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The structure of symplectic groups associated with
a quadratic extension of fields

By CLAUDIO G. BARTOLONE (Palermo)
and M. ALESSANDRA VACCARO (Palermo)

Abstract. Given a quadratic extension L/K of fields and a regular alter-
nating space (V, f) of finite dimension over L, we determine the isometry group
of a K-subspace W of V which does not split into the orthogonal sum of two
proper K-subspaces, W being neither an L-space nor a K-substructure.

1. Introduction

If we are given a field extension L/K and a vector space V of finite
dimension over L, then V can be viewed as a vector space over K by
restriction of scalars. P. Rabau deals in [10] with the classification of
all K-subspaces of V , or with the determination of all GLL(V )-orbits of
K-subspaces of V . He finds that the number of such orbits is independent
of the fields and it is finite just if the degree of the extension is ≤ 3 (of
course, in case of infinite fields).

If V is equipped with an L-valued regular alternating form f , then
V has, as well, a natural structure as a symplectic space (V, f ′) over K.
This gives rise to a natural embedding of the symplectic group SpL(V, f)
as a subgroup of the symplectic group SpK(V, f ′) and SpL(V, f)-orbits of
totally f ′-isotropic K-subspaces of V can be considered. D. S. Kim and P.
Rabau investigated this situation in [7] and they found that the number of
SpL(V, f)-orbits of totally f ′-isotropic K-subspaces of V is finite just if L
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is a quadratic extension of K and, moreover, this number is independent
of the fields being cosidered. Besides, P. Rabau in [11] analyzed the
structure of the orbits in greater detail, in particular working out the
structure of their stabilizers in SpL(V, f).

The results obtained by Kim and Rabau extend works of Garrett
[4] and Piatetski–Shapiro and Rallis [5], who had worked out some
special cases for applications to the Rankin–Selberg method for explicit
construction of automorphic L-functions.

In [2] the authors devoted their attention to classify SpL(V, f)-orbits of
arbitrary K-subspaces of V in the case where L is a quadratic extension of
the ground field K. Of course, matters can be reduced to classify orbits of
K-subspaces W which do not split into the orthogonal sum of two proper
K-subspaces. (Krull–Remak–Schmidt Theorem). The most interessant
orbits are the ones where W is neither an L-subspace nor a K-substructure
in V (i.e. the natural homomorphism W ⊗K L → V is injective). Up to
an isometry, there exist precisely dimL V − 1 such subspaces splitting into
three different classes (K-subspaces of first, second, or third kind). The
classification is independent of the fields.

In this paper we determine the isometry group of an indecomposable
K-subspace W as above giving a Levi decomposition of it. It turns out
that it is not solvable precisely if W is of third kind, a Levi factor being
SL2(L) in the latter case, a one dimensional torus otherwise.

From the point of view of Aschbacher’s Theorem, the paper can be
regarded as studying the interaction of two Aschbacher classes of subgroups
of the symplectic groups (subfield and subspace stabilizers), and one could
envisage a programme of considering other Aschbacher classes (see [1] and
[9], or the survey [8]). However, the paper treats a very natural case and
produces a complete result in usable form.

2. Notation

Throughout this paper the following notation will be used:

F+ the additive group of a field F ;

F× the multiplicative group of a field F ;

L a quadratic extension K(η) of a given field K of char-
acteristic 6= 2;
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(V, f) a regular alternating vector space over L;

fE the restriction of f at the K-subspace E of V (i.e.,
fE : E × E → L and fE(x′, x′′) = f(x′, x′′) for all
x′, x′′ ∈ E);

(fE
1 , fE

2 ) the components of fE over K (i.e., fE
i : E × E →

K and fE(x′, x′′) = fE
1 (x′, x′′) + ηfE

2 (x′, x′′) for all
x′, x′′ ∈ E);

〈v1, . . . , vr〉F the F -subspace of V generated by the vectors
v1, . . . , vr, where F = K, or F = L;

LE the L-subspace of V generated by the K-subspace E;

E⊥Y the subset of vectors in Y ⊂ V orthogonal to every
vector in E (i.e., f(x, y) = 0 for all x ∈ E, y ∈ Y );

compLE the L-component of E (i.e., the largest L-subspace
of V contained in E);

Iso(E) the group of isometries of E (i.e., the group of in-
vertible K-linear transformations σ of E preserving
f , which means f(σ(x′), σ(x′′)) = f(x′, x′′) for all
x′, x′′ ∈ E);

σL the extension of σ ∈ Iso(E) to the alternating L-
space (LE, fLE) (i.e., σL((a+ηb)x) = aσ(x)+ηbσ(x)
for all a, b ∈ K and x ∈ E);

W an indecomposable K-subspace of V with nontrivial
L-component (i.e., W is not the direct sum of two
proper subspaces and 0 6= compLW 6= W );

Im the identity matrix of dimension m;

B the matrix


0 0

1 0


.

If E is a K-subspace of V , a basis of E over L consists of vectors
ε1, . . . , εm, e1, . . . , en, linear independent over L, with ε1, . . . , εm generat-
ing compLE, i.e.

E = 〈ε1, . . . , εm〉L ⊕ 〈e1, . . . , en〉K .
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Of course, a basis of E over L is a basis of LE, also.
If σ ∈ GLK(E), a representation of σ (over L) is a nonsingular matrix

Mσ representing σL with respect to a basis of E over L. As compLE is
characteristic, Mσ has the shape


M ′ 0

M ′′ M ′′′




with M ′ ∈ GLm(L), M ′′ ∈ Matn×m(L) and M ′′′ ∈ GLn(K).
A representation of fE is a skew-symmetric matrix representing fLE

with respect to a basis of E over L.

3. The structure of (W, fW )

W has an obvious decomposition

W = C ⊕X,

where C = compLW and X is a K-substructure. The fact that W is
indecomposable implies that (see [2], Propositions 4.1 and 6.9)

Proposition 3.1. C is a totally isotropic subspace of L-dimension
≤ 2.

Therefore, the subspace C⊥W , consisting of all vectors in W orthogonal
to each vector in C, has a decomposition

C⊥W = C ⊥ U

for a suitable K-substructure U . There are only three cases where C
coincides with the own orthogonal space C⊥W . In [2] we denoted them by
H11, H12 and H24. We shall deal with these cases in the last section. For
now we assume dimK U > 0. Then, (see [2], Proposition 6.8)

Proposition 3.2. U does not split into the direct sum of two orthog-
onal subspaces.

For the pair of integers (dimL C, dimK U) just three possibilities occur
(see [2], Theorems 6.9 and 7.3)

Proposition 3.3. Write the rank of fU as 2p−2 for an integer p ≥ 1.
Then, just one of the following occurs
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1. dimL C = 1 and dimK U = 2p− 1;

2. dimL C = 1 and dimK U = 2p with p even;

3. dimL C = 2 and dimK U = 2p with p even.

In [2] we called W of first, second , or third kind according as whether
1, 2, or 3 occurs.

In [2] we determined the three possible canonical representations for
the induced form fW corresponding to the three different kinds of W . Here
we need to give such representations in a more suitable way.

