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A new class of general variational inclusions involving
maximal η-monotone mappings

By NAN-JING HUANG (Sichuan) and YA-PING FANG (Sichuan)

Abstract. A new class of maximal η-monotone mappings is introduced and
studied in Hilbert spaces and the Lipschitz continuity of the resolvent opera-
tor for maximal η-monotone mapping is proved in this paper. We also intro-
duce and study a new class of general variational inclusions involving maximal
η-monotone mappings and construct a new algorithm for solving this class of gen-
eral variational inclusions by using the resolvent operator technique for maximal
η-monotone mapping. The results presented in this paper extend and improve
many known results in the literature.

1. Introduction and preliminaries

It is known that variational inclusion is an important and useful gen-
eralization of variational inequality. Because of the wide applications to
optimization and control, economic and tansportation equilibrium, and en-
gineering sciences, variational inequalities and variational inclusions have
been studied by many authors (see [1]–[13], [15]–[21] and the references
therein). We also know that one of the most important and interest-
ing problems in the theory of variational inequality is the development of
an efficient and implementable algorithm for solving variational inequal-
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ity. For the past years, many numerical methods have been developed for
solving various classes of variational inequalities, such as the projection
method and its variant forms, linear approximation, descent, and New-
ton’s methods. Recently, Ding and Luo [4] introduced two new concepts
of η-subdifferential and η-proximal mapping of a proper function in Hilbert
spaces and proved the existence and Lipschitz continuity of η-proximal
mapping of a proper function. In terms of these concepts, Ding and Luo

[4] developed some novel and innovative perturbed iterative algorithms
for a new class of general quasi-variational-like inclusions with nonconvex
functionals. Some related works, we refer to Ding [3] and Lee et al. [13].

Motivated and inspired by the recent works of [3], [4], [13], in this
paper, we introduce a new concept of maximal η-monotone mapping and
prove the Lipschitz continuity of the resolvent operator for maximal η-
monotone mapping. By using the resolvent operator technique for maximal
η-monotone mapping, we construct a new iterative algorithm for solving a
new class of general variational inclusions involving maximal η-monotone
mappings. The results presented in this paper extend and improve the
corresponding results of [3], [4], [7]–[9], [13], [18]–[20].

Throughout this paper, we suppose that H is a real Hilbert space
endowed with a norm ‖ · ‖ and an inner product 〈 · , · 〉, respectively. Let
2H , CB(H), and H(· , ·) denote the family of all the nonempty subsets of
H, the family of all the nonempty closed bounded subsets of H, and the
Hausdorff metric on CB(H), respectively. In the sequel, let us recall some
concepts.

Definition 1.1. A multivalued mapping A : H → 2H is said to be
(i) monotone if

〈x− y, u− v〉 ≥ 0 for all u, v ∈ H, x ∈ Au, y ∈ Av;

(ii) strictly monotone if

〈x− y, u− v〉 ≥ 0 for all u, v ∈ H, x ∈ Au, y ∈ Av

and equality holds if and only if u = v;
(iii) strongly monotone if there exists a constant γ > 0 such that

〈x− y, u− v〉 ≥ γ‖u− v‖2 for all u, v ∈ H, x ∈ Au, y ∈ Av;

(iv) maximal monotone if A is monotone and (I + λA)(H) = H for
any λ > 0, where I denotes the identity mapping.
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Remark 1.1. We note that A is maximal monotone if and only if A is
monotone and there is no other monotone mapping whose graph contains
strictly the graph Graph(A) of A, where Graph(A) = {(u, x) ∈ H × H :
x ∈ Au}.

Definition 1.2. A multivalued mapping A : H → CB(H) is said to be
H-Lipschitz continuous if there exists a constant ξ > 0 such that

H(Au,Av) ≤ ξ‖u− v‖ for all u, v ∈ H.

