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On the projectivized r-th order cotangent bundle

By W. M. MIKULSKI (Krakéw)

Abstract. Let P™* = P(T"*) : M f,, — F.M be the projectivized r-th order
cotangent bundle functor. That for n > r + 1 every natural operator T|rs, ~
TP™ is a constant multiple of the complete lifting is deduced. That for n > r+1
every natural affinor on P™* over n-manifolds is a constant multiple of the identity
affinor is obtained. That for n > 2 every natural operator T\jvt P T*P"™ is a

constant multiple of the vertical lifting is verified.

0. Introduction

Let M be an n-dimensional manifold. In [16], we considered the nat-
urality problem how a vector field X on M induces a vector field A(X)
on the projectivized cotangent bundle P(T*M) and proved that for n > 2
every natural operator A : Tirqy, ~» T(P(T")) is a constant multiple of
the complete lifting. We also studied the naturality problem with affinors
C:T(P(T*M)) — T(P(T*M)) on P(T*M) and derived that for n > 2 ev-
ery natural affinor C' : T(P(T%)) — T(P(T*)) on P(T™) over n-manifolds is
a constant multiple of the identity one. Moreover, we considered the natu-
rality problem how a 1-form w on M can induce a 1-form D(w) on P(T*M)
and proved that for n > 2 every natural operator D : Tj}, ~> T*(P(T™))

is a constant multiple of the vertical lifting.

We inform the reader that the results presented above are particular
cases (for r = k = 1) of the respective (proved in [16]) facts for the bundle
Ki*M = regT{*M/Lj of the so called contact (k,r)-coelements. The
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mentioned results for K}*M are “dualizations” of respective facts from [5]
and [6] (and generalized in [10]) for the bundle KM = regTy M/L; of
contact (k,r)-elements in the sense of C. EHRESMANN, [2].

In the present paper we generalize the cited above results concerning
P(T*) as follows. Let P™M = P(T"™ M) denote the projectivized r-th
order cotangent bundle T77*M = J"(M,R)s. We consider the naturality
problem how a vector field X on M induces a vector field A(X) on P™ M
and prove that for n > r+1 every natural operator A : T\, ~ TP™ is a
constant multiple of the complete lifting P™*. We also study the naturality
problem with affinors C : TP™*M — TP™M on P™M and obtain that
for n > r + 1 every natural affinor C': TP™ — TP™ on P™ is a constant
multiple of the identity one. Moreover, we consider the naturality problem
how a 1-form w on M induces a 1-form D(w) on P™M and prove that for
n > 2 every natural operator D : T\j\/l o T*P™ is a constant multiple of

the vertical lifting. If » = 1 we have T*=T*! and we reobtain the results
for P(T™).

Natural operators lifting vector fields, functions and 1-forms to some
natural bundles were used practically in all papers in which problem of
prolongations of geometric structures was studied, see [17], [18], etc. That
is why such natural operators are studied, see e.g. [3], [5], [11], [13]-[15],
[19], etc.

The respective results of the present paper shows that if dim(M) >
r + 1 then P™M 1is poor with respect to liftings of vector fields and 1-
forms. This indicate that there are small possibilities to prolonge classical
geometric structures from M to P™* M. However, it seems to be interesting
that the complete lifting P™ can be characterized as the unique natural
operator A : Tjxy, ~» TP™ such that A(X) is a projectable vector field
on P™M covering X for any vector field X on M.

Natural affinors on some natural bundle F'M play importrant roles in
the differential geometry. We present the following reason.

A generalized connection on F'M is an affinor I' : TFM — VFM C
TFM on FM (horizontal projector) such that ' oI' = I' and dim(I") =
VFM, [5]. Given a natural affinor C : TFM — TFM on FM the
Frolicher—Nijenhuis bracket [C,T'] is the so called generalized torsion of
I’ with respect to C'. Such generalized torsions were studied in [7], [1], etc.
(The classical torsion of a linear connection I' on T'M is proportional to
[J,T], where J is the canonical tangent structure affinor on T'M.)
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That is why natural affinors are studied, see [4]-[6], [9], [10], [12] etc.
The result of the present paper concerning natural affinors on P™ M
brings the following two negative answers. The first one is that if dim(M) >
r+1 then there is no canonical generalized connection on P™* M. The sec-
ond one is that if dim(M) > r 4 1 then the notion of generalized torsions
of a generalized connection I" on P™ M makes no sense because [id,I'] = 0.