Proposition 3.4. The form fW has a representation of the shape

MfW =




0 Im ηIm 0 0

−Im 0 0 0 0

−ηIm 0 0 −B1 −B2

0 0 tB1 0 Ap

0 0 tB2 −tAp 0




,

where

m =

{
2 if W is of 3rd kind;
1 otherwise;

B1 =





(
1 0 . . . 0 0

)
∈ Mat1×p(K) if W is of 1st kind;

(
0 0 . . . 0 0

)
∈ Mat1×p(K) if W is of 2nd kind;

(
0 0 . . . 0 0
1 0 . . . 0 0

)
∈ Mat2×p(K) if W is of 3rd kind;

B2 =





(
0 0 . . . 0

)
∈ Mat1×(p−1)(K) if W is of 1st kind;

(
0 0 . . . 0 1

)
∈ Mat1×p(K) if W is of 2nd kind;

(
0 0 . . . 0 1
0 0 . . . 0 0

)
∈ Mat2×p(K) if W is of 3rd kind.
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More precisely,

M̄ =




0 −B1 −B2

tB1 0 Ap

tB2 −tAp 0




is a matrix of rank

r =

{
2(p + 1) if W is of 3rd kind;
2p otherwise;

and

Āp =


 0 Ap

−tAp 0




is a representation of fU with Ap one of the following:

a)

Ap =




η 0 . . . 0 0

1 η
. . .

... 0

0 1
. . . 0

...
... 0

. . . η 0

0
...

. . . 1 η

0 0 . . . 0 1




∈ Matp×(p−1)(L)

if W is of first kind,

b) Ap = Jp + ηIp, where

Jp =




J2 0 . . . . . . 0

I2 J2
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 . . . 0 I2 J2




∈ GLp(K)
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and

J2 =


0 η2

1 0




if W is of second, or third kind.

Proof. The first part of the claim follows from [2] (see Proposi-
tion 5.1, Lemma 6.6 and Theorem 6.9). In [2] again (see Section 7) it
is proved that Ap has the shape a) in case W is of first kind. So, we have
only to prove that Ap has the shape b) if W is not of first kind.

Thanks to Scharlau’s Theorem [12] and Proposition 6.8 in [2], the
alternating form fU has a representation of the shape


 0 N1 + ηN2

−tN1 − ηtN2 0


 ,

with N1, N2 ∈ Matp×p(K), and the K-vector space Kp is indecomposable
as a K[N1, N2]-module (i.e., Kp does not split into the direct sum of two
proper subspaces stable under both N1 and N2). As rank(fU ) = 2p−2, we
have that rank(N1 +ηN2) = p−1. Looking at Dieudonné [3], we see that
such a situation occurs precisely if both N1 and N2 are nonsingular and
Kp is an indecomposable K[N1N

−1
2 ]-module. In such a case, we may take

N2 = Ip and for N1 a matrix having (x2− η2)
p
2 as the minimal polinomial

(see the proof of Theorem 7.3 in [2]). As the characteristic of K is 6= 2,
this means that there exists a basis of U with respect to which we obtain
for fU the required representation. ¤

4. The group Iso(W )

A basis B of W over L giving a representation of fW as in Proposi-
tion 3.4 consists of vectors

ε1, ε2, e
′
1, e

′
2, e

′′
1, e

′′
2, u

′
1, . . . , u

′
p, u

′′
1, . . . , u

′′
p if W is of 3rd kind,

ε1, e
′
1, e

′′
1, u′1, . . . , u

′
p, u

′′
1, . . . , u

′′
q otherwise,

where

q =

{
p− 1 if W is of 1st kind,

p otherwise,
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the vectors εi generate C and u′i, u′′j generate U . In [2] we called “sym-
plectic” a basis such as B.

Any representation in this section will always be referred to B.
Manifestly, the L-component C of W is a characteristic subspace of

W ; thus, an isometry σ ∈ Iso(W ) leaves both C and C⊥W stable. Conse-
quently, σ is represented by a matrix of the shape

Mσ =




L0 0 0 0 0

L1 X11 X12 Y11 Y12

L2 X21 X22 Y21 Y22

L3 0 0 Z11 Z12

L4 0 0 Z21 Z22




,

with L0 ∈ GLm(L), L1, L2 ∈ Matm×m(L), L3 ∈ Matp×m(L),
L4 ∈ Matq×m(L), Xij ∈ Matm×m(K), Yi1 ∈ Matm×p(K),
Yi2 ∈Matm×q(K) (i, j = 1, 2), Z11 ∈ Matp×p(K), Z12,

tZ21 ∈Matp×q(K),
Z22 ∈ Matq×q(K) and

X =


X11 X12

X21 X22


 ∈ GL2m(K), Z =


Z11 Z12

Z21 Z22


 ∈ GLp+q(K).

The L-subspace C⊥LW , of vectors in LW orthogonal to each vector in
C, splits into the direct sum

C⊥LW = C ⊕ LU ⊕D = LC⊥W ⊕D,

where

D =

{
〈e′′1 − ηe′1, e′′2 − ηe′2〉L if W is of 3rd kind;
〈e′′1 − ηe′1〉L otherwise.

Of course, C⊥LW is stable under σL, hence σ(e′′i ) − ησ(e′i) ∈ C⊥LW and
this, in turn, says

X11 = X22, X21 = η2X12.

We shall write X1 and X2 instead of X11 and X12.
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We have a well defined L-valued alternating form f̄ on the factor space
C̄ = C⊥LW /C by putting

f̄(x + C, y + C) = f(x, y) (x, y ∈ C⊥LW ).

A representation of f̄ is the matrix M̄ given in Proposition 3.4, which is
nonsigular just if W is not of second kind, i.e. the alternating space (C̄, f̄)
is regular if W is not of second kind.

The matrix representing the isometry

σ̄L : x + C 7→ σ(x) + C

of (C̄, f̄) is

Z̃ =




X1 − ηX2 Y21 − ηY11 Y22 − ηY12

0 Z11 Z12

0 Z21 Z22


 .

Consequently, det Z̃ = 1 if W is not of second kind.
As C⊥W is stable under σ, the isometry σ̄L fixes LC⊥W /C and induces

there an isometry represented by Z. Since the matrix representing the
restriction of f̄ at LC⊥W /C is the matrix

Āp =


 0 Ap

−tAp 0




which represents fU , we conclude that Z represents an isometry in Iso(U),
also. Clearly, there is a homomorphism

ψ : Iso(W ) → Iso(U), ψ : Mσ 7→ Z.l

Now, to ask that σ ∈ Iso(W ) is equivalent to require that the condi-
tions

f(σ(εi), σ(e′j)) =

{
1 if i = j,

0 if i 6= j,
f(σ(εi), σ(e′′j )) =

{
η if i = j,

0 if i 6= j,
(1)

f(σ(e′i), σ(e′j)) = 0, f(σ(e′i), σ(e′′j )) = 0, f(σ(e′′i ), σ(e′′j )) = 0, (2)

f(σ(e′i), σ(u′k)) = 0, f(σ(e′i), σ(u′′k)) = 0, (3)
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f(σ(e′′i ), σ(u′j)) = f(e′′i , u
′
j), f(σ(e′′i ), σ(u′′j )) = f(e′′i , u

′′
j ) (4)

hold. In terms of matrices, conditions (1) mean

L0
t(X1 + ηX2) = Im.