Definition 1.3 ([3]). Let A : H → 2H be a multivalued mapping. A
mapping N : H ×H → H is said to be

(i) strongly monotone with respect to A in the first argument if, there
exists a constant r > 0 such that

〈N(x, · )−N(y, · ), u− v〉 ≥ r‖u− v‖2 for all u, v ∈ H, x ∈ Au, y ∈ Av;

(ii) Lipschitz continuous in the first argument if, there exists a constant
α > 0 such that

‖N(u, · )−N(v, · )‖ ≤ α‖u− v‖ for all u, v ∈ H.

Similarly, we can define the Lipschitz continuity of N(· , ·) in the second
argument.

2. Maximal η-monotone mappings

Definition 2.1. A mapping η : H× → H is said to be
(i) monotone if

〈u− v, η(u, v)〉 ≥ 0 for all u, v ∈ H;

(ii) strictly monotone if

〈u− v, η(u, v)〉 ≥ 0 for all u, v ∈ H

and equality holds if and only if u = v;
(iii) strongly monotone if there exists a constant δ > 0 such that

〈u− v, η(u, v)〉 ≥ δ‖u− v‖2 for all u, v ∈ H;
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(iv) Lipschitz continuous if there exists a constant τ > 0 such that

‖η(u, v)‖ ≤ τ‖u− v‖ for all u, v ∈ H.

We remark that the strong monotonicity of η implies the strict mono-
tonicity of η.

Definition 2.2. Let η : H × H → H be a single-valued mapping. A
multivalued mapping M : H → 2H is said to be

(i) η-monotone if

〈x− y, η(u, v)〉 ≥ 0 for all u, v ∈ H, x ∈ Mu, y ∈ Mv;

(ii) strictly η-monotone if

〈x− y, η(u, v)〉 ≥ 0 for all u, v ∈ H, x ∈ Mu, y ∈ Mv

and equality holds if and only if u = v;
(iii) strongly η-monotone if there exists a constant r > 0 such that

〈x− y, η(u, v)〉 ≥ r‖u− v‖2 for all u, v ∈ H, x ∈ Mu, y ∈ Mv;

(iv) maximal η-monotone if M is η-monotone and (I + λM)(H) = H

for any λ > 0.

Remark 2.1. If η(u, v) = u− v for all u, v in H, then (i)–(iv) of Defi-
nition 2.2 reduce to the classical definitions of monotonicity, strict mono-
tonicity, strong monotonicity, and maximal monotonicity, respectively.

Definition 2.3 ([21]). A function f : H ×H → R∪{+∞} is said to be
0-diagonally quasi-concave (in short, 0-DQCV) in x if, for any finite set
{x1, . . . , xn} ⊂ H and for any y =

∑n
i=0 λixi with λi ≥ 0 and

∑n
i=0 λi = 1,

min
0≤i≤n

f(xi, y) ≤ 0.

Definition 2.4 ([4], [13]). Let η : H ×H → H be a single-valued map-
ping. A proper function φ : H → R∪{+∞} is said to be η-subdifferentiable
at a point x ∈ H if there exists a point f∗ ∈ H such that

φ(y)− φ(x) ≥ 〈f∗, η(y, x)〉, ∀y ∈ H,



A new class of general variational inclusions involving. . . 87

where f∗ is called an η-subdifferential of φ at x. The set of all η-subdiffer-
ential of φ at x is denoted by ∆φ(x). The mapping ∆φ : H → 2H defined
by

∆φ(x) = {f∗ ∈ H : φ(y)− φ(x) ≥ 〈f∗, η(y, x)〉, ∀y ∈ H} (2.1)

is said to be η-subdifferential of φ.

Remark 2.2. If η(x, y) = x−y for all x, y in H and φ is a proper convex
lower semicontinuous functional on H, then Definition 2.4 reduces to the
usual definitions of subdifferential of a functional φ. If φ is differentiable
at x ∈ H and satisfies

φ(x + λη(y, x)) ≤ λφ(y) + (1− λ)φ(x), y ∈ H, λ ∈ [0, 1],

then φ is η-subdiferentiable at x ∈ H, see [16, p. 424]

Proposition 2.1. Let η : H × H → H be Lipschitz continuous and

strongly monotone such that η(u, v) = −η(v, u) for all u, v ∈ H, and for

any given x ∈ H, the function h(y, u) = 〈x − u, η(y, u)〉 is 0-DQCV in y.

