Publ. Math. Debrecen
62/1-2 (2003), 7-42

The structure of symplectic groups associated with
a quadratic extension of fields

By CLAUDIO G. BARTOLONE (Palermo)
and M. ALESSANDRA VACCARO (Palermo)

Abstract. Given a quadratic extension L/K of fields and a regular alter-
nating space (V, f) of finite dimension over L, we determine the isometry group
of a K-subspace W of V which does not split into the orthogonal sum of two
proper K-subspaces, W being neither an L-space nor a K-substructure.

1. Introduction

If we are given a field extension L/K and a vector space V' of finite
dimension over L, then V can be viewed as a vector space over K by
restriction of scalars. P. RABAU deals in [10] with the classification of
all K-subspaces of V, or with the determination of all GLz(V)-orbits of
K-subspaces of V. He finds that the number of such orbits is independent
of the fields and it is finite just if the degree of the extension is < 3 (of
course, in case of infinite fields).

If V is equipped with an L-valued regular alternating form f, then
V has, as well, a natural structure as a symplectic space (V, f’) over K.
This gives rise to a natural embedding of the symplectic group Spr(V, f)
as a subgroup of the symplectic group Spg (V, f') and Spr(V, f)-orbits of
totally f’-isotropic K-subspaces of V can be considered. D. S. KiM and P.
RABAU investigated this situation in [7] and they found that the number of
Spr(V, f)-orbits of totally f’-isotropic K-subspaces of V' is finite just if L
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is a quadratic extension of K and, moreover, this number is independent
of the fields being cosidered. Besides, P. RABAU in [11] analyzed the
structure of the orbits in greater detail, in particular working out the
structure of their stabilizers in Spr,(V, f).

The results obtained by Kim and Rabau extend works of GARRETT
[4] and PIATETSKI-SHAPIRO and RALLIS [5], who had worked out some
special cases for applications to the Rankin—Selberg method for explicit
construction of automorphic L-functions.

In [2] the authors devoted their attention to classify Spr(V, f)-orbits of
arbitrary K-subspaces of V in the case where L is a quadratic extension of
the ground field K. Of course, matters can be reduced to classify orbits of
K-subspaces W which do not split into the orthogonal sum of two proper
K-subspaces. (Krull-Remak-Schmidt Theorem). The most interessant
orbits are the ones where W is neither an L-subspace nor a K-substructure
in V (i.e. the natural homomorphism W ®g L — V is injective). Up to
an isometry, there exist precisely dimy, V' — 1 such subspaces splitting into
three different classes (K-subspaces of first, second, or third kind). The
classification is independent of the fields.

In this paper we determine the isometry group of an indecomposable
K-subspace W as above giving a Levi decomposition of it. It turns out
that it is not solvable precisely if W is of third kind, a Levi factor being
SLy(L) in the latter case, a one dimensional torus otherwise.

From the point of view of Aschbacher’s Theorem, the paper can be
regarded as studying the interaction of two Aschbacher classes of subgroups
of the symplectic groups (subfield and subspace stabilizers), and one could
envisage a programme of considering other Aschbacher classes (see [1] and
[9], or the survey [8]). However, the paper treats a very natural case and
produces a complete result in usable form.

2. Notation
Throughout this paper the following notation will be used:
F,  the additive group of a field F;
F*  the multiplicative group of a field F;

L aquadratic extension K (n) of a given field K of char-
acteristic # 2;
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V, f) a regular alternating vector space over L;

fE the restriction of f at the K-subspace F of V (i.e.,
ff:ExE — L and fF(2/,2") = f(2',2") for all
' 2" € E);

(fE, fF) the components of f£ over K (ie., f£f : Ex E —
K and fE(2' 2") = fE@@' 2") + nfE (2’ 2") for all
2, 2" € E);

(v1,...,v,)F the F-subspace of V generated by the vectors
v1,...,U;, where F' = K, or F = L;

LE the L-subspace of V' generated by the K-subspace F;

Ety the subset of vectors in Y C V orthogonal to every
vector in E (i.e., f(z,y)=0forallz € B,y €Y);

compr F the L-component of E (i.e., the largest L-subspace
of V' contained in E);

Iso(FE) the group of isometries of E (i.e., the group of in-
vertible K-linear transformations o of E preserving
f, which means f(o(2'),o(z”)) = f(2/,2") for all
' 2" € E);

or, the extension of o € Iso(E) to the alternating L-

space (LE, f*F) (i.e., o ((a+nb)z) = ac(x)+nbo ()
for all a,b € K and x € F);

w an indecomposable K-subspace of V' with nontrivial
L-component (i.e., W is not the direct sum of two
proper subspaces and 0 # comp; W # W);

L, the identity matrix of dimension m;
. 00
B the matrix
10

If F is a K-subspace of V, a basis of E over L consists of vectors
€ly+++,Em, €1,...,€p, linear independent over L, with €1,...,¢,, generat-
ing comp; F, i.e.

E= <€1,...,€m>L@<€1,...,€n>K.
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Of course, a basis of E over L is a basis of LF, also.

If o € GLk(E), a representation of o (over L) is a nonsingular matrix
M, representing oy, with respect to a basis of F over L. As comp;F is
characteristic, M, has the shape

M 0
M// M///
with M’ € GLy,(L), M" € Mat,,x,(L) and M" € GL,(K)

A representation of fF is a skew-symmetric matrix representing
with respect to a basis of E over L.

fLE

3. The structure of (W, fVV)
W has an obvious decomposition
W=Co®X,

where C' = comp; W and X is a K-substructure. The fact that W is
indecomposable implies that (see [2], Propositions 4.1 and 6.9)

Proposition 3.1. C is a totally isotropic subspace of L-dimension
<2

Therefore, the subspace CW , consisting of all vectors in W orthogonal
to each vector in C', has a decomposition

Ctw=Cc1U

for a suitable K-substructure U. There are only three cases where C'
coincides with the own orthogonal space C*+W. In [2] we denoted them by
H;y1, Hi2 and Hy4. We shall deal with these cases in the last section. For
now we assume dimg U > 0. Then, (see [2], Proposition 6.8)

Proposition 3.2. U does not split into the direct sum of two orthog-
onal subspaces.