Also, equations (2) turn respectively into

(X1 + ηX2) tL1 − L1
t(X1 + ηX2) = Y11Ap

tY12 − Y12
tAp

tY11 (5)

−X2(B1
tY11 + B2

tY12) + (Y11
tB1 + Y12

tB2) tX2;

(X1 + ηX2) tL2 − ηL1
t(X1 + ηX2) = Y11Ap

tY22 − Y12
tAp

tY21 (6)

−X2(B1
tY21 + B2

tY22) + (Y11
tB1 + Y12

tB2)tX1;

η((X1 + ηX2) tL2 − L2
t(X1 + ηX2)) = Y21Ap

tY22 − Y22
tAp

tY21 (7)

+ (Y21
tB1 + Y22

tB2) tX1 −X1(B1
tY21 + B2

tY22);

whereas equations (3) give

(X1 + ηX2) tL3 = Y11Ap
tZ12 − Y12

tAp
tZ11 −X2(B1

tZ11 + B2
tZ12); (8)

(X1 + ηX2) tL4 = Y11Ap
tZ22 − Y12

tAp
tZ21 −X2(B1

tZ21 + B2
tZ22); (9)

and equations (4) (using (8) and (9))

B1 = (X1 − ηX2)(B1
tZ11 + B2

tZ12) (10)

+ (Y22 − ηY12) tAp
tZ11 − (Y21 − ηY11) Ap

tZ12;

B2 = (X1 − ηX2)(B1
tZ21 + B2

tZ22) (11)

+ (Y22 − ηY12) tAp
tZ21 − (Y21 − ηY11)Ap

tZ22.

The following proposition summarizes the above discussion:
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Proposition 4.1. A K-linear transformation σ of W is an isometry
of W if and only if it has a representation of the shape

Mσ =




t(X1 + ηX2)−1 0 0 0 0

L1 X1 X2 Y11 Y12

L2 η2X2 X1 Y21 Y22

L3 0 0 Z11 Z12

L4 0 0 Z21 Z22




,

where

Z =


Z11 Z12

Z21 Z22




represents an isometry of U and L1, L2 ∈ Matm×m(L), L3 ∈ Matp×m(L),
L4 ∈ Matq×m(L), Y11, Y21 ∈ Matm×p(K), Y12, Y22 ∈ Matm×q(K) satisfy
equations (5)–(11).

Moreover, we have:

1. The mapping Mσ 7→ Z yields a group homomorphism ψ : Iso(W ) →
Iso(U);

2. det(X1 − ηX2) detZ = 1, provided W is not of second kind.

Now, we need to deal separately with the cases where W is of first,
second, or third kind.

4.1. First kind case
Before determining the group Iso(W ), we need to know the group

Iso(U). A matrix

Z =


Z11 Z12

Z21 Z22


 ∈ GL2p−1(K),

with Z11 ∈ Matp×p(K), Z12,
tZ21 ∈ Matp×(p−1)(K),

Z22 ∈ Mat(p−1)×(p−1)(K), represents an isometry τ ∈ Iso(U) (with re-
spect to fixed basis u′1, . . . , u

′
p, u

′′
1, . . . , u

′′
p−1 of U) just if the matrices Zij

satisfy

Z11Ap
tZ12 − Z12

tAp
tZ11 = 0,
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Z11Ap
tZ22 − Z12

tAp
tZ21 = Ap, (12)

Z21Ap
tZ22 − Z22

tAp
tZ21 = 0,

where

Ap =




η 0 . . . 0 0

1 η
. . .

... 0

0 1
. . . 0

...
... 0

. . . η 0

0
...

. . . 1 η

0 0 . . . 0 1




∈ Matp×(p−1)(L).

As for any a ∈ K, a 6= 0, the matrix

aIp 0

0 a−1Ip−1




represents a transformation in Iso(U), in order to determine Z, we may
confine our attention to the case where detZ = 1. We shall prove that
equations (12) imply Z11 = Ip, Z12 = 0, Z22 = Ip−1.

The components fU
1 and fU

2 of fU over K are respectively represented
by


 0 A

(1)
p

− tA
(1)
p 0


 ,


 0 A

(2)
p

− tA
(2)
p 0


 ,

where

A(1)
p =




0 . . . 0

Ip−1




, A(2)
p =




Ip−1

0 . . . 0




.

As Z ∈ GL2p−1(K), τ preserves both fU
1 and fU

2 . It follows that τ sta-
bilizes both the K-subspace R′ of vectors in U orthogonal with respect to
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fU
2 to each vector in U and the K-subspace R′′ of vectors in U orthogonal

with respect to fU
1 to each vector in R′. It turns out that

R′ = 〈u′p〉K , R′′ = 〈u′1, . . . , u′p, u′′1, . . . , u
′′
p−2〉K .

This implies that the pth row and the last column of Z are null, apart from
the pth and the last entry, respectively. Hence, we have

Z11 =


Z̄11 C

0 c


 , Z12 =


Z̄12 0

0 0


 , Z22 =


Z̄22 0

D d


 ,

with Z̄11 ∈ Mat(p−1)×(p−1)(K), Z̄12 ∈ Mat(p−1)×(p−2)(K),
Z̄22 ∈ Mat(p−2)×(p−2)(K), c, d ∈ K, tC ∈ Kp−1, D ∈ Kp−2. Decompose
Z21 into blocks

Z21 =


Z̄21 T1

T2 b




with Z̄21 ∈ Mat(p−2)×(p−1)(K), tT1 ∈ Kp−2, T2 ∈ Kp−1, b ∈ K. Ob-
viously, Z̄21, Z̄12, and Z̄22 occur only for p > 2. Now, equations (12)
give

Z̄11Ap−1
tZ̄12 − Z̄12

tAp−1
tZ̄11 = 0,

Z̄11Ap−1
tZ̄22 − Z̄12

tAp−1
tZ̄21 = Ap−1, (13)

Z̄21Ap−1
tZ̄22 − Z̄22

tAp−1
tZ̄21 = 0.

Let p = 2. Then Z12 = 0 and from (12) we infer Z11 = I2 e Z22 = I1

because we are assuming detZ = 1. Let p > 2 and suppose that equations
(13) imply Z̄11 = Ip−1, Z̄12 = 0, Z̄22 = Ip−2. Then, the second equation
in (12) says that Z11 = Ip, Z12 = 0, Z22 = Ip−1. The inductive argument
shows that

Proposition 4.2.

Iso(U) '





aIp 0

Z̄ a−1Ip−1


 ∈ GL(2p−1)(K) : Z̄Ap = tAp

tZ̄, a ∈ K×



 .
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Remark 4.3. Notice that the condition Z̄Ap = tAp
tZ̄ forces the entries

zij of Z̄ to satisfy the condition zhk = zrs if h + k = r + s. Hence, Iso(U)
is the semidirect product of K2p−2

+ by K×. In particular, for p = 1 Iso(U)
is a one-dimensional torus over K.

Now, go back to the isometry σ. The representation Mσ in Proposi-
tion 4.1 reduces to

Mσ =




(x1 + ηx2)−1 0 0 0 0

λ1 x1 x2 Y11 Y12

λ2 η2x2 x1 Y21 Y22

L3 0 0 aIp 0

L4 0 0 Z̄ a−1Ip−1




(14)

with a, x1, x2 ∈ K, λ1, λ2,∈ L, tL3 ∈ Lp, tL4 ∈ Lp−1, Y11, Y21 ∈ Kp,
Y12, Y22 ∈ Kp−1 are subject to the conditions given in Proposition 4.1
and Z̄ ∈ Mat(p−1)×p(K) satisfies Z̄Ap = tAp

tZ̄. Furthermore, Claim 2
in Proposition 4.1 guarantees that (x1 − ηx2)a = 1, which means x2 = 0
and x1 = a−1. This reduces the conditions for the entries in (14) to the
following (notice that (5) and (7) vanish if m = 1):

λ2 − ηλ1 − Y11
tB1 = a(Y11Ap

tY22 − Y12
tAp

tY21),

L3 = −a2Ap
tY12,

L4 = tAp
tY11 − aZ̄Ap

tY12,

0 = (Y22 − ηY12) tAp,

(Y21 − ηY11)Ap −B1
tZ̄ = a(Y22 − ηY12) tAp

tZ̄,

hence λ2 − ηλ1 = Y11
tB1, L3 = 0, L4 = tAp

tY11, (Y21 − ηY11)Ap = B1
tZ̄,

Y12 = Y22 = 0. These equations say that the representation of σ with
respect to the basis

B̄ =
{
ε; u′1, . . . , u

′
p, e

′, e′′, u′′1, . . . , u
′′
p−1

}
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of W over L has the shape

aIp+1 0

X a−1Ip+1


 ,

where all the entries of X ∈ Matp+1(L) are elements in K, apart from the
ones of the first column. As the representation of fW with respect to B̄ is


 0 M

− tM 0




with

M =




1 η 0 . . . 0 0

0 1 η
. . .

