers n ≥ 2 and for all (x1, . . . , xn) ∈ In. For a charac-
terization of this sequence (Bn) they used the following system of axioms:

(a) Bn ∈ CSIR(In) for all n ≥ 2;

(b) Bn is symmetric for all n ≥ 2;

(c) Bn(Bk(x1, . . . , xk), . . . , Bk(x1, . . . , xk), xk+1, . . . , xn)=Bn(x1, . . . , xn)
for all n ≥ 2, for all 2 ≤ k ≤ n and for all x1, . . . , xn ∈ I.

Aczél [3] has observed that (b) and (c) imply that Bn is n-bisymmet-
ric for all fixed n ≥ 2 while the converse is not true. Indeed, let xij ∈ I and
yi = Bn(xi1, . . . , xin) (i, j = 1, . . . , n). Then (b), (c) and the reflexivity
imply that

Bn2(x11, . . . , x1n, x21, . . . , x2n, . . . , xn1, . . . , xnn)

= Bn2(y1, . . . , y1, y2, . . . , y2, . . . , yn, . . . , yn)

= Bn2(y1, y2, . . . , yn, y1, y2, . . . , yn, . . . , y1, y2, . . . , yn)

= Bn2(Bn(y1, . . . , yn), Bn(y1, . . . , yn), . . . , Bn(y1, . . . , yn))

= Bn(y1, . . . , yn)

= Bn(Bn(x11, . . . , x1n), Bn(x21, . . . , x2n), . . . , Bn(xn1, . . . , xnn)).

This, again by the symmetry of Bn2 , implies (2) for Bn instead of B. On
the other hand, an easy calculation shows that, (2) is satisfied by any
function B : In → I of the form

(10) B(x1, . . . , xn) = ϕ−1

( n∑

k=1

λkϕ(xk)
)

, ((x1, . . . , xn) ∈ In)
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with strictly increasing and continuous ϕ : I→R and n-weight (λ1, . . . , λn).
A function B defined by (10) is called quasi-linear mean of n variables with
n-weight (λ1, . . . , λn) (see [3]) and it is symmetric, if λ1 = · · · = λn = 1

n .
Therefore our theorem characterizes the quasi-linear means of n variables
for fixed n ≥ 2. Furthermore this theorem and our lemma provide the
following short proof of the characterization based on the properties (a)–
(c) of a quasi-arithmetic mean (Bn): It is obvious that any quasi-arithmetic
mean (Bn) has the properties (a)–(c). To prove the converse suppose that
(Bn) satisfies (a)–(c). Then Bn ∈ CSIR(In) is a symmetric solution of
(2) for all fixed n ≥ 2. Therefore, by our theorem, there exists a strictly
monotone increasing and continuous function ϕn : I → R such that

(11) Bn(x1, . . . , xn) = ϕ−1
n

(
1
n

n∑

k=1

ϕn(xk)
)

, ((x1, . . . , xn) ∈ In).

Write ϕ = ϕ2 and use equation (c) for k = 2. Then (11) implies that

(12) ϕ−1
n

(
ϕn(x1) + ϕn(x2)

2

)
= ϕ−1

(
ϕ(x1) + ϕ(x2)

2

)

if x1, x2 ∈ I.
It is well-known (see e.g. [1]) and easy to see that (12) can be reduced

to the one-dimensional Jensen equation for f = ϕn ◦ϕ−1 (with α = 1
2 ) and

we have that ϕn(x) = anϕ(x) + bn for all x ∈ I and for some 0 < an ∈ R,
bn ∈ R. Finally, this and (11) imply (9), that is, (Bn) is a quasi-arithmetic
mean.
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