For the pair of integers (dimy, C, dimg U) just three possibilities occur
(see [2], Theorems 6.9 and 7.3)

Proposition 3.3. Write the rank of fU as 2p—2 for an integer p > 1.
Then, just one of the following occurs
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1. dim;, C =1 and dimg U = 2p — 1;
2. dimy C =1 and dimg U = 2p with p even;
3. dimp C = 2 and dimg U = 2p with p even.

In [2] we called W of first, second, or third kind according as whether
1, 2, or 3 occurs.

In [2] we determined the three possible canonical representations for

the induced form f" corresponding to the three different kinds of W. Here
we need to give such representations in a more suitable way.

Proposition 3.4. The form fW has a representation of the shape

0 I, 7L, O 0
-I, 0 0 0 0
Mw=1-n, 0 0 -B —-Bl,
0 0 By 0 A,

0 0 By —'4, 0

where

1 otherwise;

{2 if W is of 3' kind;
m =

(1 0 ... 0 0)eMati(K) if W is of 1% kind;
, , nd pio.
B (0 0 0 o) € Matyp(K) if W is of 2° kind:
00 ... 00 € Matgy,(K) if W is of 3'9 kind;
10 ... 00
'(0 0 o) € Maty(,_1)(K) if W is of 1 kind;
. . nd . .
B, — (o 0 0 1) € Matyyp(K) if W is of 2° kind;
0 0 1 e
0 0 0 € Mato,,(K) if W is of 3'“ kind.
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More precisely,
0 —-B —-B
M=, 0 A,
‘By —'4, 0

is a matrix of rank

{2(]9 +1) if W is of 3' kind;
.

2p otherwise;
and
_ 0o A
A, = P
—'4, 0
is a representation of fU with A, one of the following:
a)
n 0 0 0
1 n 0
01 . 0 :
Ap=1 . , € Mat,,,(,-1)(L)
: 0 ..n 0
0 : . 1 7n
00 ... 0

if W is of first kind,
b) A, =J, + nl,, where

J, 0 ... ... 0
L, J
=0 . . . i |€eGLyK)
0
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and

if W is of second, or third kind.

PROOF. The first part of the claim follows from [2] (see Proposi-
tion 5.1, Lemma 6.6 and Theorem 6.9). In [2] again (see Section 7) it
is proved that A, has the shape a) in case W is of first kind. So, we have
only to prove that A, has the shape b) if W is not of first kind.

Thanks to SCHARLAU’s Theorem [12] and Proposition 6.8 in [2], the

alternating form fU has a representation of the shape

0 Ny +nNs
—'Ny — n* Ny 0

with Ny, No € Mat,,(K), and the K-vector space K” is indecomposable
as a K[Nj, Na]-module (i.e., KP does not split into the direct sum of two
proper subspaces stable under both Ny and No). As rank(fY) = 2p—2, we
have that rank(N7 +nN3) = p— 1. Looking at DIEUDONNE [3], we see that
such a situation occurs precisely if both N; and No are nonsingular and
KP is an indecomposable K [Ny N, 'J-module. In such a case, we may take

N3 =1, and for N7 a matrix having (22 — 772)% as the minimal polinomial
(see the proof of Theorem 7.3 in [2]). As the characteristic of K is # 2,
this means that there exists a basis of U with respect to which we obtain
for fU the required representation. O

4. The group Iso(WW)

A basis B of W over L giving a representation of f" as in Proposi-
tion 3.4 consists of vectors

€1,€2,€], €5, €], €5, U, ...y Up, UY, ..., Uy if W is of 3' kind,
€1,€1, €], UL, ., Up, U, . Uy otherwise,
where

p—1 if W is of 1 kind,
q= .
P otherwise,
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the vectors ¢; generate C' and uj, u} generate U. In [2] we called “sym-
plectic” a basis such as B.
Any representation in this section will always be referred to B.

Manifestly, the L-component C of W is a characteristic subspace of
W; thus, an isometry o € Iso(W) leaves both C' and C+W stable. Conse-
quently, o is represented by a matrix of the shape

Ly O 0 0 0
Ly X X2 Yn Yio
Ms= 1Ly Xo1 X Yor Yaof,
Ly 0 0 Zu Zpo

Ly O 0 Zo1 Zyp

with Ly € GL,,,(L), L1, La € Mat,,xm(L), L € Matpxm(L),

Ly € Mathm(L), Xz‘j c Matmxm(K), Y;‘l S Matmxp(K),

Yo € Matqu(K) (Z,j =1, 2), Z11 € Matpxp(K), ZlQ,tZ21 S Matpxq(K),
Z2 € Matgyq(K) and

Xn X Zn Z
X=|["" ") eGLom(k), z=["" "7 cGL,(K).
X21 X22 221 222

The L-subspace C+2W | of vectors in LW orthogonal to each vector in
C, splits into the direct sum

Cttw = C@oLU®D=LC* @D,

where

D (e —mel, e —neh), if W is of 3" kind;
e = el otherwise.

Of course, C+EW is stable under oy, hence o(e!/) — no(e;) € Ctw and
this, in turn, says
X11 = X, Xo1 = 17°X12.

We shall write X7 and X5 instead of X711 and Xis.
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~ We have a well defined L-valued alternating form f on the factor space
C = C+w /C by putting

f(a:—i—C,y—l—C):f(x,y) (xayECJ_LW)'

A representation of f is the matrix M given in Proposition 3.4, which is
nonsigular just if W is not of second kind, i.e. the alternating space (C, f)
is regular if W is not of second kind.

