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Products of class-sums of the alternating group

By SEYDA C. TEKIN (Istanbul) and JACOB KATRIEL (Haifa)

Abstract. Most of the structure constants in the class-algebra of the alter-
nating group, An, can be expressed in terms of corresponding structure constants
in the class-algebra of the symmetric group, Sn. This statement has to be modified
for An-structure constants that involve more than one conjugacy class stemming
from a common Sn conjugacy class, when the latter consists of cycles of odd and
distinct lengths. The An-structure constants of the latter type depend on the Sn

character that corresponds to the self-conjugate Young diagram whose principal
hook lengths are equal to the set of odd and distinct cycle lengths mentioned
above, evaluated over the third conjugacy class involved. The results provide a
combinatorial interpretation of the Sn self-conjugate irreducible characters.

1. Introduction

Let G be a finite group. By C(G) we denote the set of conjugacy
classes of G. For a non empty subset A of G let [A] =

∑
x∈A x ∈ CG,

where CG is the corresponding group-algebra. If A ⊂ G is a G-conjugacy
class, then [A] is the corresponding conjugacy class-sum. The conjugacy
class-sums span the center of the group algebra, and play a major role in
its representation theory [3], [7].

The product of any pair of class-sums [A] and [B] can be expressed as
a linear combination of class-sums with non-negative integral coefficients
(A ·B)

∣∣
C
, which we call the class-algebra structure-constants. Thus,

[A] · [B] =
∑

C∈C(G)

(A ·B)
∣∣
C
[C].
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The coefficient (A · B)
∣∣
C

can be expressed in terms of the ordinary irre-
ducible characters in the form [3]

(A ·B)
∣∣
C

=
|A||B|
|G|

∑

Γ∈I(G)

1
|Γ|χ

Γ
AχΓ

BχΓ
C . (1)

Here, I(G) is a complete set of inequivalent ordinary irreducible represen-
tations (irreps) of G, χΓ

C is the ordinary character corresponding to the
irrep Γ evaluated at C, and |Γ| is the dimension of Γ. |X| stands for the
cardinality of the (finite) set X.

One circle of problems that have been addressed rather extensively
involves the establishment of criteria for distinguishing between vanishing
and non-vanishing structure constants, without actually evaluating the
latter. In particular, class-sums [A] such that (A ·A)

∣∣
C
6=0 ∀C∈C(G) have

been looked for. In the alternating group this issue has been extensively
investigated [1], [2].

In the present article we express the structure constants in the al-
ternating group in terms of data that involve the symmetric group, as
follows; Most structure constants are found to be immediately related to
corresponding structure constants in the symmetric group (Theorem A).
Structure constants in a certain well-defined subset differ from the corre-
sponding Sn structure constants by a term that depends on a particular
Sn-irreducible character (Theorem B). This result can easily be inverted
to derive an expression for the Sn irreducible characters that correspond
to self-conjugate Sn-irreps in terms of the difference between two An

structure constants (Corollary 1).
Combinatorial procedures for the evaluation of both structure con-

stants and characters in the symmetric group have recently been conjec-
tured [8–10], and, subsequently, proved [5]. The investigation presently
reported is motivated by these results, although independent of them. Us-
ing these procedures the present results allow the evaluation of all the
structure constants in the class-algebras of the alternating groups.
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2. Conjugacy classes and irreducible characters
of the alternating group

The alternating group An consists of the even permutations of Sn, i.e.,
permutations that consist of an even number of cycles of even length and
any number of cycles of odd length. The orders of these groups satisfy

|An| = |Sn|
2

=
n!
2

. (2)

The set of the Sn conjugacy classes that consist of cycles of odd and
distinct lengths will be denoted by Co(Sn). The set consisting of all the
other Sn even conjugacy classes, i.e., classes which consist of permutations
that contain (an even number of) cycles of even lengths, or at least one
pair of cycles of equal odd lengths, will be denoted by Ce(Sn).

Fact 1. Each conjugacy class C ∈ Co(Sn) splits within An into a pair
of conjugacy classes of equal cardinalities, that will be denoted by C±. The
conjugacy classes C ∈ Ce(Sn) remain single conjugacy classes within An.

From Fact 1 it follows that ∀C ∈ Co(Sn) ⇒ C = C+∪̇C− where
C± ∈ Co(An). Hence, |Co(An)| = 2|Co(Sn)|. On the other hand, Ce(Sn) =
Ce(An).