1

From now on z*, ..., 2™ denote the usual coordinates on R" and 0; =

0

57 are the vector fields on R".

All manifolds are assumed to be without boundary, finite dimensional,
Hausdorff and smooth, i.e. of class C*°. All maps between manifolds are
assumed to be smooth. Natural operators and natural transformations are

in the sense of [5].

1. On the projectivized cotangent bundle functor

P(T*): Mfy, — FM

For a comfort we cite below some results about the projectivized cotan-
gent bundle functor P(T*) : M f, — FM.

For every n-manifold M we have the cotangent bundle T*M and its
projectivization P(T*M) = \J, ¢, P(Ty M) over M, P(T; M) = the pro-
jective space corresponding to T M. Every embedding ¢ : M — N of two
n-manifolds induces a bundle map P(T*y) = (J,cpr P(Typ) : P(T*M) —
P(T*N). The correspondence P(T*) : M f, — FM is a bundle functor.

In [16], we proved the following results.

Theorem 1. Every natural transformation B : P(T*) — P(T*) over
n-manifolds is the identity one.

Theorem 2. Let n > 2. Every natural operator A : Ty, ~
T(P(T*)) is a constant multiple of the complete lifting.

Theorem 3. Let n > 2. Every natural affinor C' : T(P(T*)) —
T(P(T*)) on P(T*) over n-manifolds is a constant multiple of the identity
affinor.

Theorem 4. Let n > 2. FEvery natural operator A : le\/lfn
T*(P(T*)) is a constant multiple of the vertical lifting.

N
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2. The projectivized r-th order cotangent bundle functor
P™ =P(T™): Mf, - FM

For every n-manifold M we have the r-cotangent vector bundle T7* M=
J"(M,RF) over M. Every embedding ¢ : M — N of two n-manifolds in-
duces a vector bundle map T"*p : T™*M — T™* N, T" p(jrv) = Jina) (yo
e ), y: M —-R, z€M,~(z)=0.

It is well-known that the correspondence T7* : M f, — VB is a vector
bundle functor.

For every n-manifold M we have the bundle P™*M = P(T"™* M) =
Uzenr P(T7*M) over M, P(T,* M )= the projective space corresponding to
the fibre T7*M. Every embedding ¢ : M — N of two n-manifolds induces
a bundle map P™¢ = P(T"™¢) = U,ers P(Th*¢) : P7*M — P™N. The
correspondence P™ = P(T"™) : Mf, — FM is a bundle functor. It is
called the projectivized r-th order cotangent bundle functor.

3. On natural endomorphisms of P™ = P(T"")

Theorem 5. Let n > 2. Every natural transformation B : P™* — P"™*
over n-manifolds is the identity one.

ProoF. Consider a natural transformation B : P™ — P™ over n-
manifolds, n > 2. Since o, = [j5(z')] € PJ*R™ has dense orbit in P™*R"™
with respect to Diff(R™,R"™), it is sufficient to verify that B(o,) = 0.

We can write B(0,) = [j5(3aeq @at®)] for some (aq)ace € RY\ {0},
where G is the set of all @ = (aq,...,a,) € (NU{0})" with 1 < |a| <.

Using the invariance of B(o,) with respect to (%xl, e Tinx”) :R™ —
R™ for 7= (11,...,m) € (R\{0})™ we get [j5( D anz®)|=[10( D] aamz®)].
acCG acCG

So, only one of the a,’s is not equal to 0. Hence B(o,) = [j;(x“)] for some
acd.
If a;j # 0 for some ¢ > 2, then by the invariance of B(o,) with respect

to the isomorphism (x!,... 2=t 2t — 2! 21 . 27): R® — R" we get
g ((@h)y oo (zV))] = [F5((xh)>r ... (2 + b (2™))], ie. we
obtain the contradiction. Hence B(c,) = [j5((2!)9)] for some ¢ =1,...,7.

If ¢ > 2 then the local diffeomorphisms
(rl+(2hH +(2H)r, 2%, ..., 2") 7L R® — R for 7 # 0 preserve [55((x!)?)].
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Using the invariance of B with respect to these diffeomorphisms we obtain
that B([55 (2! + (21" + (")) = [j5((x1)9)] for 7 # 0. Putting 7 — 0
we get B([j5((z1)" + (2®))]) = [55((z!)?)]. Now, changing z' by z? and
vice-versa we get [55((z1)9)] = [j5((2%)9)]. Contradiction.