Let φ : H → R ∪ {+∞} be a lower semicontinuous and η-subdifferetiable

functional. Then the η- subdifferential ∆φ defined by (2.1) is maximal

η-monotone.

Proof. The fact (I+λ∆φ)(H) = H follows directly from Theorem 2.8
of Ding and Luo [4]. Next, we prove that ∆φ is η-monotone. For any
given u1, u2 ∈ H, x1 ∈ ∆φ(u1), x2 ∈ ∆φ(u2), it follows from the definition
of η-subdifferential that

φ(y)− φ(u1) ≥ 〈x1, η(y, u1)〉, ∀y ∈ H (2.2)

and

φ(y)− φ(u2) ≥ 〈x2, η(y, u2)〉, ∀y ∈ H. (2.3)

Setting y = u2 in (2.2) and y = u1 in (2.3) and adding them, then we have

〈x1 − x2, η(u1, u2)〉 ≥ 0 for all u1, u2 ∈ H, x1 ∈ ∆φ(u1), x2 ∈ ∆φ(u2).

The proof is complete. ¤
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Remark 2.3. Proposition 2.1 shows that the existence of the maximal
η-monotone mapping. We emphasize that the functional φ may not be
convex in Proposition 2.1. The following example shows that the existence
of the mapping η : H×H → H satisfying all conditions in Proposition 2.1.

Example 2.1 ([13]). Let H = R = (−∞,∞) and η : R × R → R be
defined by

η(x, y) =





x− y, if |xy| < 1,

|xy|(x− y), if 1 ≤ |xy| < 2,

2(x− y), if 2 ≤ |xy|.

Then it is easy to see that
1. |η(x, y)| ≤ 2|x− y| for all x, y ∈ R, i.e., η is Lipschitz continuous;
2. 〈η(x, y), x−y〉 ≥ |x−y|2 for all x, y ∈ R, i.e., η is strongly monotone;
3. η(x, y) = −η(y, x) for all x, y ∈ R;
4. For any given x ∈ R, the function h(y, u) = 〈x − u, η(y, u)〉 =

(x − u)η(y, u) is 0-DQCV in y. If it is false, then there exist a finite set
{y1, . . . , yn} and u0 =

∑n
i=1 λiyi with λi ≥ 0 and

∑n
i=1 λi = 1 such that

for each i = 1, . . . , n,

0 < h(yi, u0) =





(x− u0)(yi − u0), if |yiu0| < 1,

(x− u0)|yi − u0|(yi − u0), if 1 ≤ |yiu0| < 2,

2(x− u0)(yi − u0), if 2 ≤ |yiu0|.

It follows that (x− u0)(yi − u0) > 0 for each i = 1, . . . , n and we have

0 <
n∑

i=1

λi(x− u0)(yi − u0) = (x− u0)(u0 − u0) = 0

which is a contradiction. This prove that for any given x ∈ R, the function
h(y, u) is 0-DQCV in y. Thus η satisfies all assumptions in Proposition 2.1.

Theorem 2.1. Let η : H×H → H be strictly monotone and M : H →
2H be a maximal η-monotone mapping. Then the following conclusions

hold:

(1) 〈x− y, η(u, v)〉 ≥ 0 for all (v, y) ∈ Graph(M) implies that (u, x) ∈
Graph(M), where Graph(M) = {(u, x) ∈ H ×H : x ∈ Mu};

(2) the inverse mapping (I + λM)−1 is single-valued for any λ > 0.
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Proof. Suppose that (1) is false. Then there exists
(u0, x0) /∈ Graph(M) such that

〈x0 − y, η(u0, v)〉 ≥ 0 for all (v, y) ∈ Graph(M). (2.4)

Since M is maximal η-monotone, we have (I + λM)(H) = H. Then there
exists (u1, x1) ∈ Graph(M) such that

u1 + λx1 = u0 + λx0. (2.5)

It follows from (2.4) and (2.5) that

〈x0 − x1, η(u0, u1)〉 =
1
λ
〈u1 − u0, η(u0, u1)〉 ≥ 0.

