On the projectivized r-th order cotangent bundle

By W. M. MIKULSKI (Kraków)

Abstract

Let $P^{r *}=P\left(T^{r *}\right): \mathcal{M} f_{n} \rightarrow \mathcal{F} \mathcal{M}$ be the projectivized r-th order cotangent bundle functor. That for $n \geq r+1$ every natural operator $T_{\mid \mathcal{M} f_{n}} \rightsquigarrow$ $T P^{r *}$ is a constant multiple of the complete lifting is deduced. That for $n \geq r+1$ every natural affinor on $P^{r *}$ over n-manifolds is a constant multiple of the identity affinor is obtained. That for $n \geq 2$ every natural operator $T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T^{*} P^{r *}$ is a constant multiple of the vertical lifting is verified.

0. Introduction

Let M be an n-dimensional manifold. In [16], we considered the naturality problem how a vector field X on M induces a vector field $A(X)$ on the projectivized cotangent bundle $P\left(T^{*} M\right)$ and proved that for $n \geq 2$ every natural operator $A: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T\left(P\left(T^{*}\right)\right)$ is a constant multiple of the complete lifting. We also studied the naturality problem with affinors $C: T\left(P\left(T^{*} M\right)\right) \rightarrow T\left(P\left(T^{*} M\right)\right)$ on $P\left(T^{*} M\right)$ and derived that for $n \geq 2$ every natural affinor $C: T\left(P\left(T^{*}\right)\right) \rightarrow T\left(P\left(T^{*}\right)\right)$ on $P\left(T^{*}\right)$ over n-manifolds is a constant multiple of the identity one. Moreover, we considered the naturality problem how a 1-form ω on M can induce a 1-form $D(\omega)$ on $P\left(T^{*} M\right)$ and proved that for $n \geq 2$ every natural operator $D: T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T^{*}\left(P\left(T^{*}\right)\right)$ is a constant multiple of the vertical lifting.

We inform the reader that the results presented above are particular cases (for $r=k=1$) of the respective (proved in [16]) facts for the bundle $K_{k}^{r *} M=\operatorname{reg} T_{k}^{r *} M / L_{k}^{r}$ of the so called contact (k, r)-coelements. The

Mathematics Subject Classification: 58A05, 58A20.
Key words and phrases: bundle functor, natural operator, natural transformation.
mentioned results for $K_{k}^{r *} M$ are "dualizations" of respective facts from [5] and [6] (and generalized in [10]) for the bundle $K_{k}^{r} M=\operatorname{reg} T_{k}^{r} M / L_{k}^{r}$ of contact (k, r)-elements in the sense of C. Ehresmann, [2].

In the present paper we generalize the cited above results concerning $P\left(T^{*}\right)$ as follows. Let $P^{r *} M=P\left(T^{r *} M\right)$ denote the projectivized r-th order cotangent bundle $T^{r *} M=J^{r}(M, \mathbb{R})_{0}$. We consider the naturality problem how a vector field X on M induces a vector field $A(X)$ on $P^{r *} M$ and prove that for $n \geq r+1$ every natural operator $A: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T P^{r *}$ is a constant multiple of the complete lifting $\mathcal{P}^{r *}$. We also study the naturality problem with affinors $C: T P^{r *} M \rightarrow T P^{r *} M$ on $P^{r *} M$ and obtain that for $n \geq r+1$ every natural affinor $C: T P^{r *} \rightarrow T P^{r *}$ on $P^{r *}$ is a constant multiple of the identity one. Moreover, we consider the naturality problem how a 1-form ω on M induces a 1-form $D(\omega)$ on $P^{r *} M$ and prove that for $n \geq 2$ every natural operator $D: T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T^{*} P^{r *}$ is a constant multiple of the vertical lifting. If $r=1$ we have $T^{*} \tilde{=} T^{* 1}$ and we reobtain the results for $P\left(T^{*}\right)$.

Natural operators lifting vector fields, functions and 1-forms to some natural bundles were used practically in all papers in which problem of prolongations of geometric structures was studied, see [17], [18], etc. That is why such natural operators are studied, see e.g. [3], [5], [11], [13]-[15], [19], etc.