Hence ¢ = 1, i.e. B(0,) = [j5(2!)] = 0. This ends the proof. O

Remark 1. If n = 1 and » > 2, then P™ : Mf; — FM is not
rigid. For, 0° = [j5((z')")] € P§*R is Li-invariant. Hence there exists the
natural transformation B : P™ — P™ over l-manifolds corresponding to
the constant Lj-equivariant map PJ*R — {o°} C Pj*R.

Corollary 1. If n > 2 then every absolute natural operator
AZﬂan ~ T P™ is 0.

PROOF. Every such A is a canonical vector field on P™M for any
M € obj(Mfy). On the other hand FyR™ is compact, then the flow of a
canonical vector field on F'M is formed by authomorphisms FM — F M.
Then the flow of A is trivial because of Theorem 5. So, A = 0. (I

4. The natural operators T, ~ TP"™

In general, if F' : Mf, — FM is a bundle functor then given a
vector field X on M € obj(M f,) we have the vector field FX on FM via
prolongation of flows. It is called the complete lifting of X to F'M. If {¢:}
is the flow of X then {F¢;} is the flow of FX, see [5].

In the case F' = P™ we have the following theorem.

Theorem 6. If n > r + 1 then every natural operator A : Ty, ~
TP™ is a constant multiple of the complete lifting P™.

The proof of Theorem 6 will occupy the rest of this section and Sec-
tion 5.
Given b = (b07 e bT—l) €R"and d = (dla s 7d'r'—1) S RTil let

oap = [jo(nap)] € Py*R", (1)

where 744 := (z1)" 4+ Y212 di(zh)! + Zg;(l) berd T2 (1) : R" — R.

We have the following reducibility lemma.
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Lemma 1 (First Reducibility Lemma). Let A : Ty, ~ TP™ be a
natural operator, n > r+ 1. If A(01),,, = 0 for any b € R* and d € RF 1,

then A = 0. If A(01),,, is vertical for any d € R"~! and b € R™, then A is
of vertical type.

gd,b

PRrROOF. It is sufficient to show that A(0), is equal to 0 (vertical) for
any o € PJ*R".
By the density argument we can assume that

o= {jg (<m1>’“ + g dia') + :_Z;W”Q’ o xn)(xl)q>]

for some smooth maps 7, : R"~! — R with ~,(0) = 0.

By the density argument we can assume that the system
(yq(22, . .. ,x"))g;(l) : R®™ — R" is of rank r at 0 € R™. Then there exists
an embedding ¢ : R® — R" preserving 0, d; and 2! near 0 and sending
(yq(22, . .. ,x”))g;é into (x2,...,2"T!). Now using the invariance of A with
respect to ¢ we can assume that o = Odb- O

Now, we prove the following decomposition lemma.

Lemma 2 (Decomposition Lemma). Let A : Tiry, ~ TP™ be a
natural operator, n > r + 1. Then there exists o € R such that A — oP™
is a vertical operator.

PROOF. For every a € R, d € R"~! and b € R" we can write
Tr(A(ad)oy,) = Y aia, d,b)di
i=1

for some smooth maps a; : R x R"™! x R" — R.
Using the invariance of A with respect to the homotheties
(ral,22,...,2") : R" — R" for 7 # 0 we get

7'0[1((1, d, b)al|0 + Z 0%} (CL, d, b)a’t|0
1=2

=TI (A(T“al)[j(z(%(xl)wzzf Ly ()3 %qquq“(xl)q)])

T
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=Tr (A(mal)[(xl)wzgf Trldy (e ) TT—flquq"rQ(xl)tI)]) .
Then we get homogeneity conditions

ra1(a,d,b) = oy (ra, (1774d;), (T7"9b,)) and

ai(a,d,b) = a;(ta, (T"7!d;), (1779b,)) for i = 2,...,n and T # 0.

Now, by the homogeneous function theorem, [5], o (a, d, b) is the linear
combination of a, d,_; and b,_; with real coefficients and «;(a,d,b) =
const fori =2,...,n.