... 0
... 0 1

. . . 0
...

0
... 0

. . . η 0

0 0
...

. . . 1 η

0 0 0 . . . 0 1




, (15)

it turns out that
XM = tM tX

is a necessary and sufficient condition in order that σ ∈ Iso(W ). So, we
have

Theorem 4.4. Let W be of first kind and let σ ∈ GLK(W ). Then,
σ ∈ Iso(W ) precisely if σ has a representation of the shape


aIp+1 0

X a−1Ip+1


 , (16)

where a ∈ K× and X = (xij) ∈ Mat(p+1)×(p+1)(L) is subject to the
conditions

a) xij ∈ K for j > 2;

b) XM = tM tX, where M is the matrix (15).
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Hence, Iso(W ) is a solvable algebraic group of dimension 2p + 3 over K.

4.2. Second kind case

Manifestly, the structure of the group Iso(U) is completely different
if W is not of first kind, because (LU, fLU ) is a regular alternating space,
the matrix Ap being nonsingular. Before describing the group Iso(U), we
need to introduce the following sets of matrices:

T ′ = {X ∈ Mat2×2(K) : XJ2 = J2X} =






a η2b

b a


 : a, b ∈ K



 ;

S ′ = {X ∈ Mat2×2(K) : XtJ2 = J2X} =






η2a b

b a


 : a, b ∈ K



 ;

S ′′ = {X ∈ Mat2×2(K) : XJ2 = tJ2X} =






a b

b η2a


 : a, b ∈ K



 ;

T ′′ = {X ∈ Mat2×2(K) : XtJ2 = tJ2X} =






 a b

η2b a


 : a, b ∈ K



 .

Notice that T ′, S ′, S ′′, T ′′ are closed under addition, T ′ and T ′′ are closed
under multiplication and the following occur:

T ′′ = tT ′, S ′S ′′ = T ′,

T ′S ′ = S ′, T ′′S ′′ = S ′′.
(17)

Proposition 4.5. Let W be not of first kind. Then, the group Iso(U)
corresponds to the group of matrices Mτ ∈ GL2p(K) of the shape

Mτ =


T ′ S′

S′′ T ′′



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with tT ′T ′′ − S′′S′ = Ip, where

T ′ =




T ′1 0 . . . 0

T ′2
. . .

. . .
...

...
. . .

. . . 0

T ′p
2

. . . T ′2 T ′1




, S′ =




0 . . . 0 S′1
... ·· · ·· · S′2

0 ·· · ·· ·
...

S′1 S′2 . . . S′p
2




,

S′′ =




S′′p
2

. . . S′′2 S′′1
... ·· · ·· · 0

S′′2 ·· · ·· ·
...

S′′1 0 . . . 0




, T ′′ =




T ′′1 T ′′2 . . . T ′′p
2

0
. . .

. . .
...

...
. . .

. . . T ′′2

0 . . . 0 T ′′1




and T ′i ∈ T ′, S′i ∈ S ′, S′′i ∈ S ′′, T ′′i ∈ T ′′ for all i = 1, . . . , p
2 .

Proof. An isometry τ ∈ Iso(U) must preserve both the components
fU
1 and fU

2 of fU over K. This means that the matrix Mτ representing
τ with respect to the fixed basis u′1, . . . , u

′
p, u′′1, . . . , u

′′
p of U satisfies the

identities
Mτ Ā

(1)
p

tMτ = Ā(1)
p and Mτ Ā

(2)
p

tMτ = Ā(2)
p ,

where

Ā(1)
p =


 0 Jp

− tJp 0


 and Ā(2)

p =


 0 Ip

−Ip 0


 .

Therefore, we have Mτ is a matrix of the symplectic group Sp2p(K). In
particular, detMτ = 1. Let p = 2. Then,

Mτ =


T ′ S′

S′′ T ′′




with tT ′T ′′ − S′′S′ = I2 and T ′ ∈ T ′, S′ ∈ S ′, S′′ ∈ S ′′, T ′′ ∈ T ′′.
Assume now p ≥ 4. Since the radical of the alternating L-space

(LU, fLU ) is generated by the vectors u′1−ηu′2 and u′′p−ηu′′p−1, the matrix
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Mτ representing τ has the shape



T ′1 0 . . . 0 S′1

∗ ∗ . . . ∗ ∗
...

...
...

...

∗ ∗ . . . ∗ ∗
S′′1 0 . . . 0 T ′′1




(18)

with T ′1 ∈ T ′, S′1 ∈ S ′, S′′1 ∈ S ′′, T ′′1 ∈ T ′′. For all S′ ∈ S ′ the matrix

M(S′) =




I2 0 . . . . . . 0 S′

0
. . . ·· · 0

...
. . . I2 S′

...

0 . . . 0 I2
...

... ·· ·
...

. . . . . . 0

0 . . . 0 . . . 0 I2




(19)

represents a transformation in Iso(U). Also, up to multiply (18) on the
left by a matrix (19), we may assume that T ′1 6= 0. Then, multiplication
on the right by M(−T ′1

−1S′1) allows one to put S′1 = 0 in (18).
The isometry τL of (LU, fLU ) fixes both the subspace U ′ = 〈u′1, u′2〉L

and the subspace U ′⊥LU = 〈u′1, . . . , u′p, u′′3, . . . , u′′p〉L orthogonal to U ′. Con-
sequently,

x + U ′ 7→ τL(x) + U ′

is a well defined linear transformation τ̄L : Ū → Ū of the (2p− 4)-dimen-
sional L-space

Ū = U ′⊥LU /U ′ = 〈u′3 + U ′, . . . , u′p + U ′, u′′3 + U ′, . . . , u′′p + U ′〉L.

Furthermore, putting

f̄(x + U ′, y + U ′) = f(x, y)

for all x, y ∈ U ′⊥LU , we obtain an alternating form on Ū which is, of
course, preserved by τ̄L. Clearly, the matrix representing f̄ , with respect
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to the indicated basis of Ū , is the matrix Āp−2. As we want to proceed by
induction on p, let us assume that the matrix representing τ̄L with respect
to the above basis of Ū has the shape

Mτ̄ =


T̄ ′ S̄′

S̄′′ T̄ ′′




with t T̄ ′T̄ ′′ − S̄′′S̄′ = Ip−2 and

T̄ ′ =




T̄ ′1 0 . . . 0

T̄ ′2
. . . . . .

...
...

. . . . . . 0

T̄ ′p
2
−1

. . . T̄ ′2 T̄ ′1




, S̄′ =




0 . . . 0 S̄′1
... ·· · ·· · S̄′2

0 ·· · ·· ·
...

S̄′1 S̄′2 . . . S̄′p
2
−1




,

S̄′′ =




S̄′′p
2
−1

. . . S̄′′2 S̄′′1
... ·· · ·· · 0

S̄′′2 ·· · ·· ·
...

S̄′′1 0 . . . 0




, T̄ ′′ =




T̄ ′′1 T̄ ′′2 . . . T̄ ′′p
2
−1

0
. . . . . .

...
...