For the symmetric group Γ will denote both an irrep and the cor-
responding Young diagram. The set of self-conjugate Sn irreps will be
denoted by IS(Sn), and the set of non self-conjugate Sn irreps will be
denoted by IN (Sn).

Fact 2. The restriction of the Sn-irreps Γ ∈ IS(Sn) to An is re-
ducible, splitting into a pair of An-irreps Γ±, of equal dimensions. Sn-
Irreps Γ ∈ IN (Sn) remain irreducible withinAn; however, the restrictions
to An of Sn-irreps with conjugate Young diagrams are found to coincide.

Denote the Sn-irrep which is conjugate to Γ = {λ1, λ2, . . . } ∈ IN (Sn)
by Γ̃ = {λ̃1, λ̃2, . . . }, λi and λ̃i being the row lengths in the corresponding
Young diagrams (i.e., λ̃i are the column lengths of Γ). We say that Γ > Γ̃
if ∃k such that λi = λ̃i for i = 1, 2, . . . , k − 1 and λk > λ̃k. We specify a
set of inequivalent, non self-conjugate, An-irreps by

IN (An) = {Γ ∈ IN (Sn) | Γ > Γ̃}.
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From Fact 2 it follows immediately that |IS(An)| = 2|IS(Sn)| and
|IN (An)| = 1

2 |IN (Sn)|. Finally,

I(Sn) = IS(Sn)∪̇IN (Sn) (3)

and
I(An) = IS(An)∪̇IN (An). (4)

Let C ∈ C0(Sn) have d (odd and distinct) cycles. ΓC denotes the self-
conjugate Sn-irrep whose principal hook lengths {hi,i; i = 1, 2, . . . , d}
are equal to the cycle lengths of C. (The principal hook length hi,i in
a Young diagram Γ is the number of boxes in the hook that consists of
the box in the (diagonal) position (i, i) and the boxes to the right and
below that box). {Γ±C} consists of the pair of An-irreps corresponding to
ΓC . For A ∈ Ce(Sn) we define {Γ±A} = ∅. For c ∈ An C will denote the
Sn-conjugacy class that contains c.

Lemma 1 ([4], [6]). The An irreducible characters can be evaluated
as follows:

(i) for c ∈ An and Γ ∈ IN (An)

χΓ
c (An) = χΓ

C(Sn) = χΓ̃
C(Sn).

(ii) for c ∈ An and Γ ∈ IS(Sn)\{ΓC}

χΓ+

c (An) = χΓ−
c (An) =

1
2
χΓ

C(Sn).

(iii) for C ∈ C0(Sn) and Γ = ΓC

χΓ+

C+(An) = χΓ−
C−(An) =

1
2
χΓ

C(Sn) + xΓ

χΓ−
C+(An) = χΓ+

C−(An) =
1
2
χΓ

C(Sn)− xΓ

where xΓ =
1
2

√√√√(−1)m

d∏

i=1

hi,i and m =
1
2
(n− d).
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3. Structure constants in the class-algebra
of the alternating group

It will be convenient to define the reduced structure constant

(a · b)∣∣
C
≡ (A ·B)

∣∣
C

|A||B| . (5)

Thus, by equation (1)

(a · b)∣∣
C

=
1
|G|

∑

Γ∈I(G)

1
|Γ|χ

Γ
AχΓ

BχΓ
C . (6)

To simplify the notation, the An irreducible characters will be denoted by
χΓ

A(An) while the Sn irreducible characters will be denoted by χΓ
A, where

Γ and A are understood to denote irreps and conjugacy classes of An and
Sn, respectively.

Theorem A. In the alternating group algebra the reduced structure
constants can be written in the form

(a · b)∣∣
C
(An) = (a · b)∣∣

C
(Sn) +RC

A,B

where

RC
A,B =

4
n!

∑

Γ∈∆A,B,C

1
|Γ|

{
χΓ

A(An)χΓ
B(An)χΓ

C(An)− χΓ
A

2
χΓ

B

2
χΓ

C

2

}
, (7)

and

∆A,B,C = {Γ±A} ∪ {Γ±B} ∪ {Γ±C}.
Proof. Let A, B and C be Sn-conjugacy classes consisting of even

permutations (i.e., permutations that belong to An). Using equation (3)
and Fact 2, equation (6) yields

(a · b)∣∣
C
(Sn) =

1
n!