This implies that

〈u0 − u1, η(u0, u1)〉 ≤ 0.

Since η is strictly monotone, we have u0 = u1 and hence from (2.5) we get
x1 = x0. This contradicts the fact (u0, x0) /∈ Graph(M). Thus (1) is true.

Now we prove (2). For any given z ∈ H and a constant λ > 0, let
u, v ∈ (I + λM)−1(z). Then λ−1(z − u) ∈ M(u) and λ−1(z − v) ∈ M(v).
By η-monotonicity of M , we obtain

0 = 〈z − z, η(u, v)〉 = λ

〈
1
λ

(z − u)− 1
λ

(z − v), η(u, v)
〉

+ 〈u− v, η(u, v)〉 ≥ 〈u− v, η(u, v)〉.

Since η is strictly monotone, we have u = v. Thus (I + λM)−1 is single-
valued.

This completes the proof. ¤
Based on Theorem 2.1, we can define the resolvent operator for a

maximal η-monotone mapping M as follows:

JM
ρ (z) = (I + ρM)−1(z) for all z ∈ H, (2.6)

where ρ > 0 is a constant and η : H × H → H is a strictly monotone
mapping.

Remark 2.4. If η(x, y) = x− y for all x, y in H, then the resolvent op-
erator JM

ρ defined by (2.6) reduces to the usual one for maximal monotone
mapping.
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Theorem 2.2. Let η : H ×H → H be strongly monotone and Lip-

schtiz continuous with constants δ > 0 and τ > 0, respectively. Let

M : H → 2H be a maximal η-monotone mapping. Then the resolvent

operator JM
ρ for M is Lipschitz continuous with constant τ/δ, i.e.,

‖JM
ρ (u)− JM

ρ (v)‖ ≤ τ

δ
‖u− v‖ for all u, v ∈ H.

Proof. Let u, v be any given points in H. From the definition of JM
ρ ,

we have

JM
ρ (u) = (I + ρM)−1(u)

and

JM
ρ (v) = (I + ρM)−1(v).

This implies that
1
ρ
(u− JM

ρ (u)) ∈ M(JM
ρ (u))

and
1
ρ
(v − JM

ρ (v)) ∈ M(JM
ρ (v)).

Since M is η-monotone, we obtain

1
ρ

〈
u− JM

ρ (u)− (v − JM
ρ (v)), η(JM

ρ (u), JM
ρ (v))

〉

=
1
ρ

〈
u− v − (JM

ρ (u)− JM
ρ (v)), η(JM

ρ (u), JM
ρ (v))

〉 ≥ 0.

From the above inequality, we have

δ‖JM
ρ (u)− JM

ρ (v)‖2 ≤ 〈JM
ρ (u)− JM

ρ (v), η(JM
ρ (u), JM

ρ (v))〉
≤ 〈u− v, η(JM

ρ (u), JM
ρ (v))〉

≤ τ‖u− v‖ · ‖JM
ρ (u)− JM

ρ (v)‖.

This implies that

‖JM
ρ (u)− JM

ρ (v)‖ ≤ τ

δ
‖u− v‖ for all u, v ∈ H.

The proof is complete. ¤
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Remark 2.5. Theorem 2.2 generalizes Theorem 2.2 of [3] and Theo-
rem 2.10 of [4].

3. Variational inclusions

In this section, by using the new concept of maximal η-monotone
mapping and the results obtained in Section 2, we shall study a new class of
general variational inclusions involving maximal η-monotone mappings in
Hilbert spaces and construct a new iterative algorithm for approximating
the solution of this class of general variational inclusions involving maximal
η-monotone mappings.