. . . . . . T̄ ′′2

0 . . . 0 T̄ ′′1




,

where T̄ ′i ∈ T ′, S̄′i ∈ S ′, S̄′′i ∈ S ′′, T̄ ′′i ∈ T ′′ for all i = 1, . . . , p
2 − 1. Thus,

Mτ is written as

Mτ =




T ′1 0 0 0

Q21 T̄ ′ 0 S̄′

Q31 Q32 Q33 Q34

Q41 S̄′′ 0 T̄ ′′




(20)

for suitable Q31, Q33∈Mat2×2(K) and tQ21, Q32,Q34,
tQ41∈Mat2×(p−2)(K).

In particular, looking at (18), we see that S̄′′1 = 0 and consequently T̄ ′′1 6= 0,
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which means that T̄ ′′ is nonsingular. Therefore, the matrix




I2 0 0 0

0 Ip−2 0 −S̄′T̄ ′′−1

0 0 I2 0

0 0 0 Ip−2




(21)

represents a transformation in Iso(U) and this allows one to put S̄′ = 0

in (20). Now, if we impose the identity Mτ Ā
(2)
p

tMτ = Ā
(2)
p , we find for Mτ

the conditions

T̄ ′′ = tT̄ ′−1, Q33 = tT ′−1
1 , Q34 = − tT ′−1

1
tQ21

tT̄ ′−1, (22)

Q31T
′
1
−1 + Q32

tQ34 = tT ′−1
1

tQ31 + Q34
tQ32,

Q32
tT̄ ′−1 = tT ′−1

1
tQ41 + Q34S̄

′′.
(23)

Write Ā
(1)
p as

Ā(1)
p =




0 0 J2 0

0 0 H Jp−2

−tJ2 − tH 0 0

0 − tJp−2 0 0




,

where tH ∈ Mat2×(p−2) is the matrix

tH =
(
I2 0 . . . 0

)
.

In view of (22), imposing the identity Mτ Ā
(1)
p

tMτ = Ā
(1)
p , we obtain

Q21J2 + T̄ ′H = Jp−2Q21 + HT ′1. (24)

Set tQ21 = ( tT ′2 . . . tT ′p
2
) with T ′i ∈ Mat2×2(K). Then, equation (24) gives

T ′2J2 + T̄ ′1 = J2T
′
2 + T ′1 (25)
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and
T ′i+1J2 + T̄ ′i = J2T

′
i+1 + T ′i (26)

for all i = 2, . . . , p
2 − 1. Equation (25) says that T̄ ′1 = T ′1 and T ′2 ∈ T ′.

Then, equations (26) give T ′i = T̄ ′i and T ′i+1 ∈ T ′ for all i = 2, . . . , p
2 − 1.

So, Mτ has the shape

Mτ =


T ′ 0

∗ ∗




with

T ′ =




T ′1 0 . . . 0

T ′2
. . . . . .

...
...

. . . . . . 0

T ′p
2

. . . T ′2 T ′1




and T ′i ∈ T ′ for all i = 1, . . . , p
2 . Now, the matrix


T ′ 0

0 tT ′−1


 (27)

represents a transformation in Iso(U). Therefore, we may assume T ′ = Ip

and, thanks to (22) and (23), the matrix Mτ takes the shape

Mτ =




I2 0 0 0

0 Ip−2 0 0

Q31 Q32 I2 0

tQ32 S̄′′ 0 Ip−2




with Q31 symmetric. Imposing again the condition Mτ Ā
(1)
p

tMτ = Ā
(1)
p , we

obtain

Q31J2 + Q32H = tJ2Q31 + tHtQ32, (28)

tJ2Q32 + tHS̄′′ = Q32Jp−2. (29)
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Set Q32 =
(
S′′p

2
−1

. . . S′′1
)

with S′′i ∈ Mat2×2(K). Then, (29) turns into

tJ2S
′′
1 = S′′1J2,

tJ2S
′′
k + S̄′′k = S′′kJ2 + S′′k−1 (k = 2, . . . ,

p

2
− 1).

The first equation gives S′′1 ∈ S ′′. Thus, in view of the second equation,
we infer S̄′′2 = S′′1 and S′′2 ∈ S ′′. Now, an iterative argument leads to
conclude that S̄′′k = S′′k−1 and S′′k ∈ S ′′ for k = 3, . . . , p

2 − 1. Furthermore,
Q31 = S′′p

2
∈ S ′′ follows from condition (28). Summing up, Mτ has the

shape

Mτ =


 Ip 0

S′′ Ip


 , (30)

with

S′′ =




S′′p
2

. . . S′′2 S′′1
... ·· · ·· · 0

S′′2 ·· · ·· ·
...

S′′1 0 . . . 0




and S′′i ∈ S ′′. Therefore, that matrices (19), (21), (27) and (30) generate
the group Iso(U) and, in view of (17), the claim is proved. ¤

Remark 4.6. It turns out from Proposition 4.5 that the group Iso(U)
is the semidirect product of its unipotent radical Ru, which has dimension
3(p− 2) over K, by the special linear group SL2(L). More precisely, Ru is
the kernel of the composed group homomorphism ϕ : Iso(U) → SL2(L)


T ′ S′

S′′ T ′′


 7→


T ′1 S′1

S′′1 T ′′1


 7→ X =


 t′11 + ηt′12 −s′12 − ηs′11

−s′′12 − ηs′′11 t′′11 + ηt′′12


 ,

where detX = 1 follows from tT ′1T
′′
1 − S′1S

′′
1 = I2. Notice that Ru has

descending central series

Ru = K1 . K2 . · · · . K p
2

= 1Ru ,
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where, for i > 1, Ki = [Ki−1, Ru] consists of the matrices in Iso(U) with
T ′1 = T ′′1 = I2, S′1 = S′′1 = 0, and T ′h = T ′′h = S′h = S′′h = 0 for all 1 < h ≤ i.
In particular, the nilpotency class of Ru is p

2 − 1 and Ki is an extension of
Ki−1 by K6

+.

In view of Proposition 4.1 and Proposition 4.5, the isometry σ has,
with respect to the fixed basis B, the representation




(x1 + ηx2)−1 0 0 0 0

λ1 x1 x2 Y11 Y12

λ2 η2x2 x1 Y21 Y22

L3 0 0 T ′ S′

L4 0 0 S′′ T ′′




(31)

with x1, x2 ∈ K, λ1, λ2 ∈ L, tL3,
tL4 ∈ Lp, Yij ∈ Kp, T ′, S′, S′′, T ′′ ∈

Matp×p(K) fulfilling the required conditions.
We claim that x2 = 0, as well as S′ = 0. We shall prove this using

induction on p.
The alternating space (LW, fLW ) is not regular, since it has the line R

generated by the vector u′1− ηu′2 as the radical. As R is characteristic, we
have S′1 = 0. Consequently, σ stabilizes both the subspace Q = 〈u′1, u′2〉K
and the subspace of vectors in W orthogonal to Q, which is the K-subspace

Q⊥W = 〈ε〉L ⊕ 〈e′, e′′, u′1, . . . , u′p, u′′3, . . . , u′′p〉K .

Clearly, (x + Q, y + Q) 7→ f(x, y) yields an L-valued alternating form f̄

on the factor space Q̄ := Q⊥W /Q and x + Q 7→ σ(x) + Q is a K-linear
transformation σ̄ of Q̄ preserving f̄ .