Since A(0) corresponds to the absolute operator, A(0) = 0 because
of Corollary 1. Then «o; = 0 for i = 2,...,n, and aq(a,d,b) = aja for
some a; € R. Then T7(A(1)s,,) = a101y = arT7(P™(01)s,,). Hence
A — a’P™ is a vertical operator because of the reducibility lemma (Lem-
ma 1). O

5. The natural operators T, ~ T P"™ of vertical type

Thanks to the decomposition lemma (Lemma 2), Theorem 6 will be
proved after proving the following proposition.

Proposition 1. If n > r+1 then every natural operator A : Tjpqy, ~
TP™ of vertical type is 0.

PROOF. From now on A : Tj, ~» TP™ is a natural operator of
vertical type, where n > r + 1.

We will use the notations of Section 4.

Since A is vertical, A(X)|PJ*R™ is a vector field on Pj*R"™ for every

X € X(R"). Let {F/*®)} denotes the flow of A(X)|PJ*R", X € X(R").
Since every projective space is compact, the flow {FtA(X)} is global.

Let a € R, b = (b))i—y € R", d = (d))]-} € R""' and ¢t € R be

arbitrary. Then we have o4 € Pj*R", see Section 4.

Step 1. On the points FtA(aal)(ad b)-

)

Clearly, FOA(O) (0(0),0)) = 76 ((x")")]. So, there is € > 0 such that

FM (040) = 36 ((2")" + D Balt,a,d,0)2°)] 2)

aeG
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for all (t,a,d,b) € (—e,€) x (—€,€) x (—¢,6)"" ! x (—¢,€)", where B,
(—€,€) x (—€,€) X (—€,€)" 7! x (—¢e,€)” — R are the smooth maps. Here
G is the set of all a = (aq,...,a) € (NU{0})™ with 1 < |a| < r and
a# (r,0,...,0).
Step 2. On the maps By s(t,a,d,b).

We use the invariance of A(ad;) with respect to (z?, %xQ, N %az") :
R™ — R™ for all 7; # 0 with |7;| < 1. We obtain the homogeneity condition

By (t,a,d, (Tq42bq)) = Ba(t,a,d,b)(12)* ... (7,)*"

for a € G, where (t,a,d,b) € (—¢,€) x (—¢,€) x (—¢,€)" 1 x (—e,€)". Now,
we apply the (obviously adapted) homogeneous function theorem, [2]. We
deduce that B, = 0 for all « € G with a9+ -+ a, # 0, and

r—1

Bau(t,a,d,b) = Ba(t,a,d) [ ] (bg)*+> (3)

q=0

for all @« € G with a0+ -+ + a, = 0, where B, : (—€,€) X (—€,€) X
(—€,€)"~1 — R are the smooth maps.
Hence

FH (0) = [ ( "+ Balt,a,d) H(b Jre ﬂ @

acH =0

for all (t,a,d,b) € (—¢,€) x (—€,€) x (—€,€)" ! x (—¢,€)". Here H is the
set of all @ = (a1,...,0p) € (NU{0})" with 1 <|a| <7, a # (r,0,...,0)
and apq42 4+ -+ a, = 0.
Step 3. On the maps By (t,a,d) for o € H.

Using the invariance of F; A(aal)(ad p») with respect to the local diffeo-
morphisms (!, (2772 4 p(2472) ) 20 22 gm)Tl RT — R for

all 4 we get the condition

r—1

JO<ZB (t,a,d) H(b yeas (g T

aceH q=0

r—1
~ii( X Bt H<b ety [ 4 a2y -styons ).

aceH q=0

(@)
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Both sides of the last equality are polynomials in p. Considering the
coefficients corresponding to u = u' we get

r—1 r—1

j{;(Z > akraBalt,a,d) [ [ (bg) 2 (2™
k=0acH =0
r—1
X H(J;q+2)aq+2(xk+2)r_k> _o.
q=0

Therefore we have the implication:

(x) f « € Hand k=0,...,7 — 1 are such that B, # 0 and a9 # 0,
then g+ -+ a1 > k+1— .

Step 4. On the maps B, (t,a,d) for « € H anew.

Let o € H.