2

∑

Γ<Γ̃

1
|Γ|χ

Γ
AχΓ

BχΓ
C +

∑

Γ∈IS(Sn)

1
|Γ|χ

Γ
AχΓ

BχΓ
C



 . (8)
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Similarly, using equations (2), (4), Lemma 1 and Fact 2, equation (6)
yields

(a · b)∣∣
C
(An) =

2
n!

{ ∑

Γ∈IN (An)

1
|Γ|χ

Γ
AχΓ

BχΓ
C

+
∑

Γ∈IS(An)

1
|Γ|χ

Γ
A(An)χΓ

B(An)χΓ
C(An)

}
.

(9)

The Theorem follows by using Lemma 1 to compare equation (8) and
equation (9). ¤

Theorem B. The non vanishing residual terms are

(i) RB
A+,A+ = −RB

A+,A− = ρAχΓA
B (−1)m

(ii) RA−
A+,B = −RA+

A+,B = −ρAχΓA
B

(iii) RA+

A+,A+ = ρA(1 + 2(−1)m)

(iv) RA+

A+,A− = −ρA

(v) RA−
A+,A+ = ρA(1− 2(−1)m)

and their conjugates (in which A+ and A− are interchanged). Here, ρA =
1

|ΓA||A| , |ΓA| is the dimension of ΓA as an Sn-irrep, χΓA
B is an Sn character,

and B 6= A as Sn conjugacy classes.

Proof. Using Lemma 1 we note that the residual termRC
A,B vanishes

unless at least two of the conjugacy classes involved correspond to the same
member of Co(Sn); otherwise, at most one character differs from the cor-
responding Sn character in each term, so the corresponding contributions
of Γ+ and Γ− add up to zero. The various cases in the Theorem follow by
evaluating equation (7), using Lemma 1 and the identity χΓA

A = (−1)m.
The latter is obtained using the Murnaghan–Nakayama rule [11]. ¤

Let

nC =





0 if C ∈ Ce(An)

1 if C ∈ Co(An).
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Remark. The structure constant (A · B)
∣∣
C
(An) is obtained by multi-

plication of the reduced structure constant (a · b)∣∣
C
(An) with the product

of the cardinalities of the conjugacy classes A and B in An, i.e.,

|A|An |B|An = |A|Sn |B|Sn ·
(

1
2

)nA+nB

.

Proof. Use equation (5) and Fact 1. ¤

Finally,

Corollary 1. For A ∈ Co(Sn), B ∈ C(Sn), B 6= A and m = 1
2(n − d)

where d is the number of cycles in A (= number of principal hooks in ΓA)

χΓA
B = (−1)m 2|ΓA|Sn

|A|Sn

(
(A+ ·A+)

∣∣
B

(An)− (A+ ·A−)
∣∣
B

(An)
)

(10)

Proof. Use the first case in Theorem B. ¤

Comments.

(i) Equation (10) is easily checked to hold for B = A ∈ Co(Sn) if (A+ ·
A±)

∣∣
A

is interpreted as the average of (A+ ·A±)
∣∣
A+ and (A+ ·A±)

∣∣
A− ;

note that (A+ ·A±)
∣∣
B+ = (A+ ·A±)

∣∣
B− for Co(Sn) 3 B 6= A.

(ii) If B is an odd conjugacy class of Sn equation (10) holds trivially, since
in this case χΓA

B = 0.

In view of these comments a more general version of Corollary 1 can
be formulated as follows.

Corollary 1’. For A ∈ Co(Sn), B ∈ C(Sn), and m = 1
2(n − d) where

d is the number of cycles in A (= number of principal hooks in ΓA)

χΓA
B = (−1)m |ΓA|Sn

|A|Sn

(
(A+ ·A+)

∣∣
B+(An) + (A+ ·A+)

∣∣
B−(An)

−(A+ ·A−)
∣∣
B+(An)− (A+ ·A−)

∣∣
B−(An)

)

where, if B 6∈ Co(Sn) then it is understood that B+ = B− = B.
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Corollary 1 provides a combinatorial interpretation for the Sn char-
acters corresponding to self-conjugate irreps, evaluated over arbitrary
conjugacy classes.

4. Some illustrative examples

A3: The CS3-conjugacy class-sum [(3)] = (123) + (132) gives rise to the
two CA3 conjugacy class-sums [(3)]+ = (123) and [(3)]− = (132). Since

[(3)]+ · [(3)]+ = [(3)]−, [(3)]+ · [(3)]− = [(1)3],

Corollary 1’ yields χ
[2,1]
(1)3

= 2 and χ
[2,1]
(3) = −1.