Let p = 2. Then, S′ = S′1 = 0 and (Q̄, f̄) is a nonregular alternating
space over L, the radical R̄ of which is generated by the vector e′′ − ηe′.
Consequently, x̄+R̄ 7→ σ̄(x̄)+R̄ yields an isometry of a regular alternating
plane and this, in turn, says that (x1 + ηx2)−1x1 = 1, i.e. x2 = 0.
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Assume p ≥ 4. Then, the matrix representing f̄ is the matrix



0 I1 ηI1 0 0

−I1 0 0 0 0

−ηI1 0 0 −B1 −B2

0 0 tB1 0 Ap−2

0 0 tB2 − tAp−2 0




and we can use induction in order to conclude that x2 = 0 and S′ = 0 in
any case. We shall write a instead of x1.

Now, tT ′T ′′− S′′S′ = Ip yields T ′′ = tT ′−1. So, the conditions for the
entries in (31) given by Proposition 4.1 reduce to the following:

a(λ2 − ηλ1 − Y12
tB2) = Y11Ap

tY22 − Y12
tAp

tY21,

aL3 = −T ′Ap
tY12,

aL4 = tT ′−1tAp
tY11 − S′′Ap

tY12,

(Y22 − ηY12) tAp = 0,

(Y21 − ηY11)Ap = B2(aIp − T ′).

(32)

The last two equations turn into

Y22 = Y12
tJp, (33)

Y21 = Y11Jp, (34)

Y12(tJ2
p − η2Ip) = 0, (35)

Y11(J2
p − η2Ip) = B2(aIp − T ′). (36)

In view of (34) and (33), the first equation in (32) gives

λ2 = ηλ1 + Y12
tB2. (37)

Furthermore, if we set Y11 = (y′1 . . . y′p) and Y12 = (y′′1 . . . y′′p), then, (35)
yields y′′k = 0 for k = 1, . . . , p − 2 and (36) states that the entries of the
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matrix T ′ are functions of y′3, . . . , y
′
p. In particular, with the symbolism of

Proposition 4.5, we have, T ′1 = aI2 and we can state

Theorem 4.7. Let W be of second kind and let σ ∈ GLK(W ). Then,
σ ∈ Iso(W ) precisely if there is a triangular representation of σ of the
shape




a−1I1 10

0 aI2
. . .

... T ′2
. . . 0

0
...

. . . aI2 0

L p
2

T ′p
2

. . . T ′2 aI2 0

L p
2 +1 T ′p

2 +1 0 . . . 0 a−1I2 0

L p
2 +2 T ′p

2 +2

. . .
. . .

... T ′p+2 a−1I2 0
...

...
. . . T ′p

2 +1 0
...

. . .
. . .

. . .

Lp T ′p . . . T ′p
2 +2 T ′p

2 +1 T ′3 p
2

. . . T ′p+2 a−1I2 0

Lp+1 Y1 . . . Y p
2−1 Y p

2
Y p

2 +1 0 . . . 0 aI2




,

where a ∈ K×, tLi ∈ L2, Yj ∈ Mat2×2(K) and

T ′h ∈ T ′ =





x η2y

y x


 : x, y ∈ K



 ,

are subject to the conditions:

a) Y p
2
, Y p

2
+1 ∈ T ′,

b) Yk − tBYk+1 ∈ T ′ (k = 1, . . . , p
2 − 1; p > 2),

c) T ′k + Y p
2
−k+2J2 + J2Y p

2
−k+2 = 0 (k = 2, . . . , p

2 ; p > 2),

d)
∑

i+j=k
i,j>0

T ′iT
′
p+j = 0 (k = 3, . . . , p

2 + 1; p > 2)
(T ′1 = aI2, T ′p+1 = a−1I2),

e) L p
2

= −(B + tB) tY p
2
+1

(
1
η

)
,
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f) a
∑

i+j=k
i,j>0

tT ′iL p
2
+j = (B + tB) tY p

2
−k+2

(
1
η

)
(k = 2, . . . , p

2 ; p > 2)
(T ′1 = aI2),

g) a
∑

i+j=
p
2 +1

i,j>0

tT ′iL p
2
+j = (B + tB) t(Y1 − aY p

2
+1T

′
p
2
+1

)
(
1
η

)
(T ′1 = aI2),

h) (−1 η)Lp+1 + (1 0) tY p
2
+1

(
0
1

)
= 0.

Proof. The claimed triangular representation is the one with respect
to the basis

B̃ =
{
ε; u′1, . . . , u

′
p, u

′′
p, . . . , u

′′
1, e

′′, e′
}

of W over L. In fact, with respect to B̃, conditions (33) and (34) turn into
a) and b), condition (36) becomes c), d) arises from T ′′ = tT ′−1, e)–g)
translate the second and third condition in (32), h) is condition (37). ¤

Remark 4.8. Conditions from a) to h) in Theorem 4.7 give 5p + 4 in-
dependent algebraic conditions over K. So, Iso(W ) is a solvable algebraic
group of dimension 2p + 5 over K. In particular, the unipotent radical Ru

is nonabelian for any p; for p > 2 it is a nilpotent group of class p
2 (of class

2 if p = 2).

4.3. Third kind case

We know (Proposition 3.4) that the structure of the group Iso(U) is
the same both in the second and in the third kind case. So, Theorem 4.1
implies that, with respect to the fixed basis B, the isometry σ has the
representation

Mσ =




(X1 + ηX2)−1 0 0 0 0

L1 X1 X2 Y11 Y12

L2 η2X2 X1 Y21 Y22

L3 0 0 T ′ S′

L4 0 0 S′′ T ′′




(25)

where L1, L2 ∈ Mat2×2(L), L3, L4 ∈ Matp×2(L), Yij ∈ Mat2×p(K),
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Xi ∈ Mat2×2(K) with

 X1 X2

η2X2 X1


 ∈ GL4(K), X = X1 + ηX2 ∈ GL2(L),

fulfilling (5)–(11), and T ′, S′, S′′, T ′′ ∈ Matp×p(K) subjected to the con-
ditions given in Proposition 4.5. Comparing the components over K of
equations (10) and (11), we find

B1 = X1B1
tT ′ + X1B2S

′ + η2Y11S
′ − η2Y12

tT ′ − Y21JpS
′ (26)

+ Y22
tJp

tT ′;

0 = X2B1
tT ′ + X2B2S

′ − Y11JpS
′ + Y12

tJp
tT ′ + Y21S

′ − Y22
tT ′; (27)

B2 = X1B1S
′′ + X1B2

tT ′′ + η2Y11
tT ′′ − η2Y12S

′′ − Y21Jp
tT ′′ (28)

+ Y22
tJpS

′′;

0 = X2B1S
′′ + X2B2

tT ′′ − Y11Jp
tT ′′ + Y12

tJpS
′′ + Y21

tT ′′ (29)

− Y22S
′′.