The matrix representing the isometry

or:x+Cr—o(x)+C

of (C, f) is

X1 —nXo Yo —nYir Yoo — 1Yo

Consequently, det Z = 1 if W is not of second kind.

As Cw is stable under o, the isometry &7, fixes LC-" /C and induces
there an isometry represented by Z. Since the matrix representing the
restriction of f at LCOW /C is the matrix

_ 0 4,

p p—
—t4, 0

which represents fi7, we conclude that Z represents an isometry in Iso(U),
also. Clearly, there is a homomorphism

P Iso(W) = Iso(U), v¢:M,— Z.1

Now, to ask that o € Iso(W) is equivalent to require that the condi-
tions

flo(ei),o(e]

if © # 7, 0 ifi#j,

flo(e)),o(ef)) =0, flo(ef),o(ef)) =0, (2)

{(1) L f<o<ai>,o—<e;f>>={” oW
0,

a(e;))
flo(e), o(e))
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flo(e),o(uy) = flef uf),  flole]),o(u))) = flef,uf)  (4)
hold. In terms of matrices, conditions (1) mean
Lo' (X1 +nX2) = Ly,
Also, equations (2) turn respectively into
(X1 +nX2) "Ly — L1*(X1 +nXa) = Y114, Y19 — Y19"4,° Y7y (5)
— Xo(B1'Y11 + B2'Y12) + (Y11'By + Y12'Bo) Xo;

(X1+nX2) 'Ly — nL1"(X1 4+ nXy) = Y114, Yas — Y12'4,' Yo (6)
— Xo(B1"Ya1 + Bo'Yao) + (Y11'By + Y12'Bo)'Xy;

n((X1 + T]Xz) tLg — Lgt(Xl + T]XQ)) = YglAptYQQ — YQQtAptY21 (7)
+ (Y21'B1 + Y22'Bs) X1 — X1(B1"Ya21 + B2'Yas);

whereas equations (3) give

(X1 +nXo) "Ly = Y114, 715 — Y12'4,° 711 — Xo(B1'Z11 + Ba'Z12);  (8)

(X1 +nX2) 'Ly = Y114, 700 — Y12'A, 701 — Xo(B1"Za1 + B2'Z29);  (9)
and equations (4) (using (8) and (9))

Bi = (X1 — 1X2)(B1'Z11 + B2"Z12) (10)
+ (Yag — nY12) *"Ap*Z11 — (Yar — nY11) Ap'Zaa;
By = (X1 — 1 X2)(B1"Za1 + B2"Z2) (11)

+ (Yoo — nY12) "Ap"Zo1 — (Ya1 — nY11) ApZoo.

The following proposition summarizes the above discussion:
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Proposition 4.1. A K-linear transformation o of W is an isometry
of W if and only if it has a representation of the shape

Y(X1+nX2)™t 0 0 0 O
Ly X1 Xo Y1 Yo
M, = Ly ”’Xo X1 Yo Yoo |
L3 0 0 Zu Zio
where

VA VA
P 11 Z12
Zo1  Za2

represents an isometry of U and L1, Ly € Mat,,xm (L), Lz € Matyym,(L),
L, e Mathm(L), Yi1,Yo1 € Matmxp(K), Yi2,Yoo € Matqu(K) satisfy
equations (5)—(11).
Moreover, we have:
1. The mapping M, +— Z yields a group homomorphism v : Iso(W) —
Iso(U);
2. det(X; —nXy)det Z = 1, provided W is not of second kind.
Now, we need to deal separately with the cases where W is of first,
second, or third kind.
4.1. First kind case

Before determining the group Iso(WW), we need to know the group
Iso(U). A matrix

with Z1; € Matpxp(K), Zlg,t221 S Matpx(p_l)(K),

Zza € Mat(,_1)x(p—1)(K), represents an isometry 7 € Iso(U) (with re-
spect to fixed basis uy, ..., up, uf,...,u; 4 of U) just if the matrices Z;;
satisfy

214, %10 — Z12'A,' 211 = 0,
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Z11Apt222 — ZlgtAptZ21 = Ap, (12)

Zo1Ap'Zag — Z22'Ap' 701 = 0,

where
n 0 0 0
1 n 0
01 . 0 :
Ap =|. ) S Matpx(p_l)(L).

. O . . 77 O
0 : .1 79
0 0 ... 0

As for any a € K, a # 0, the matrix

al, 0

0 CL_le_1

represents a transformation in Iso(U), in order to determine Z, we may
confine our attention to the case where det Z = 1. We shall prove that
equations (12) imply ZH = Ip, Zlg = 0, Z22 = Ipfl.

The components fU and fY of fU over K are respectively represented
by

o A o AP
—ul) o ) —u® o )
where
0 ... O
A}(jl) _ : Aéz) _ Iy
I,
0 0

As Z € GLgy_1(K), 7 preserves both f and fY. It follows that T sta-
bilizes both the K-subspace R’ of vectors in U orthogonal with respect to
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fZU to each vector in U and the K-subspace R” of vectors in U orthogonal
with respect to flU to each vector in R’. It turns out that

R = <u;>K, R" = (uy,... ,u;, uf,. .. ,u;LQ)K.

This implies that the p™ row and the last column of Z are null, apart from

the p™ and the last entry, respectively. Hence, we have

Zn = , L2 = , oo = )
0 ¢ 0 O D d
with Z1; € Mat(p—l)x(p—l)(K)a Z1g € Mat(p_l)x(p_Q)(K),
Zoo € Mat ,_2)x(p—2)(K), ¢,d € K, {C € KP~!, D € KP~2. Decompose
Z91 into blocks
Zon Ty

T, b

Zo1 =
with 221 € Mat(p—Z)X(p—l)(K)a tTl € Kp727 Ty € Kpfl, b e K. Ob-
viously, Zo1, Z12, and Zas occur only for p > 2. Now, equations (12)
give

Z11Ap-1"Z19 — Z19"Ap1"Z11 = 0,
Z11Ap1"Zoy — Z19"Ap1"Zon = Ap 1, (13)
Zo1Ap1Zog — Z99'Ap—1'Z91 = 0.