Using the invariance of A(ad;) with respect to (rz!,22,...,,2") :
R™ — R™ for 7 # 0 with |7]| < 1 we obtain By(t,a,d,b)7" ™ =
Bo(t,Ta,di7" =t byt ™9) for all (t,a,d,b) € (—€,€) X (—¢,€) x (—e, €)1 x
(—€,€)". Applying (3) we can write this condition in the form

r—1
By (t,a,d)7" =% = By(t,7a, dim" ) 1_[(7'T_‘7)C“‘1Jr2
q=0

for all (t,a,d) € (—¢,€) x (—¢€,€) X (—e,¢)" L and 0 < |7] < 1.

Hence
r—1
B, =0 if Z(r —q)agr2 > 1 — oy,
q=0
r—1
B, depends only on t if Z(r —Q)agra =1 — 1
q=0
and
r—1
B, =0 if agyo # 0 for some k =0,...,r—1 and Z(r—q)aq+2 <r—oaoq.
q=0

(The last implication we can prove as follows. Suppose that B, # 0,
a2 # 0 and E;;(l)(r—q)aﬁg <r—aj. Thenr—k—1+ (ag+---+
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arg1) < ZZ:}(T’ — q)og+2 < 7 — a1 and by the implication () we get
r—k—14+a;<r—(ag+--+ar41) <r—k—14 aj. Contradiction.)

Step 5. On the points FtA(aal)(ad,b) anew.
Because of the Step 4 and (4) we can write

r—1

FM (04) = {ja <<w1>7" + 2 Bilta )Y

Jj=1

+ Y Ba(t) ﬁ(bq)%wa:a)]

acJ q=0
for all (t,a,d,b) € (—€,€) x (—€,€) x (—¢,€)""! x (—¢,€)", where B, :
(—€,€) — R and Bj : (—€,€) x (—€,€) X (—€,€)"" 1 — R are the smooth
maps. Here J is the set of all « € H such that Zg;é(r — Q)42 =T — 1
(then agqo # 0 for some ¢ =0,...,7 —1).
If a = 0 we get FtA(O) (04p) = 0ap as A(0) = 0 because of Corollary 1.

Hence
r—1
A(ad . r j
o) = |15 + X Bita.aey
j=1
o ()
+ Z quq+2(x1)q>]
q=0
for all (t,a,d,b) € (—€,€) x (—€,€) x (—€,€)" " x (—¢,€)", where B; :
(—€,€) x (—€,€) x (—¢,€)"1 — R are the smooth maps.

Step 6. On the maps Bj(t,a,d).
Let B; be as in Step 5. We have

r ([ (@ + 5 a')|)

=1

= [is (@ + §Bj<t,a,d><x1>f)]

Jj=1

for all (¢,a,d) € (—€,€) x (—€,€) x (—e,€)" L.
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Using the invariance of A with respect to (rz!,22,...,2") : R* — R"

for 7 # 0 with |7| < 1 we get the homogeneity conditions
Bj(t,a,d)r" 7 = Bj(t,Ta, (7" "'d}))

for all (t,a,d) € (—¢,€) x (—¢,€) x (—¢,€)"" L. Now, by the homogeneous
function theorem we have

Bj(ta a, d) = Cj (t)a’r_j + D](t)dj + Bj(ta a, derl, S 7d7“71) (7)

for j =1,...,7 — 1, where C; : (—e,¢) = R, D; : (—€,¢) — R and Bj :
(—€,€) X (—¢,€) x (—¢,€)" 771 — R are smooth and Bj(t, a,djq1,...,dr—1)
is the finite linear combination of monomials in @ and dj41,...,d,—1, not
equal to a" 7, with coefficients being smooth maps depending on t. In
particular, B._1(t,a,d) = 0.
Step 7. A(a81)|[]6«((x1)r)] =0

Using the invariance of A(adh)|fjr((z1yry) With respect to the diffeomor-

jo (=
phisms (z! + p(2?)?,22,...,2") 7L : R® — R" for all u we get

oy + 5" By(ta, O )| = K ()

j=1
- [jz; ((M‘ 1 §Bj(t, a,(0) (=" + u<w2>2>j)]
for t,a € (—e,€). Hence
it < rz_; Bi(t,a, (0))(961)3') =jr < Tz_:i B;(t,a, (0))(z + M(fc2)2)j) .

Both sides of this equality are polynomials in pu. Considering the coeffi-
clents on p = ' we get j5(3 121 B;(t a, (0)) (') (2?)?) = 0. Hence
Bj(t,a,(0)) =0for j=1,...,r — 1 and small ¢, a. Therefore

A(al o r o r .
ELM ([ ((@)) = [ ((@))], e Aady) g ey = 0 for a € (—¢,€).