Let η,N : H × H → H be two single-valued mappings with two
variables. Let S, T,G : H → CB(H) be three multivalued mappings and
M : H × H → 2H be a multivalued mapping such that for each t ∈ H,
M(·, t) is maximal η-monotone with Range(G)∩domM(·, t) 6= ∅. Now we
consider the following problem:

Find u ∈ H, x ∈ Su, y ∈ Tu, and z ∈ Gu such that

0 ∈ N(x, y) + M(z, u). (3.1)

The problem (3.1) is called the general set-valued variational inclusion.
It is known that a number of problems involving the nonmonotone,

nonconvex, and nonsmooth mappings arising in structural engineering,
mechanics, economics, and optimization theory can be reduced to study
this kind of variational inclusions (see, for example, [2], [5], [11], [17], [20]).

Some special cases:
(I) If M(x, t) = M(x) for all x, t in H, then the problem (3.1) reduces

to the following problem:
Find u ∈ H, x ∈ Su, y ∈ Tu, and z ∈ Gu such that

0 ∈ N(x, y) + M(z), (3.2)

which appears to be a new one. Furthermore, if G is a single-valued
mapping and η(x, y) = x − y for all x, y in H, then the problem (3.2) is
equivalent to the variational inclusion considered by Huang [9].

(II) If M(·, t) = ∆φ(·, t), where φ : H×H → R∪{+∞} is a functional
such that for each fixed t in H, φ(·, t) : H → R∪{+∞} is lower semicontin-
uous and η-subdifferetiable on H, and ∆φ(·, t) denotes the η-subdiferentail
of φ(·, t), then the problem (3.1) reduces to the following problem:
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Find u ∈ H, x ∈ Su, y ∈ Tu, and z ∈ Gu such that

〈N(x, y), η(v, z)〉 ≥ φ(z, u)− φ(v, u) (3.3)

for all v in H, which which appears to be a new one. Furthermore, if
N(x, y) = x − y for all x, y in H, and S, T , G are three single-valued
mappings, then the problem (3.3) reduces to the general quasi-variational-
like inclusion considered by Ding and Luo [4].

(III) If S, T : H → H are single-valued mappings, G is the identity
mapping, N(x, y) = x − y for all x, y in H, and M(·, t) = ∆φ for all t

in H, where ∆φ denotes the η-subdifferential of a proper convex lower
semicontinuous function φ : H → R ∪ {+∞}, then the problem (3.1)
reduces to the following problem:

Find u ∈ H such that

〈Su− Tu, η(v, u)〉 ≥ φ(u)− φ(v) (3.4)

for all v in H, which is called the strongly nonlinear variational-like inclu-
sion problem considered by Lee et al. [13].

(IV) If η(x, y) = x − y and M(·, t) = ∂φ, where ∂φ denotes the sub-
differential of a proper convex lower semicontinuous function φ : H →
R ∪ {+∞}, then the problem (3.1) reduces to finding u ∈ H, x ∈ Su,
y ∈ Tu, and z ∈ Gu such that

〈N(x, y), v − z〉 ≥ φ(z)− φ(v) (3.5)

for all v in H. Furthermore, if N(x, y) = x − y for all x, y in H and G

is an identity mapping, then the problem (3.5) is equivalent to the set-
valued nonlinear generalized variational inclusion considered by Huang

[7] and, in turn, includes the variational inclusions studied by Hassouni

and Moudafi [6] and Kazmi [12] as special cases.
Summing up the above arguments, it shows that for a suitable choice

of N , η, M , S, T , G, and for the space H, one can obtained a number
of known and new classes of variational inclusions, variational inequali-
ties, and corresponding optimization problems from the general set-valued
variational inclusion problem (3.1). Furthermore, these types of varia-
tional inclusions enable us to study many important problems arising in
the mathematical, physical, and engineering sciences in a general and uni-
fied framework.
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Lemma 3.1. For given u ∈ H, x ∈ Su, y ∈ Tu, and z ∈ Gu,

(u, x, y, z) is a solution of the problem (3.1) if and only if

z = JM(·,u)
ρ (z − ρN(x, y)), (3.6)

where J
M(·,u)
ρ = (I + ρM(·, u))−1 and ρ > 0 is a constant.