Let p = 2. Then Z15 = 0 and from (12) we infer Z1; = Iy e Zogs =1
because we are assuming det Z = 1. Let p > 2 and suppose that equations
(13) imply Z11 = I,—1, Z12 = 0, Zag = I,_5. Then, the second equation
in (12) says that Zy; =1, Z12 = 0, Zy3 = I,_1. The inductive argument
shows that

Proposition 4.2.

al 0 _ _
Iso(U) =<4 | * € GLy, 1)(K): ZA, = ‘A7, a € K*
Z a’llp_l
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Remark 4.3. Notice that the condition ZA, = '4,'Z forces the entries
zi; of 7 to satisfy the condition 2, = 2.5 if h +k = r + s. Hence, Iso(U)

is the semidirect product of Kip ~? by K*. In particular, for p = 1 Iso(U)
is a one-dimensional torus over K.

Now, go back to the isometry o. The representation M, in Proposi-
tion 4.1 reduces to

(1 + 77:62)_1 0 0 O 0
A 1 x2 Y1 Yo
M, = Ao nxy x1 Yor Yo (14)
Ls 0 0 a, O
Ly 0 0 Z all,,

with a, 21,29 € K, A\, o, € L, 'Ly € LP, 'Ly € Lp_l, Yi1,Y21 € KP,
Y12,Y_22 e KP~l are subject to the_ conditions_given in Proposition 4.1
and Z € Mat,_1)y,(K) satisfies ZA, = *A,'Z. Furthermore, Claim 2

in Proposition 4.1 guarantees that (x1 — nxg)a = 1, which means zo = 0
and z1 = a~!. This reduces the conditions for the entries in (14) to the
following (notice that (5) and (7) vanish if m = 1):

A2 — A — Y11'By = a(Y11 4, Yoz — Y124, Ya1),
Ly = —a*A, Yo,
Ly = "A)'Y11 — aZ A, Yo,
0 = (Yo — nYi2) 'Ap,
(Ya1 — nY11) Ay — B1'Z = a(Yaa — nYi12) 'A4,"Z,
hence Ao — nA\1 = Y11'By, Ly = 0, Ly = *A,'Y11, (Yo1 — nY11)4, = B1'Z,
Yo = Yoo = 0. These equations say that the representation of o with

respect to the basis

2 L ror 0 "
B—{E,ul,...,up,e,e,ul,...,up_l}
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of W over L has the shape

aIp+1 0

X  a 'Ly

where all the entries of X € Mat, (L) are elements in K, apart from the
ones of the first column. As the representation of f" with respect to B is

0 M
—% 0
with
1 n 0 0 0
01 n 0
01 0
M = , (15)
0 0 n 0
0 0 1 n
0 0 O 0
it turns out that
XM = "M'X

is a necessary and sufficient condition in order that o € Iso(W). So, we
have

Theorem 4.4. Let W be of first kind and let ¢ € GLg(W). Then,
o € Iso(W) precisely if o has a representation of the shape

aIp+1 0 (16)
X a_le+1

where a € K* and X = (z45) € Mat(,,1)x(p+1)(L) is subject to the
conditions

a) xj; € K for j > 2;
b) XM = *M'X, where M is the matrix (15).
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Hence, Iso(W) is a solvable algebraic group of dimension 2p + 3 over K.

4.2. Second kind case

Manifestly, the structure of the group Iso(U) is completely different
if W is not of first kind, because (LU, fV) is a regular alternating space,
the matrix A, being nonsingular. Before describing the group Iso(U), we
need to introduce the following sets of matrices:

a
T ={X € Matoy(K): XJy =J2 X} = 7 ra,be K
b a
n’a b
S' ={X € Matgyo(K) : X'Jy = Jo X} = ca,be K 3
b «a
a b
S”I{XGMatQXQ(K):XJQI tJQX}: :a,bEK 3
b n’a
a b
T" = {X € Matgyo(K) : X'Jy = 'Jo X} = ) ca,be K
n°b a

Notice that 77, 8’, 8", T" are closed under addition, 7' and 7" are closed
under multiplication and the following occur:

T/l — t/]'/ 8/8// — T/

(17)
T/S/ — Sl, T”S// — S”.

Proposition 4.5. Let W be not of first kind. Then, the group Iso(U)
corresponds to the group of matrices M, € GLg,(K) of the shape

T/ S/
S// Tl/

M, =
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with *T"T" — S" 5" =1,,, where

T{ 0 0 0 0 Si
/ : /
T,: T2 Sl: SQ
: 0 0
T T Si S .. S
Sy Sy s T T Ty
g — S : T — 0
Sy : Lo Ty
Si’ o ... 0 o ... 0 Tlll

and T} € T', S/ eS8, S'eS", T/ eT" foralli =1,..

[N]S]

*

PROOF. An isometry 7 € Iso(U) must preserve both the components
Y and fY of fU over K. This means that the matrix M, representing

7 with respect to the fixed basis uy,...,uy, uf,...,uy of U satisfies the
identities
M ADNM, = AV and M, APM, = AP,
where
T el I
~t3, 0 I, 0

Therefore, we have M, is a matrix of the symplectic group Spy,(K). In
particular, det M, = 1. Let p = 2. Then,

T 8
S/l T//

M, =

with *7'T" — §"S' =Ty and T' € T', S' € S, 8" € S", T" € T".
Assume now p > 4. Since the radical of the alternating L-space
(LU, fFV) is generated by the vectors u}j — nub and uy — nuy_y, the matrix
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M., representing 7 has the shape