Step 8. By_1(t,a,d) = dy_1
By (7) we have Br_l(t, a, dr—l) = C’,,_l(t)a + Dr_l(t)dr_l.
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Since A(adh)jr((z1yry) = 0, we get o ((x)"+Cr1(H)a(zh) L +..)] =
EW%«w%ﬂm)ﬂ  Craa(t) = 0.

Since A(O)gd o = (Corollary D), [55((x")" + Dp—y (t)dy—1 (1)1 +
) = F'%0u0) = oao = (@) +da(e)) ™" 4] Hence

D,_4(t ) 1
Then B,_1(t,a,d) = d,—; for small ¢, a, d.

Step 9. Bj(t,a,d) =dj forj=1,...,r —1.
We will proced by the induction on j.
()Ifj=r—1, B,_1(t,a,d) = d,_1, see Step 8.

(2) Assume that Bj1(t,a,d) = dj41,..., Br—1(t,a,d) = d,—; for small
t, a, d. We prove that B;(t,a,d) = d; as follows.
From the inductive assumption it follows that

(L)

l=j5+1

—M@W+§mw1

I=j+1
J
+> Bi(t,a,0,...,0,dj1,. .. ,dr_l)(asl)lﬂ.
=1

Now, by the invariance with respect to the diffeomorphisms
(x! + p(x?)r=Itt g2 a™) 7l R® — R™ preserving ad; and [j5((z)" +
S i iz D] for all u we get

[jg ((xl)T +l;_z+lldz($l)l
J 141
+;Bl(t,a,o,...,o,dj+1,...,dr_1)(w ))}
_ [jg)"((xl)r-i- ri di(")’

I=j+1



On the projectivized r-th order cotangent bundle 111

J
+3 Bit,a,0,djs1, - dpo) (@ + u(a:?)’"—ﬂﬂ)lﬂ .
=1

Hence

J
j6<ZBz(t,a,0, o 0,djga, . ,dTl)(xl)l>
=1

J
= ]6 ( Z Bl(t7 a, 0, dj+1, - ,drfl)(;cl + M(J;Q)T—J—H)l) ]
=1

Both sides of the last equality are the polynomials in y. Considering the co-
J )
efficients on u we get j[’)"( > IBi(t,a,0,dj4q,. .., dr_l)(:z:l)l_l(x2)’"_3+1):O.
=1

Then, in particular, B;(t,a,0,d;t1,...,dr—1) =0, i.e.
Bj(t, a, dj+1, ey dr—l) = 0and Cj(t) = 0. Hence Bj(t, a, O, dj, cee 7dr—1) =
Dj(t)d;. Now, since A(0) = 0 (see Corollary 1), FtA(O)Jd,O = 040, i.e.

D(t) =1. So, Bj(t,a, dj, ..., dr—1) = d;.
Step 10. The end of the proof of Proposition 1.

Because of formula (5) and Step 9 we have
small ¢, a,d,b. Hence A(ad)s,, = 0 for small a, d, b.

Using the naturality of A with respect to (rx!,22,...,2™) for 7 # 0 it
is easy to show that A(ad1)s,, =0 for any a € R", b € R* and d € RFL.
Then the reducibility lemma (Lemma 1) ends the proof of Proposition 1.

FtA(aal)(O'dVb) = 0dpb for all

Odb

The proof of Theorem 6 is complete. (Il

6. The natural affinors on P™ = P(T"")

In this section we study the natural affinors on P"™. We prove the
following theorem.

Theorem 7. Let n > r + 1. Every natural affinor C on P™ over
n-manifolds is a constant multiple of the identity one.

At first we prove the following reducibility lemma.
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Lemma 3 (Second Reducibility Lemma). Let C' : TP™ — TP"™ be
a natural affinor on P™ : M f, — FM, n > 2. Assume that
C(P™(01)s) =0 for every o € P§*R"™. Then C = 0.

PROOF. Since o, = [j5(z')] € Py*R™ has dense orbit in P™*R™ with
respect to Diff(R™,R™), it is sufficient to verify that C'(v) = 0 for any
v € T,, P™R".