Multiply on the right both the sides of (26) and (27) (resp. (28) and (29))
by T ′′ (resp. S′). Then, with the aid of the identities tT ′T ′′ − S′′S′ = Ip

and S′T ′′ − tT ′′S′ = 0, from (26) and (28) we obtain

B1T
′′ −B2S

′ = X1B1 − η2Y12 + Y22
tJp (30)

and from (27) and (29)

Y22 = Y12
tJp + X2B1. (31)

Now, (30) and (31) give

B1T
′′ −B2S

′ = X1B1 + X2B1
tJp + Y12( tJ2

p − η2Ip). (32)

Likewise, we obtain from (26)–(29)

Y21 = Y11Jp −X2B2; (33)

B2T
′ −B1S

′′ = X1B2 + X2B2Jp − Y11(J2
p − η2Ip). (34)
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Write the entries of T ′, S′, S′′, T ′′ as in Theorem 4.5, then, (34) gives
in particular

tBT ′1 −BS′′1 = X1
tB + X2

tBJ2. (35)
Also, (32) gives

BT ′′1 − tBS′1 = X1B + X2B tJ2. (36)
Now, from (35) and (36) it follows

X1 =


 t′11 −s′12

−s′′12 t′′11


 , X2 =


 t′12 −s′11

−s′′11 t′′12


 , (37)

so, looking at Remark 4.6, we see that Mσ 7→ X = X1 + ηX2 is a group
epimorphism ϕ : Iso(W ) → SL2(L) the kernel of which is the subgroup
of Iso(W ) leaving the L-component of W pointwise fixed. From (37) it
follows, as well, that such a kernel is just the unipotent radical Ru of
Iso(W ). As a consequence, Iso(W ) has Levi factors (see [6], p. 184)
isomorphic to SL2(L). More precisely, if we represent isometries using the
basis

B̃ =
{
ε1, ε2, u

′
1, . . . , u

′
p, e

′
1, e

′
2, e

′′
1, e

′′
2, u

′′
1, . . . , u

′′
p

}

of W over L, a Levi factor of Iso(W ) is given by the group of matrices

4.9.0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

tX−1 0 . . . 0 0 0 0 0 0 . . . 0

L′1 T ′1 0 0 0 0 0 0 S′1

L′2 0
. . . 0 0 0 0 ·· · 0

...
...

. . .
. . .

...
... ·· · ·· ·

...

L′p
2

0 . . . 0 T ′1 0 0 S′1 0 . . . 0

L′p
2 +1 Y ′

1 . . . Y ′
p
2−1 Y ′

p
2

X1 X2 Z′1 Z′2 . . . Z ′p
2

L′′p
2 +1 Y ′′

1 . . . Y ′′
p
2−1 Y ′′

p
2

η2X2 X1 Z′′1 Z′′2 . . . Z ′′p
2

L′′p
2

0 . . . 0 S′′1 0 0 T ′′1 0 . . . 0

...
... ·· · ·· ·

...
...

. . .
. . .

...

L′′2 0 ·· · 0 0 0 0
. . . 0

L′′1 S′′1 0 0 0 0 0 0 T ′′1

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
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with

T ′1 =


t′1 η2t′2

t′2 t′1


 ∈ T ′, S′1 =


η2s′1 s′2

s′2 s′1


 ∈ S ′,

S′′1 =


s′′1 s′′2

s′′2 η2s′′1


 ∈ S ′′, T ′′1 =


 t′′1 t′′2

η2t′′2 t′′1


 ∈ T ′′,

such that tT ′1T
′′
1 − S′′1S′1 = I2 and

X1 =


 t′1 −s′2

−s′′2 t′′1


 , X2 =


 t′2 −s′1

−s′′1 t′′2


 ,

L′p
2

+ 1 =





− p + 4

2(2η)
p
2
+2

X2( tB−B) if
p

2
is odd;

− p

2(2η)
p
2
+2

X2( tB−B) if
p

2
is even;

L′′p
2
+1 =





p− 4

4(2η)
p
2
+1

(X1−ηX2)( tB−B) tX2
t(X1+ηX2)−1 if

p

2
is odd;

p

4(2η)
p
2
+1

(X1−ηX2)( tB−B) tX2
t(X1+ηX2)−1 if

p

2
is even;

and for k = 1, . . . , p
2 ,

Y ′
k = −

(
−1

2

) p
2
−k+1

X2
tBJ

− p
2
+k−1

2 , Z ′k =
(
−1

2

)k

X2B tJ−k
2 ,

Y ′′
k =

(
−1

2

) p
2
−k+1

X2
tBJ

− p
2
+k

2 , Z ′′k = −
(
−1

2

)k

X2B tJ−k+1
2 ,

L′k =
(
−1

2

)k

(J2 − ηI2)J−k
2 (T ′1

tB + S′1B) tX2
tX−1,

L′′k =
(
−1

2

) p
2
−k+1

t(J2 − ηI2) tJ
− p

2
+k−1

2 (T ′′1
tB + S′′1B) tX2

tX−1.
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(Keep in mind the equivalence

X1( tB−B) tX1 + η2X2( tB−B) tX2 = tB−B ⇐⇒ det(X1 + ηX2) = 1

to verify that 4.9 is a group.)
Using the basis B̃, isometries in the unipotent radical take the shape

4.10.0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

I2 0 0 . . . 0 0 0 0 0 0 . . . 0 0

L′1 I2 0 . . . 0 0 0 0 0 0 . . . 0 0

L′2 T ′2 I2

. . . 0 0 0 0 0 0 ·· · 0 S′2
...

...
. . .

. . .
. . .

...
...

...
... ·· · ·· · ·· ·

...

L′p
2−1 T ′p

2−1

. . . I2 0 0 0 0 0 ·· · S′p
2−1

L′p
2

T ′p
2

T ′p
2−1 . . . T ′2 I2 0 0 0 S′2 . . . S′p

2−1 S′p
2

L′p
2 +1 Y ′

1 Y ′
2 . . . Y ′

p
2−1 Y ′

p
2

I2 0 Z′1 Z′2 . . . Z′p
2−1 Z′p

2

L′′p
2 +1 Y ′′

1 Y ′′
2 . . . Y ′′

p
2−1 Y ′′

p
2

0 I2 Z′′1 Z′′2 . . . Z′′p
2−1 Z′′p

2

L′′p
2

S′′p
2

S′′p
2−1 . . . S′′2 0 0 0 I2 T ′′2 . . . T ′′p

2−1 T ′′p
2

L′′p
2−1 S′′p

2−1 ·· · 0 0 0 0 0 I2

. . . T ′′p
2−1

...
... ·· · ·· · ·· ·

...
...

...
...

. . .
. . .

. . .
...

L′′2 S′′2 0 ·· · 0 0 0 0 0 0
. . . I2 T ′′2

L′′1 0 0 . . . 0 0 0 0 0 0 . . . 0 I2

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
with L′i, L

′′
i ∈ Mat2×2(L), Y ′

j , Y ′′
j , Z ′j , Z

′′
j ∈ Mat2×2(K), T ′h ∈ T ′, S′h ∈ S ′,

S′′h ∈ S ′′, T ′′h ∈ T ′′ subjected to the conditions:

a) tL′1 = −Z ′1
tA2,

tL′′1 = Y ′
p
2
A2,

b) tL′p
2
+1
−L′p

2
+1

=
p
2∑

h=1

(Y ′
hA2

tZ ′h−Z ′h
tA2

tY ′
h)+

p
2
−1∑

h=1

(Y ′
h+1

tZ ′h−Z ′h
tY ′

h+1),

c) tL′′p
2
+1
− ηL′p

2
+1

=
p
2∑

h=1

(Y ′
hA2

tZ ′′h − Z ′h
tA2

tY ′′
h )

+
p
2
−1∑

h=1

(Y ′
h+1

tZ ′′h − Z ′h
tY ′′

h+1) + Y ′
1

tB + Z ′p
2
B,
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d) ηtL′′p
2
+1
− ηL′′p

2
+1

=
p
2∑

h=1

(Y ′′
h A2

tZ ′′h − Z ′′h
tA2

tY ′′
h )