T, 0 ... 0 8
(18)
"0 ... 0 T/
with 7] € 7', S1 € §', S{ € 8", T € T". For all S’ € §’ the matrix
L o ... ... 0 ¢
0o . -0
M(S') = L& (19)
0 0 I,
0
0 0 0 I

represents a transformation in Iso(U). Also, up to multiply (18) on the
left by a matrix (19), we may assume that 77 # 0. Then, multiplication

on the right by M(—T]"'5}) allows one to put S} = 0 in (18).
The isometry 77, of (LU, f'V) fixes both the subspace U’ = (u},u})1,

and the subspace U'LV = (ul, ... up, ug, ... up) g, orthogonal to U'. Con-
sequently,

r4+U — 1(z) + U’
is a well defined linear transformation 7, : U — U of the (2p — 4)-dimen-
sional L-space
U=U"" U = (uy + Usoou,+ U uz + U up + U )
Furthermore, putting
fa+U y+U) = f(zy)
y'tru

for all x,y € , we obtain an alternating form on (_7 which is, of
course, preserved by 7r. Clearly, the matrix representing f, with respect
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to the indicated basis of U, is the matrix Ap_g. As we want to proceed by
induction on p, let us assume that the matrix representing 77, with respect
to the above basis of U has the shape

T 8
M: =
S// T/I
with ' 7T — 5§ =T, 5 and
T 0 0 0 o S
! Q/
| § = %
0 0
T, ... T T S8 8
2 2
Sy . S St Ty Ty,
S//_ O Tl/_ 0 :
sy | Co oy |
S0 ... 0 0 ... 0 17
where T) € 7', 5/ € 8, S/ € 8", T/ e T" for all i = 1,...,5 — 1. Thus,

M is written as
T 0 0 0
Qu T 0o ¢
Q31 Q32 @33 Q34
Qu S o 17

for suitable @31, QggEMatQXQ(K) and thl, Q32,Q34,tQ41 EMatQX(p_Q)(K).
In particular, looking at (18), we see that S} = 0 and consequently T}’ # 0,
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which means that 7" is nonsingular. Therefore, the matrix

I 0 0 0
o I,, 0 STt

v (21)
0 0 I 0

0 0 0 I,

represents a transformation in Iso(U) and this allows one to put S’ = 0

in (20). Now, if we impose the identity MTfléz)tMT = AI(,Q), we find for M,
the conditions

T// _ tj—\/—l7 Q33 — tT{_l, Q34 — tTll_th21tT,_l, (22)

—1 N
Q31T + Q32'Q34 = T Q31 + Q34'Q32,

ty—1 tr/—1t all <23)
QT ="T Qu+ Q35"
Write fll(,l) as
0 0 Jo 0
| ° 0 H T
—Jy,  —'H 0 0
0 —'J,, 0 0
where *H € Maty, (,—2) is the matrix
'H = (12 0 ... 0).
In view of (22), imposing the identity MT/L()I)t = flél), we obtain
Q21J2 + T’H = Jp_QQQI + HTll. (24)

Set Qo1 = (VT4 ..."T}) with T € Matayo(K). Then, equation (24) gives
2
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and

TiJo+ T = 3oTi + T (26)
for all i = 2,...,5 — 1. Equation (25) says that T{ = T} and Ty € 7.
Then, equations (26) give T; = T} and T;,; € 7’ for all i = 2,..., 5 — 1.
So, M, has the shape

T 0
M, =
* *
with
T 0 0
!
o
: 0
T, ... Ty T
2
and T} € 7' for all i = 1,..., 5. Now, the matrix
T 0
(27)
0 tTlfl

represents a transformation in Iso(U). Therefore, we may assume 7" = I,
and, thanks to (22) and (23), the matrix M, takes the shape
I, o 0 O
0 I, 0 O
Qs @ I, 0
Qs S” 0 I,

M, =

with @31 symmetric. Imposing again the condition MT%_lz(,l)tMT = /_lél), we
obtain

Q31J2 + Q32 H = 'J2Q31 + ‘H'Q30, (28)

'J2Qs32 + 'HS" = Q32T 2. (29)
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Set Q32 = (Sp_, ... S}) with S/ € Matayo(K). Then, (29) turns into
2
tJQSi/ — Si/JQ,
TSy + S = Sida+ Sp (k:z,...,g_m.

The first equation gives S7 € §”. Thus, in view of the second equation,
we infer Sy = S{ and S5 € S”. Now, an iterative argument leads to
conclude that S} = S;_; and S} € §” for k = 3,...,5 — 1. Furthermore,

Q31 = S3 € 8" follows from condition (28). Summing up, M, has the
2

shape
I, 0
M, = , (30)
S/l Ip
with
Lo sy s
S//: . 0
Sy
SY 0 ... 0

and S/ € §”. Therefore, that matrices (19), (21), (27) and (30) generate
the group Iso(U) and, in view of (17), the claim is proved. O

Remark 4.6. It turns out from Proposition 4.5 that the group Iso(U)
is the semidirect product of its unipotent radical R,,, which has dimension
3(p—2) over K, by the special linear group SLo(L). More precisely, R, is
the kernel of the composed group homomorphism ¢ : Iso(U) — SLo(L)

(A _ i S5 oy th bty —sip —msy

1! 1 i /! ! 1 " 1!
ST ST —S19 — NS t1 + 0ty

where det X = 1 follows from *"I7T} — S1S7 = I,. Notice that R, has
descending central series

Ru:KleQD-“DK%:lRu,
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where, for ¢ > 1, K; = [K;_1, R,] consists of the matrices in Iso(U) with
T =T=1,5=5/=0,and T} =T} = S}, =S =0forall1 <h <i.
In particular, the nilpotency class of R, is & — 1 and K is an extension of
K;_1 by K¢.

In view of Proposition 4.1 and Proposition 4.5, the isometry o has,
with respect to the fixed basis B, the representation

(xi+mr2)™ 0 0 0 0
A Ty wy Ynn Yo
A2 n’zy x1 Yo Yoo (31)
Ls o o T S
Ly 0 o s” 1

with z1,29 € K, A\, s € L, tLg,tL4 € LP, Y, € KP, 7,88 T" ¢
Mat,,,(K) fulfilling the required conditions.