Because of the linearity we can assume v = P™(0;),, fori =1,...,k
orv= %t:O[jg(l‘l) + tjy7y], where v : R" — R, 7(0) = 0.
Since the isomorphism (z!,..., 2~ ' 4 2! 2+ . 2") : R® — R"

preserves o, and sends 9 into 01 + 0; and C' is natural and fibre linear we
can assume v = P™(0y),, instead of v = P™(0;)s, -

By the density argument one can assume that (z!,) : R® — R? is of
rank 2 at 0 € R”. Then using a diffeomorphism R” — R" preserving '
and sending 7 into 22 near 0 € R" we can assume that v = 2.

Using the flow method it is easy to verify that P™*(2201)s, =
dr—olib (@) + 155 (2%)].

So, it is sufficient to assume that v = P™(d; + 220;),, or v =
P*(01)o,. Since 01 + 2201 = .01 near 0 € R™ for some diffeomorphism
¢ : R™ — R™ preserving 0, it is sufficient to assume that v = P"™(9;),,
o€ PJ*R™ O

PROOF of Theorem 7. Using C' we have the natural operator C'o P"* :
Tipmy, — TP™. By Theorem 6, C'o P™ = aP™ for some o € R. Then
C(P™(01)s) = aP"™ (1), for all o € Py*R"™. Hence C' = «id because of
the second reducibility lemma (Lemma 3). O

7. The natural operators Tf;v( P T*P™

Let w:TM — R be a 1-form on M and g : Y — M be a fibre bundle.
Then we have a 1-form w" = woTq : TY — Ron Y. It is called the
vertical lifting of w to Y.

Theorem 8. Let n > 2. Every natural operator D : TI*an ~s T*PT*
is a constant multiple of the vertical lifting DV : levlfn ~s THPT*,
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Lemma 4 (Third Reducibility Lemma). Let D : iy, ~ TP™ be
a natural operator, n > 2. Suppose that D(w)(P"™(01)s) = 0 for any

o € PJ*R" and any w € Q'(R™). Then D = 0.
PROOF. The proof is an obvious modification of Lemma 3. O

PrOOF of Theorem 8. Because of Theorem 4 we can assume r > 2.
Consider arbitrary 1 ; widz’ € Q'(R™) and arbitrary
0 =Y peq tar®] € PJ*R™, where G is the set of all o € (NU {0})" with
1 < || < r. Because of Lemma 4 we will study D(w)(P™(d1)s) € R
By the density argument we can assume that a9, o) # 0. Then

replacing a,, by a(lﬁa ;, We can assume that a1, 0) = 1.

Using the naturality of D with respect to (z!, %332, Co, 2™ R® - R

=
for 7 # 0 and next putting 7 — 0 we obtain

D(w)(P™(01)s) = D(wi(x!,0,...,0)dz!)
X (PT*(al)[J‘S(fﬂl'FZ;:z ago,..., 0)($1)j>]>'

Now, by the nonlinear Petree theorem, [5], there is R € N such that

D)(P™(01)s (Zwlk Yo'

X (PO e o))

1 o*
where Wi,k = Eﬁ(())

Using the naturality of D with respect to (72!, 22, ... 2") for 7 # 0
we get the homogeneity condition

k 1_k+1 T
(Zwm de T ><7’ (81)[]'6(3514_2;’:2ijla(j’o AAAAA 0)(361)1)])

=P < Z w1 k(@ ) <PT*(61){ o (2152 a0, 0>(f‘1)j)]>'
Hence by the homogeneous function theorem

D(w)(P™(01)s) = aw1(0) + Bazy,...0)
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for some real numbers « and .
Replacing D by D — aDY we can assume that o = 0. Then
D()(P(Bh)g) = f22e0.
a(1,0,...,0)

Suppose a(z9,..0) = 1. Then P"™(01), has the limit in TFJ*R" as
a,...0) tends to 0. Then D(w)(P" (1)) has the (finite) limit as a(1 ¢, o)
tends to 0. Then 3 = 0.

Then D(w)(P™(01)s) = aDY (w)(P™(d1)y) for any o € PJ*R™ and
any w € QY(R™). Hence D = aD" because of the third reducibility lemma.

This ends the proof of Theorem 8. (I

8. Counterexamples

Let n, r and k& be natural numbers.