+
p
2
−1∑

h=1

(Y ′′
h+1

tZ ′′h − Z ′′h
tY ′′

h+1) + Y ′′
1

tB−B tY ′′
1 + Z ′′p

2
B− tB tZ ′′p

2
,

and for p > 2,

e)
∑

i+j=k+1
i,j>0

tT ′iT
′′
j − S′′i S′j = 0 (k = 2, . . . , p

2),
(T ′1 = T ′′1 = I2, S′1 = S′′1 = 0),

f) Y ′
k = −

p
2
−k+1∑
h=1

(−1
2

)h (BS′′p
2
−k−h+3

− tBT ′p
2
−k−h+3

)J−h
2

(k = 2, . . . , p
2),

g) Z ′k = −
k∑

h=1

(−1
2

)h (BT ′′k−h+2− tBS′k−h+2)
tJ−h

2 (k = 1, . . . , p
2−1),

h) Y ′′
k = 1

2(BS′′p
2
−k+2

− tBT ′p
2
−k+2

)

+
p
2
−k∑

h=1

(−1
2

)h+1(BS′′p
2
−k−h+2

− tBT ′p
2
−k−h+2

)J−h
2 (k=2, . . . , p

2),

i) Z ′′k = 1
2(BT ′′k+1 − tBS′k+1)

+
k∑

h=1

(−1
2

)h+1 (BT ′′k−h+1 − tBS′k−h+1)
tJ−h

2 (k=1, . . . , p
2−1),

j) tL′k =
k∑

h=2

Y ′
p
2
+h−k

A2S
′
h +

k∑
h=2

Y ′
p
2
+h−k

S′h−1 (k = 2, . . . , p
2),

− ∑
i+j=k+1

i,j>0

Z ′i
tA2

tT ′j −
∑

i+j=k
i,j>0

Z ′i
tT ′j (T ′1 = I2, S′1 = 0),

k) tL′′k =
k∑

h=1

Y ′
p
2
+h−k

A2
tT ′′h +

k∑
h=2

Y ′
p
2
+h−k

tT ′′h−1 (k = 2, . . . , p
2)

− ∑
i+j=k+1

i,j>0

Z ′i
tA2S

′′
j −

∑
i+j=k
i,j>0

Z ′iS
′′
j (T ′′1 = I2, S′′1 = 0).

Notice that the above conditions a)–k), translating the fundamental
equations (5)–(11) of an isometry, give 17p+ 2 independent algebraic con-
ditions over K. Therefore, Ru is an algebraic group of dimension 3p + 6
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over K. Notice, too, that Ru is a nonabelian nilpotent group of class p
2 .

Summing up we have

Theorem 4.11. Let W be of third kind. Every element in Iso(W ) is
uniquely represented as the product of a matrix 4.9 by a matrix 4.10. The
algebraic group Iso(W ) has Levi decomposition Ru o SL2(L) with Ru a
nonabelian nilpotent group of class p

2 and dimension 3p + 6 over K.

5. Three exceptional cases

As we said in Section 3, there are exactly three cases where dimU = 0,
one for each kind. It turns out that Theorems 4.4, 4.7 and 4.11 cover these
cases, also. The structure of the corresponding isometry groups can be
described as follows:

• H11 : W = 〈ε〉L ⊕ 〈e〉K with

f(ε, e) = 1.

A representation of an isometry σ ∈ Iso(H11) has the shape


α 0

β a




with α, β ∈ L and a ∈ K. Also, detσ = detσL = 1 because the alternating
space (LH11, fLH11) is regular. Hence, α = a−1 and we have

Iso(H11) ' L+ oK× ' K2
+ oK×.

• H12 : W = 〈ε〉L ⊕ 〈e′, e′′〉K with

f(ε, e′) = 1; f(ε, e′′) = η; f(e′, e′′) = 0.

Let σ ∈ Iso(H12). Then, a representation of σ has the shape




α 0 0

β a b

γ c d



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with α, β, γ ∈ L and a, b, c, d ∈ K. As σL leaves the radical R = 〈e′′−ηe′〉L
of H12 stable, we find γ = ηβ, a = d and c = η2b. Furthermore,

x + R 7→ σL(x) + R

yields an isometry of a regular alternating space and this, in turn, says
that α = a−1. Also, we have

1 = f(ε, e′) = f(σ(ε), σ(e′)) = f(a−1ε, βε + ae′ + be′′)

= 1 + a−1bη =⇒ b = 0.

Therefore,
Iso(H12) ' Iso(H11) ' K2

+ oK×.

• H24 : W = 〈ε1, ε2〉L ⊕ 〈e′1, e′2, e′′1, e′′2〉K with

f(εi, e
′
j) =

{
1 if i = j;
0 if i 6= j;

f(e′′1, e
′′
2) = 1;

f(εi, e
′′
j ) =

{
η if i = j;
0 if i 6= j;

f(e′i, e
′′
j ) = f(ε1, ε2) = f(e′1, e

′
2) = 0.

A representation of an isometry σ ∈ Iso(H24) has the shape




L0 0 0

L1 X11 X12

L2 X21 X22




with L0 ∈ GL2(L), Li ∈ Mat2×2(L), Xij ∈ Mat2×2(K) and (Xij) ∈
GL4(K) (i, j = 1, 2). The subspace of vectors in LH24 orthogonal to the
L-component C = 〈ε1, ε2〉L is the subspace

C⊥LH24 = 〈ε1, ε2, e
′′
1 − ηe′1, e

′′
2 − ηe′2〉L.

Since C⊥LH24 is stable under σL, we infer that X11 = X22 and X21 =
η2X12. We shall write X1 and X2 instead of X11 and X12. Furthermore,
setting

f̄(x + C, y + C) = f(x, y),
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we have a well defined nonsingular alternating form on the L-space
C⊥LH24/C given by the matrix

tB−B =


 0 1

−1 0


 .

Clearly, x + C 7→ σL(x) + C yields an isometry of (C⊥LH24/C, f̄) which
is represented, with respect to the basis {e′′1 − ηe′1 + C, e′′2 − ηe′2 + C}, by
X1 − ηX2, i.e.

(X1 − ηX2)( tB−B)( tX1 − ηtX2) = ( tB−B) ⇐⇒ det(X1 − ηX2) = 1

⇐⇒ det(X1 + ηX2) = 1.

Now, to ask that σ is an isometry of H24 is equivalent to impose the
conditions

f(σ(εi), σ(e′j)) =

{
1 if i = j;
0 if i 6= j;

(38)

f(σ(εi), σ(e′′j )) =

{
η if i = j;
0 if i 6= j;

(39)

f(σ(e′1), σ(e′2)) = 0; (40)

f(σ(e′i), σ(e′′j )) = 0 (i, j = 1, 2). (41)

Condition (38), as well as condition (39), is equivalent to
tL0(X1 + ηX2) = I2

and, consequently, (40) and (41) turn into

(X1 + ηX2) tL1 − L1
t(X1 + ηX2) = X2( tB−B) tX2;

(X1 + ηX2) tL2 − ηL1
t(X1 + ηX2) = X2(tB−B) tX1.

(42)

Summing up, we have for σ a representation

Mσ =




t(X1 + ηX2)−1 0 0

L1 X1 X2

L2 η2X2 X1



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with X1, X2 ∈ Mat2×2(K) such that det(X1 + ηX2) = 1 and L1, L2 ∈
Mat2×2(L) fulfilling (42).

Clearly, there is a epimorphism

Iso(H24) → SL2(L)

Mσ 7→ X1 + ηX2

the kernel of which is the unipotent radical of Iso(H24):







I2 0 0

S I2 0

ηS 0 I2


 : S ∈ Mat2×2(L), tS = S





.

A Levi factor of Iso(H24) is







t(X1 + ηX2)−1 0 0

− 1
2ηX2( tB−B) X1 X2

1
2X2( tB−B) η2X2 X1


 : det(X1 + ηX2) = 1





.

Thus, we conclude that Iso(H24) is the semidirect product of the 3-
dimensional vector group over L by SL2(L), hence Iso(H24) ' K6

+ o
SL2(L).
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