A4: The CA4 conjugacy class-sums

[(3)(1)]+ = (123)(4) + (214)(3) + (341)(2) + (432)(1),

e.g.,
(
(12)(34)

)
(123)(4)

(
(12)(34)

)
= (214)(3),

[(3)(1)]− = (132)(4) + (241)(3) + (314)(2) + (234)(1).

yield

[(3)(1)]+ · [(3)(1)]+ = 4[(3)(1)]−,

[(3)(1)]+ · [(3)(1)]− = 4[(1)4] + 4[(2)2].

Using Corollary 1’ it follows that χ
[2,2]
(1)4

= 2, χ
[2,2]
(2)2

= 2 and χ
[2,2]
(3)(1) = −1.

A5: Evaluating

[(5)]+ · [(5)]+ = 5[(5)]+ + [(5)]− + 3[(3)(1)2] + 12[(1)5]

and
[(5)]+ · [(5)]− = [(5)]+ + [(5)]− + 3[(3)(1)2] + 4[(2)2(1)]

we obtain χ
[3,1,1]
(1)5

= 6, χ
[3,1,1]
(3)(1)2

= 0, χ
[3,1,1]
(2)2(1)

= −2 and χ
[3,1,1]
(5) = 1.
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A6: Although already a bit cumbersome, the direct evaluation of the
relevant conjugacy class sum products is still feasible, yielding

[(5)(1)]+ · [(5)(1)]+ = 72[(1)6] + 9[(3)(1)3] + 16[(2)2(1)2] + 9[(3)2]

+ 16[(4)(2)] + 20[(5)(1)]+ + 11[(5)(1)]−

and

[(5)(1)]+ · [(5)(1)]− = 18[(3)(1)3] + 16[(2)2(1)2] + 18[(3)2] + 16[(4)(2)]

+ 11[(5)(1)]+ + 11[(5)(1)]−.

Hence, χ
[3,2,1]
(1)6

= 16, χ
[3,2,1]
(2)2(1)2

= 0, χ
[3,2,1]
(3)(1)3

= −2, χ
[3,2,1]
(3)2

= −2, χ
[3,2,1]
(4)(2) = 0

and χ
[3,2,1]
(5)(1) = 1.
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(J.-M. de Koninck and C. Levesque, eds.), de Gruyter, Berlin, 1989, 65–71.

[3] W. Burnside, Theory of Groups of Finite Order, (2nd edn), Dover, New York,
1955.

[4] W. Fulton and J. Harris, Representation Theory, Springer, New York, 1991.

[5] A. Goupil, D. Poulalhon and G. Schaeffer, Central characters and conjugacy
classes of the symmetric group, in: Formal power series and algebraic combinatorics,
(D. Krob, A. Mikhalev, V. Mikhalev, eds.), Springer, Berlin, 2000, 238–249.

[6] P. Headley, On Young’s orthogonal form and the characters of the alternating
group, J. Alg. Comb. 5 (1996), 127–134.

[7] G. James and A. Kerber, The Representation Theory of the Symmetric Group,
Addison-Wesley, Reading, Mass. (1981).



52 S. C. Tekin and J. Katriel : Products of class-sums of. . .

[8] J. Katriel, A conjecture concerning the evaluation of products of class-sums of the
symmetric group, in: Groups 1993-Galway/St. Andrews, Vol. 212, London Math.
Soc. Lecture Note Series, (C. M. Campbell et al., eds.), Cambridge University Press,
1995, 322–332.

[9] J. Katriel, Explicit expressions for the central characters of the symmetric group,
Applied Discrete Math. 67 (1996), 149–156.

[10] J. Katriel, Products of arbitrary class-sums in the symmetric group, Int. J. Quan-
tum Chem. 70 (1998), 429–440.

[11] B. E. Sagan, The Symmetric Group, Wadsworth & Brooks, Pacific Grove, CA,
1991.

SEYDA C. TEKIN

DEPARTMENT OF MATHEMATICS

ISTANBUL TECHNICAL UNIVERSITY

ISTANBUL

TURKEY

JACOB KATRIEL

DEPARTMENT OF CHEMISTRY

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY

HAIFA 32000

ISRAEL

E-mail: jkatriel@tx.technion.ac.il

(Received May 28, 2001; revised May 2, 2002)