We claim that zo = 0, as well as S’ = 0. We shall prove this using
induction on p.

The alternating space (LW, f¥") is not regular, since it has the line R
generated by the vector u) — nu) as the radical. As R is characteristic, we
have S7 = 0. Consequently, o stabilizes both the subspace Q = (u}, u)) Kk
and the subspace of vectors in W orthogonal to @), which is the K-subspace

QY = (6 (¢ iy )

Clearly, (z + Q,y + Q) — f(z,y) yields an L-valued alternating form f
on the factor space Q := QW /Q and = + Q — o(x) + Q is a K-linear
transformation & of Q preserving f.

Let p = 2. Then, S’ = S} = 0 and (Q, f) is a nonregular alternating
space over L, the radical R of which is generated by the vector ¢ — ne’.
Consequently, Z+ R + &(z)+ R yields an isometry of a regular alternating
plane and this, in turn, says that (z1 +nx2) o) = 1, i.e. 29 = 0.
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Assume p > 4. Then, the matrix representing f is the matrix

0 11 7711 0 0
-I; 0 0 0
—nly 0 -By  —DBs

0
0

0 0 'B 0 Ap_o
0

0 By —'4, 5 O

and we can use induction in order to conclude that 22 = 0 and S’ = 0 in
any case. We shall write a instead of x7.

Now, 'T'T" — §"S' =1, yields T" = *T"~1. So, the conditions for the
entries in (31) given by Proposition 4.1 reduce to the following:

a(A2 — nA1 — Y12'Bo) = Y11 4,"Yos — Y12"4, Yoy,

aLs = —T'A,'Y12,

aLy = "T'"YA,"Yy — 8" A, Y, (32)
(Yop — nY12) ‘A, = 0,

(Ya1 — nY11)Ap = By(al, — T").

The last two equations turn into

Yoo = Y12'J,, (33)
Vo1 = YuJ,, (34)
Vi2(*J2 — n°I,) = 0, (35)
Yii(J = n’Lp) = Ba(al, = T'). (36)

In view of (34) and (33), the first equation in (32) gives

Ao =1nNA1 + 5/12th. (37)

Furthermore, if we set Y11 = (y;...y,) and Y12 = (y{ ...y,), then, (35)
yields yy = 0 for k = 1,...,p — 2 and (36) states that the entries of the
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matrix 7" are functions of y3,...,y,. In particular, with the symbolism of

Proposition 4.5, we have, T] = aly and we can state

Theorem 4.7. Let W be of second kind and let 0 € GLg (W). Then,
o € Iso(W) precisely if there is a triangular representation of o of the

shape
a_lIl 10
0 (IIQ
T 0
0 CLIQ 0
L% T/B e TQ/ aIQ 0
L%—i—l T/%+1 0 0 a,_lIg 0
L%Jrg T/%+2 T;JFQ a Iy 0
T'%Jrl 0
L, T; T'%Jrz T%+1 Tég TI/H-Q a I, O
Lp+1 Yi N Yg—l Yg Y%_;’_l 0 0 aIg
where a € K*, 'L; € L?, Y; € Matoys(K) and
2
r ny
T, €T = cx,ye Ky,
Yy X

are subject to the conditions:

a) Yg,Yg_H S T/,
b) Y, — tBYk+1 cT’

)
) Ty +Ye pioda+J2Ye 419 =0
)

enld _
d Z TiTp—i-j_O
i+j=k
4,7 >0

e) Lg = —(B + t]3) th+1(717),

(k=1,...,2-1; p>2),
(k:27"'7222; p>2)7

(k=3,....,5+1; p>2)
(T] = aly, Ty, = a 'Ty),
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f) a ;k "T{Lg,; = (B+ '"B)"Yz_pia(;) (k=2,....% p>2)
Zi,j];() (Tll = aIg),
g) a . X;H ‘TjLp,;=(B+ 'B)*(Y1 - aYgHT%H)(}?) (T] = aly),
itj=5
4,5>0

h) (=1 1) Lps1+(10)'Ye 4 (§) =o.

ProOOF. The claimed triangular representation is the one with respect
to the basis

> ron "o
B—{a,ul,...,up,up,...,ul,e,e}

of W over L. In fact, with respect to B, conditions (33) and (34) turn into
a) and b), condition (36) becomes c), d) arises from 7" = 'T"7!, e)-g)
translate the second and third condition in (32), h) is condition (37). O

Remark 4.8. Conditions from a) to h) in Theorem 4.7 give 5p + 4 in-
dependent algebraic conditions over K. So, Iso(WW) is a solvable algebraic
group of dimension 2p + 5 over K. In particular, the unipotent radical R,
is nonabe%ian for any p; for p > 2 it is a nilpotent group of class & (of class
2if p=2).

4.3. Third kind case

We know (Proposition 3.4) that the structure of the group Iso(U) is
the same both in the second and in the third kind case. So, Theorem 4.1
implies that, with respect to the fixed basis B, the isometry ¢ has the
representation

(X1+nX)™> 0 0 0 0
Ly X1 X9 Y Yio
M, = Lo n?’Xy Xi Yo Yoo (25)
Ls o o 717 %
Ly o o S 1

where Ll,LQ S MatQXQ(L), L3,L4 c MathQ(L), Y;j S Matgxp(K),
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X, € MatQXQ(K) with

X1 Xy
€ GLy(K), X = X1 +nXe € GLo(L),

X Xi
fulfilling (5)—(11), and 77,5, 5", T" € Mat,y,(K) subjected to the con-
ditions given in Proposition 4.5. Comparing the components over K of
equations (10) and (11), we find
By = X1B1'T' + X1ByS' + n*Y11S" — Yo' T' — Y13, (26)
+ Yo' J, ' T

0= X2B1tT, + XQBQS/ — YHJPS/ + YIQthtT, + Yng’ — YQQtT,; (27)

By = X1B1S" + X1 By T + PV ' T" = 1?Y1oS" = You J,' " (28)
+ Y22thsl/;
0= XzBlsll + XQBQtT,/ — YllthT” 4 YthJpSH + YgltT// (29)
— YQQS//.