Proof. This directly follows from the definition of J
M(·,u)
ρ . ¤

Based on Lemma 3.1 and Nadler [14], we develop a new iterative
algorithm for solving the problem (3.1) as follows:

Algorithm 3.1. For any given u0 ∈ H, x0 ∈ Su0, y0 ∈ Tu0, and
z0 ∈ Gu0. Define the iterative sequences {un}, {xn}, {yn}, and {zn} as
follows:





un+1 = un − zn + JM(·,un)
ρ (zn − ρN(xn, yn)),

xn+1∈Sun+1, ‖xn−xn+1‖≤(1+(1+n)−1)H(Sun, Sun+1),

yn+1∈Tun+1, ‖yn−yn+1‖≤(1+(1+n)−1)H(Tun, Tun+1),

zn+1∈Gun+1, ‖zn−zn+1‖≤(1+(1+n)−1)H(Gun, Gun+1),

n = 0, 1, 2, 3 . . . .

(3.7)

Theorem 3.1. Let η : H ×H → H be strongly monotone and Lips-

chitz continuous with constants δ and τ , respectively. Let S, T, G : H →
CB(H) be H-Lipschitz continuous with constants σ, κ, and ξ, respectively,

and G is strongly monotone with constant γ. Let N : H × H → H be

Lipschitz continuous in the first and second arguments with constants α

and β, respectively, and be strongly monotone with respect to S in the

first argument with constant r. Let M : H × H → 2H be such that for

each fixed t ∈ H, M(·, t) is maximal η-monotone. Suppose that there exist

constants ρ > 0 and λ > 0 such that for each x, y, z ∈ H,

‖JM(·,x)
ρ (z)− JM(·,y)

ρ (z)‖ ≤ λ‖x− y‖, (3.8)

and

θ =
(
1 +

τ

δ

)√
1− 2γ + ξ2 +

τ

δ

√
1− 2ρr + ρ2α2σ2

+ βκρ
τ

δ
+ λ < 1.

(3.9)
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Then the iterative sequences {un}, {xn}, {yn}, and {zn} generated by

Algorithm 3.1 converge strongly to u∗, x∗, y∗, and z∗, respectively and

(u∗, x∗, y∗, z∗) is a solution of the problem (3.1).

Proof. It follows from (3.7) and (3.8) that

‖un+2 − un+1‖ = ‖un+1 − un − (zn+1 − zn)

+ JM(·,un+1)
ρ (zn+1 − ρN(xn+1, yn+1))

− JM(·,un)
ρ (zn − ρN(xn, yn))‖

≤ ‖un+1 − un − (zn+1 − zn)‖
+ ‖JM(·,un+1)

ρ (zn+1 − ρN(xn+1, yn+1))

− JM(·,un+1)
ρ (zn − ρN(xn, yn))‖

+ ‖JM(·,un+1)
ρ (zn − ρN(xn, yn))− JM(·,un)

ρ (zn − ρN(xn, yn))‖
≤ ‖un+1 − un − (zn+1 − zn)‖ (3.10)

+
τ

δ
‖zn+1 − zn − ρ(N(xn+1, yn+1)

−N(xn, yn))‖+ λ‖un+1 − un‖
≤ ‖un+1 − un − (zn+1 − zn)‖+ λ‖un+1 − un‖

+
τ

δ
‖zn+1 − zn − ρ(N(xn+1, yn+1)−N(xn, yn+1))‖

+ ρ
τ

δ
‖N(xn, yn+1)−N(xn, yn)‖

≤
(
1 +

τ

δ

)
‖un+1 − un − (zn+1 − zn)‖

+ λ‖un+1 − un‖

+
τ

δ
‖un+1 − un − ρ(N(xn+1, yn+1)−N(xn, yn+1))‖

+ ρ
τ

δ
‖N(xn, yn+1)−N(xn, yn)‖.