The respective results of the present paper shows that if $\operatorname{dim}(M) \geq$ $r+1$ then $P^{r *} M$ is poor with respect to liftings of vector fields and 1forms. This indicate that there are small possibilities to prolonge classical geometric structures from M to $P^{r *} M$. However, it seems to be interesting that the complete lifting $\mathcal{P}^{r *}$ can be characterized as the unique natural operator $A: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T P^{r *}$ such that $A(X)$ is a projectable vector field on $P^{r *} M$ covering X for any vector field X on M.

Natural affinors on some natural bundle $F M$ play importrant roles in the differential geometry. We present the following reason.

A generalized connection on $F M$ is an affinor $\Gamma: T F M \rightarrow V F M \subset$ $T F M$ on $F M$ (horizontal projector) such that $\Gamma \circ \Gamma=\Gamma$ and $\operatorname{dim}(\Gamma)=$ $V F M, \quad[5]$. Given a natural affinor $C: T F M \rightarrow T F M$ on $F M$ the Frolicher-Nijenhuis bracket $[C, \Gamma]$ is the so called generalized torsion of Γ with respect to C. Such generalized torsions were studied in [7], [1], etc. (The classical torsion of a linear connection Γ on $T M$ is proportional to $[J, \Gamma]$, where J is the canonical tangent structure affinor on $T M$.)

That is why natural affinors are studied, see [4]-[6], [9], [10], [12] etc. The result of the present paper concerning natural affinors on $P^{r *} M$ brings the following two negative answers. The first one is that if $\operatorname{dim}(M) \geq$ $r+1$ then there is no canonical generalized connection on $P^{r *} M$. The second one is that if $\operatorname{dim}(M) \geq r+1$ then the notion of generalized torsions of a generalized connection Γ on $P^{r *} M$ makes no sense because $[i d, \Gamma]=0$.

From now on x^{1}, \ldots, x^{n} denote the usual coordinates on \mathbb{R}^{n} and $\partial_{i}=$ $\frac{\partial}{\partial x^{i}}$ are the vector fields on \mathbb{R}^{n}.

All manifolds are assumed to be without boundary, finite dimensional, Hausdorff and smooth, i.e. of class \mathcal{C}^{∞}. All maps between manifolds are assumed to be smooth. Natural operators and natural transformations are in the sense of [5].

1. On the projectivized cotangent bundle functor

$$
P\left(T^{*}\right): \mathcal{M} f_{n} \rightarrow \mathcal{F M}
$$

For a comfort we cite below some results about the projectivized cotangent bundle functor $P\left(T^{*}\right): \mathcal{M} f_{n} \rightarrow \mathcal{F} \mathcal{M}$.

For every n-manifold M we have the cotangent bundle $T^{*} M$ and its projectivization $P\left(T^{*} M\right)=\bigcup_{x \in M} P\left(T_{x}^{*} M\right)$ over $M, P\left(T_{x}^{*} M\right)=$ the projective space corresponding to $T_{x}^{*} M$. Every embedding $\varphi: M \rightarrow N$ of two n-manifolds induces a bundle map $P\left(T^{*} \varphi\right)=\bigcup_{x \in M} P\left(T_{x}^{*} \varphi\right): P\left(T^{*} M\right) \rightarrow$ $P\left(T^{*} N\right)$. The correspondence $P\left(T^{*}\right): \mathcal{M} f_{n} \rightarrow \mathcal{F} \mathcal{M}$ is a bundle functor.

In [16], we proved the following results.
Theorem 1. Every natural transformation $B: P\left(T^{*}\right) \rightarrow P\left(T^{*}\right)$ over n-manifolds is the identity one.

Theorem 2. Let $n \geq 2$. Every natural operator $A: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow$ $T\left(P\left(T^{*}\right)\right)$ is a constant multiple of the complete lifting.

Theorem 3. Let $n \geq 2$. Every natural affinor $C: T\left(P\left(T^{*}\right)\right) \rightarrow$ $T\left(P\left(T^{*}\right)\right)$ on $P\left(T^{*}\right)$ over n-manifolds is a constant multiple of the identity affinor.

Theorem 4. Let $n \geq 2$. Every natural operator $A: T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow$ $T^{*}\left(P\left(T^{*}\right)\right)$ is a constant multiple of the vertical lifting.