Multiply on the right both the sides of (26) and (27) (resp. (28) and (29))
by T" (resp. S’). Then, with the aid of the identities *I"T" — S"S" =1,
and S'T" — *T"S" = 0, from (26) and (28) we obtain

BIT" — ByS' = X1 By — n*Yia + Ya2'J,, (30)
and from (27) and (29)

Yoo = }/igth + XoBj. (31)
Now, (30) and (31) give

BiT" — ByS' = X1By + X2B1"J, + Yi2('J2 — °L,). (32)
Likewise, we obtain from (26)—(29)
Yo1 = Yi1dyp — XoBo; (33)

ByT' — B1S" = X1 By + X2 BoJp — Y11 (2 — °L). (34)
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Write the entries of 77, S’, S”, T” as in Theorem 4.5, then, (34) gives
in particular

‘BT] - BS! = X1'B + X2'BJs. (35)
Also, (32) gives

BT — 'BS] = X1B + X,B'J,. (36)
Now, from (35) and (36) it follows

t/11 —3,12 t’12 —5/11
Xy = , Xo= ; (37)

! 1 12 1
—S12 111 —s11 lig

so, looking at Remark 4.6, we see that M, — X = X1 + nXy is a group
epimorphism ¢ : Iso(W) — SLa(L) the kernel of which is the subgroup
of Iso(W) leaving the L-component of W pointwise fixed. From (37) it
follows, as well, that such a kernel is just the unipotent radical R, of
Iso(W). As a consequence, Iso(W) has Levi factors (see [6], p. 184)
isomorphic to SLy(L). More precisely, if we represent isometries using the

basis
2 / [N A AN/ N/ A/} "
B:{el,sg,ul,...,up,el,GQ,el,eQ,ul,...,up

of W over L, a Levi factor of Iso(WV) is given by the group of matrices

4.9.
x-1 0 0 0 0 0O 0 O 0
Ly 1 0 0 0 0O 0 O S;
L 0 0 0 0 o0 0
L’g 0 0 Ty 0 0 S o 0
L’g oo Yo Yé . Yé X\ Xo Zv zb ... ’%
Ly, Y oYY, YY) w’Xe X0 ozi zZy ... Zj
2 2 2 2
L’é o ... o© Sy 0 o 77 o ... o0
LY o .- 0 0 0 o0 .0

Ly sy 0 0 0 0O 0 o0 Ty
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with
t ot sy s
T = / , eT, S = / / s,
ly 1 S2 81
n n " "
g — 81 89 cs” T — tl t2 cT"
1 — ) 1 — 3
sy sy 'ty

such that *T1T{ — S7S} =I5 and

X — t —sh o — th —$)
1= ) 2 = s
4 R
( pt+4 t LD .
—7E2X2( B -B) if = is odd;
2(277)2+ 2
p . LD .
———Xo('B—B) if = is even;
p—4 t ty .t 1 .. D
W(Xl—n)ﬁ)( B - B) X" (X1+1nX?) if 3 I8 odd;
2
. n)
B41 =
p t ty .t -1 . P .
———(X1—1mX9)('B—B) X" (X14+nX if = is even;
k4(271)%“( 1—1X2)( )Xo (X140 Xo) 5

and fork=1,...,5%

1 k
L, = <_2> (Jy — nla) I K (T 'B + §1B) XX 1,

E—k4+1 e
h= <‘2> HI2 =) 3y 2T B+ SUB) XX
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(Keep in mind the equivalence
X1('B-B)X; +7*°X5('B-B)'Xy = 'B - B <= det(X; +nXs) =

to verify that 4.9 is a group.)
Using the basis B, isometries in the unipotent radical take the shape

4.10.

I, 0 0 0 0 0 0 0 O 0 0
I I 0 0 0O 0 0 0 O 0 0
L Ty L . 0 O 0 0 0 0 .- 0 S5
Ly , Th_, I, 0O 0 0 O O -
2 2 2
Ly Tp Tp, ... T T, 0 0 0 Sy ... Sy, S
2 2 2 2 2

Lyyy Y Y o Yp, Yy L0 4% Zp, 2
Ly, Y/ ZE ¢ ¢ I CH S N i
LSy Sy, .. 8 0 0 0 L T .. T{, Tf

2 2

Ly, 83, 0 o 0 0 o0 I, . Ty,
2 2
Ly Sy 0 0 0O 0 0 0 0 . I, Ty
LY 0 o ... o0 O 0 0 0O O ... © L

with L;,L;’ € Matgy (L), }/j/?}/j,/? Z;, ZJI/ € Matoyo(K), T}/L e”T’, S;l es,
Sy e S”, T} € T" subjected to the conditions:
a) ‘L= —Zi tAQ, L= YéAQ,
2

b) LP+1 p+1 ( }:-&-1 tZIIz_ZI/z tYl;-i-l)7

i Mm

P
2
= 2 (ViA2'Z}~ 2}, 4+

b
2
Q) Wyl = ¥ 0G4 2, 4Y)

N\'ﬁ

Z w2y — 2t h+1)+Y1/tB+Z/§B,
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D
2
D 0Tyl = X 0GAZ — 2 A

[MiS]