Since G is strongly monotone and H-Lipschitz continuous, we obtain

‖un+1 − un − (zn+1 − zn)‖2

= ‖un+1 − un‖2 − 2〈un+1 − un, zn+1 − zn〉+ ‖zn+1 − zn‖2
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≤ (1− 2γ)‖un+1 − un‖2 +
(

1 +
1

1 + n

)2

H2(Gun+1, Gun)

≤
(

1− 2γ +
(

1 +
1

1 + n

)2

ξ2

)
‖un+1 − un‖2. (3.11)

Further, from the assumptions, we have

‖N(xn, yn+1)−N(xn, yn))‖ ≤ β‖yn+1 − yn‖

≤ β

(
1 +

1
1 + n

)
H(Tun, Tun+1) (3.12)

≤ βκ

(
1 +

1
1 + n

)
‖un − un+1‖,

and

‖un+1 − un − ρ(N(xn+1, yn+1)−N(xn, yn+1))‖2 (3.13)

= ‖un+1 − un‖2 − 2ρ〈un+1 − un, N(xn+1, yn+1)−N(xn, yn+1)〉
+ ρ2‖N(xn+1, yn+1)−N(xn, yn+1)‖2

≤
(

1− 2ρr + ρ2α2σ2

(
1 +

1
1 + n

)2
)
‖un − un+1‖2.

It follows from (3.10)–(3.13) that

‖un+2 − un+1‖ ≤ θn‖un+1 − un‖, (3.14)

where

θn =
(
1 +

τ

δ

)√
1− 2γ +

(
1 +

1
1 + n

)2

ξ2

+
τ

δ

√
1− 2ρr + ρ2α2σ2

(
1 +

1
1 + n

)2

+
(

1 +
1

1 + n

)
βκρ

τ

δ
+ λ.

Letting

θ =
(
1 +

τ

δ

)√
1− 2γ + ξ2 +

τ

δ

√
1− 2ρr + ρ2α2σ2 + βκρ

τ

δ
+ λ.



96 Nan-jing Huang and Ya-ping Fang

We know that θn ↘ θ as n → ∞. It follows from (3.9) that 0 ≤ θ < 1.
Hence θn < 1 for n sufficiently large. Therefore (3.14) implies that {un}
is a Cauchy sequence in H. Let un → u∗ as n →∞. From (3.7), we get

‖xn − xn+1‖ ≤
(

1 +
1

1 + n

)
H(Sun, Sun+1) (3.15)

≤ σ

(
1 +

1
1 + n

)
‖un − un+1‖,

‖yn − yn+1‖ ≤
(

1 +
1

1 + n
)H(Tun, Tun+1

)

≤ κ

(
1 +

1
1 + n

)
‖un − un+1‖,

‖zn − zn+1‖ ≤
(

1 +
1

1 + n
)H(Gun, Gun+1

)

≤ ξ

(
1 +

1
1 + n

)
‖un − un+1‖.

Since {un} is a Cauchy sequence, from (3.15), we know that {xn}, {yn},
and {zn} are also Cauchy sequences. Let xn → x∗, yn → y∗, and zn → z∗

as n →∞.
Furthermore, we have

d(x∗, Su∗) ≤ ‖x∗ − xn‖+ d(xn, Su∗)

≤ ‖x∗ − xn‖+ H(Sun, Su∗)

≤ ‖x∗ − xn‖+ σ‖un − u∗‖ → 0.

This implies that x∗ ∈ Su∗. Similarly, we know that y∗ ∈ Tu∗ and z∗ ∈
Gu∗. Therefore, (u∗, x∗, y∗, z∗) is a solution of the problem (3.1). This
completes the proof. ¤

Example 3.1. If there exists a constant ρ > 0 such that




∣∣∣ρ− τr− δ(1− l)β
τ(α2σ2−β2κ2)

∣∣∣<
√

[τr−δ(1−l)β]2−(α2σ2−β2κ2)[τ2−δ2(1−l)2]
τ(α2σ2 − β2κ2)

,

τr > δ(1− l)β +
√

(α2σ2 − β2κ2)(τ2 − δ2(1− l)2), ασ > βκ,

l =
(
1 + τ

δ

) √
1− 2γ + ξ2 + λ, ρτβκ < δ(1− l), l < 1,
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then the condition (3.9) is satisfied.

Remark 3.1. Theorem 3.1 extends and improves many corresponding
results in [4], [7]–[9], [13], [18]–[20].

Acknowledgement. The authors wish to thank the referees for their
helpful and constructive comments.
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