Let Tp* = J"(.,R¥)g : Mf, — VB be the vector bundle functor of
(k,r)-covelocities and let P(T}*) : M f, — F M be the projectivized (k,r)-
covelocities functor. Clearly, T7* = T"* and P(17*) = P(T").

Example 1. (P(T]*) is not rigid for k > 2.) We define a natural trans-
formation B : P(T}*) — P(1}*), B : P(T};*M) — P(T;*M), B([j; 7)) =
r, (5,292, ()] € PUM, v = (9. 9%) « M — RE
To € M, v(x,) = 0, M € obj(Mf,). Clearly, B is a well-defined nat-
ural transformation and if & > 2 then B # id.

Example 2. (P(T}*) is not poor for k > 2.) We define a natural oper-
ator of vertical type A : Ty, ~ T(P(T}7)), A: X(M) — X(P(T};*M)),
Alis ) = Golin,y + tin, (10,292 kM), g ()] € PiPM, oy =
(Y. ) M = RE 2, € M, y(z,) = 0, M € 0bj(Mf,). Clearly, A is
a well-defined natural operator of vertical type and if k > 2 then A # 0.

References

[1] M. DoupovEC and J. KUREK, Torsions of connections of higher order cotangent
bundles, Czech. Math. J. (to appear).

[2] C. EHRESMANN, Introduction 4 la structures infinitésimales et des pseudogroupes de
Lie, Collogue du C.N.R.S., Strasbourg, 1953, 97-110.



On the projectivized r-th order cotangent bundle 115

[3] J. GANCARZEWICZ, Liftings of functions and vector fields to natural bundles, Dissert.
Math. CCXII, Warszawa, 1983.

[4] J. GANCARZEWICZ and I. KOLAR, Natural affinors on the extended r-th order tan-
gent bundles, Suppl. Rend. Circolo Mat. Palermo 30(II) (1993), 95-100.

[5] I. KoLAR, P.W. MICHOR and J. SLOVAK, Natural Operations in Differential Ge-
ometry, Springer Verlag, 1993.

[6] I. KoLAR and W. M. MikuLsKI, Contact elements on fibered manifolds, Czech.
Math. J. (to appear).

[7] I. KoLAR and M. MopuGNoO, Torsions of connections on some natural bundles, Diff.
Geom. and Appl. 2 (1992), 1-16.

[8] J. KUREK, Natural transformations of higher order cotangent bundle functors, Ann.
Polon Math. 58 (1993), 29-35.

[9] J. KUREK, Natural affinors on higher order cotangent bundle functor, Arch. Math.
Brno 28 (1992), 175-180.

[10] M. KURES and W. M. MIKULSKI, Natural lifting of vector fields to bundles of Weil
contact elements, Czech. Math. J. (to appear).

[11] W. M. MIkULSKI, The jet prolongations of fibered fibered manifolds and the flow
operator, Publ. Math. Debrecen 59 (2001), 441-458.

[12] W. M. MIKULSKI, The natural affinors on (J"T™)*, Arch. Math. Brno 36 (2000),
261-267.

[13] W. M. MIKULSKI, Some natural constructions on vector fields and higher order
cotangent bundles, Mh. Math. 117 (1994), 107-119.

[14] W. M. MikuLskl, The natural operators lifting 1-forms to the bundles of
A-velocities, Mh. Math. 119 (1995), 63-77.

[15] W. M. MIKULSKI, The natural operators lifting vector fields to (J"T™)*, Arch.
Math. Brno 36 (2000), 255-260.

[16] W. M. MIKULSKI, On the contact (k, )-coelements, Demonstratio Math. (2003) (to
appear).

[17] A. MORIMOTO, Prolongations of connections to bundles of infinitely near points,
J. Diff. Geom. 11 (1976), 476-498.

[18] K. YANO and S. ISHIHARA, Tangent and cotangent bundles, Marcel Dekker. INC.,
New York, 1973.

[19] J. TomAS, Natural operators on vector fields on the cotangent bundles of
(k, r)-velocities, Rend . Circ. Mat. Palermo 5431(1I) (1998), 113-124, 239-249.

W. M. MIKULSKI

INSTITUTE OF MATHEMATICS
JAGIELLONIAN UNIVERSITY
REYMONTA 4, KRAKOW
POLAND

E-mail: mikulski@im.uj.edu.pl

(Received August 31, 2001; revised May 23, 2002)