-1
X (a2 = 20 + Y B - BY + ZyB — 'BZ),
h=1

and for p > 2,
0 %, T -8 =0 S il
e (i =T =1y, $1 =57 =0),
B—k+1 N N
f) Yi=- X% (_5) (B %—k—h+3 - tBTéfkchr?))J;

h=1
_ 1 t
h) Yk” - §(BS%—I@+2 o BT%—HQ)
+1 —h
+ hil(—%) (Bs"gf_k_h+2 - tBTé_k_h+2)J2 (k=2,...,2),

h=1
tr/ k !/ / k / / »
D= ,ZZ_:Q Yo p-xA2S) + hzz Y hiSh1 (k=2,...,5%),
B '+;¢+1 ZétAQtTj{ B Z;k ZZ{tTJ{ (I1 =1, §1=0),
l i]*j_>0 Zi-fj]>_0
tro LA tq LA o
k) Th= 2 Vi AT+ Y Ve T (h=2,...,)
_ ‘+;€+1 Z! tAQS;/ _ Z;k ZZ{S; (TV =1,, S = 0).
Z i]*;>0 Z;TJ'J;O

Notice that the above conditions a)-k), translating the fundamental
equations (5)—(11) of an isometry, give 17p + 2 independent algebraic con-
ditions over K. Therefore, R, is an algebraic group of dimension 3p + 6
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over K. Notice, too, that R, is a nonabelian nilpotent group of class %.

Summing up we have

Theorem 4.11. Let W be of third kind. Every element in Iso(W) is
uniquely represented as the product of a matrix 4.9 by a matrix 4.10. The
algebraic group Iso(W') has Levi decomposition R, x SLo(L) with R, a
nonabelian nilpotent group of class & and dimension 3p + 6 over K.

5. Three exceptional cases

As we said in Section 3, there are exactly three cases where dimU = 0,
one for each kind. It turns out that Theorems 4.4, 4.7 and 4.11 cover these
cases, also. The structure of the corresponding isometry groups can be
described as follows:

. H11 W= <E>L@<€>K with

fle,e) =1.

A representation of an isometry o € Iso(Hy1) has the shape

a 0
G a

with o, 6 € L and a € K. Also, det 0 = det o, = 1 because the alternating
space (LHyq, fXH11) is regular. Hence, o = a~! and we have

Iso(H11) ~ Ly x KX ~ K3 x K*.
eHiz: W = (e)r ® (¢, €")k with
f(e,e) =1; fle, e’y =mn; f(e,e")y=0.

Let o € Iso(H12). Then, a representation of o has the shape

a 0 0

8 a b
v ¢ d
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with a, 8,7 € L and a,b,c,d € K. As oy, leaves the radical R = (" —ne’) [,
of Hyo stable, we find v = 13, a = d and ¢ = n?b. Furthermore,

r+R—op(x)+ R

yields an isometry of a regular alternating space and this, in turn, says
that &« = a~!. Also, we have

1= f(e,¢) = f(o(e),0(e)) = fla e, Be + ae’ + be”)
— 1—|—a_1b77 = b=0.

Therefore,
Iso(Hja) ~ Iso(Hy1) ~ K3 x K*.
e Hoy : W = (e1,22)1 P (€], €5, €], e5) ik with

1 ifi=y;
f(€i7e;'>_{0 it 4 fef,e) = 1;

f(az-,e}/)={g i e = fere) = fehcs) =0

A representation of an isometry o € Iso(Hzg4) has the shape

Lg 0 0
Ly X111 X2
Lo Xo1 Xoo

with Ly € GLQ(L), L, € Matgxg(L), Xl'j € MatQXQ(K) and (Xz) S
GL4(K) (4,7 = 1,2). The subspace of vectors in LHga4 orthogonal to the
L-component C' = (g1,e2), is the subspace

1 " roon /
C~H2s4 = (g1,e9,€] —neT, €5 — NEY) L.

Since CtiHz2a is stable under oy, we infer that X3 = Xoo and X9 =
772X12. We shall write X; and X5 instead of X717 and Xy9. Furthermore,
setting

f(x+C’,y+C) :f(x,y),
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we have a well defined nonsingular alternating form on the L-space
C+iH24 /C given by the matrix

0 1
‘B-B =
-1 0

Clearly, z + C + op(z) 4+ C yields an isometry of (C1tHza /C, f) which
is represented, with respect to the basis {e] — nej + C, €§ — nel, + C}, by
X1 - ’I7X2, i.e.

(X1 —nX2)("B - B)('X; —n'X5) = ("B — B) <= det(X; —nX3) =1
<~ det(X1 + T}XQ) =1.

Now, to ask that o is an isometry of Hay4 is equivalent to impose the
conditions

, 1 ife=y;
1) ] == . . 38
f(o(ei),oleh) {0 ) 39)

n ifi=yj;
flo(eao(el)) = {O ) (39)
flo(eh),a(es)) = 0; (40)
flo(es),o(ef)) =0 (i,j=1,2) (41)

Condition (38), as well as condition (39), is equivalent to
tLo(Xl =+ 17X2) = 12
and, consequently, (40) and (41) turn into

(X1 +0X2) L1 — Li*"(X1 4+ nX2) = Xo('B — B) 'Xy; )
42

(X1 +nX2) 'Ly — nL1* (X1 +1X2) = Xo("B — B) 'X;.

Summing up, we have for o a representation

t(Xl —|-77X2)71 0 0
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with X1, Xo € Matoyo(K) such that det(X; + nXs2) = 1 and Ly, Ly €
Matoyo(L) fulfilling (42).

Clearly, there is a epimorphism
ISO(H24) — SLQ(L)
M, — X+ 77X2

the kernel of which is the unipotent radical of Iso(Hzaq4):

I, 0 O
S I, O : S e MatQXQ(L),tS =5
T]S 0 12

A Levi factor of Iso(Hay4) is

YX1+nXy) 0 0
—%)@(tB ~B) X, Xyl :det(Xi4+nXy) =1
3X2('B-B)  7°Xy X

Thus, we conclude that Iso(Hz4) is the semidirect product of the 3-
dimensional vector group over L by SLy(L), hence Iso(Ha4) ~ K x
SLy(L).

1]
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