2. The projectivized r-th order cotangent bundle functor
 $$
P^{r *}=P\left(T^{r *}\right): \mathcal{M} f_{n} \rightarrow \mathcal{F} \mathcal{M}
$$

For every n-manifold M we have the r-cotangent vector bundle $T^{r *} M=$ $J^{r}\left(M, \mathbb{R}^{k}\right)_{0}$ over M. Every embedding $\varphi: M \rightarrow N$ of two n-manifolds induces a vector bundle map $T^{r *} \varphi: T^{r *} M \rightarrow T^{r *} N, T^{r *} \varphi\left(j_{x}^{r} \gamma\right)=j_{\varphi(x)}^{r}(\gamma \circ$ $\left.\varphi^{-1}\right), \gamma: M \rightarrow \mathbb{R}, x \in M, \gamma(x)=0$.

It is well-known that the correspondence $T^{r *}: \mathcal{M} f_{n} \rightarrow \mathcal{V} \mathcal{B}$ is a vector bundle functor.

For every n-manifold M we have the bundle $P^{r *} M=P\left(T^{r *} M\right)=$ $\bigcup_{x \in M} P\left(T_{x}^{r *} M\right)$ over $M, P\left(T_{x}^{r *} M\right)=$ the projective space corresponding to the fibre $T_{x}^{r *} M$. Every embedding $\varphi: M \rightarrow N$ of two n-manifolds induces a bundle map $P^{r *} \varphi=P\left(T^{r *} \varphi\right)=\bigcup_{x \in M} P\left(T_{x}^{r *} \varphi\right): P^{r *} M \rightarrow P^{r *} N$. The correspondence $P^{r *}=P\left(T^{r *}\right): \mathcal{M} f_{n} \rightarrow \mathcal{F} \mathcal{M}$ is a bundle functor. It is called the projectivized r-th order cotangent bundle functor.

3. On natural endomorphisms of $P^{r *}=P\left(T^{r *}\right)$

Theorem 5. Let $n \geq 2$. Every natural transformation $B: P^{r *} \rightarrow P^{r *}$ over n-manifolds is the identity one.

Proof. Consider a natural transformation $B: P^{r *} \rightarrow P^{r *}$ over n manifolds, $n \geq 2$. Since $\sigma_{o}=\left[j_{0}^{r}\left(x^{1}\right)\right] \in P_{0}^{r *} \mathbb{R}^{n}$ has dense orbit in $P^{r *} \mathbb{R}^{n}$ with respect to $\operatorname{Diff}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$, it is sufficient to verify that $B\left(\sigma_{o}\right)=\sigma_{o}$.

We can write $B\left(\sigma_{o}\right)=\left[j_{0}^{r}\left(\sum_{\alpha \in G} a_{\alpha} x^{\alpha}\right)\right]$ for some $\left(a_{\alpha}\right)_{\alpha \in G} \in \mathbb{R}^{G} \backslash\{0\}$, where G is the set of all $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in(\mathbb{N} \cup\{0\})^{n}$ with $1 \leq|\alpha| \leq r$.

Using the invariance of $B\left(\sigma_{o}\right)$ with respect to $\left(\frac{1}{\tau_{1}} x^{1}, \ldots, \frac{1}{\tau_{n}} x^{n}\right): \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{n} for $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right) \in(\mathbb{R} \backslash\{0\})^{n}$ we get $\left[j_{0}^{r}\left(\sum_{\alpha \in G} a_{\alpha} x^{\alpha}\right)\right]=\left[j_{0}^{r}\left(\sum_{\alpha \in G} a_{\alpha} \tau^{\alpha} x^{\alpha}\right)\right]$. So, only one of the a_{α} 's is not equal to 0 . Hence $B\left(\sigma_{o}\right)=\left[j_{0}^{r}\left(x^{\alpha}\right)\right]$ for some $\alpha \in G$.

If $\alpha_{i} \neq 0$ for some $i \geq 2$, then by the invariance of $B\left(\sigma_{o}\right)$ with respect to the isomorphism $\left(x^{1}, \ldots, x^{i-1}, x^{i}-x^{1}, x^{i+1}, \ldots, x^{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ we get $\left[j_{0}^{r}\left(\left(x^{1}\right)^{\alpha_{1}} \ldots \ldots\left(x^{n}\right)^{\alpha_{n}}\right)\right]=\left[j_{0}^{r}\left(\left(x^{1}\right)^{\alpha_{1}} \ldots\left(x^{i}+x^{1}\right)^{\alpha_{i}} \ldots\left(x^{n}\right)^{\alpha_{n}}\right)\right]$, i.e. we obtain the contradiction. Hence $B\left(\sigma_{o}\right)=\left[j_{0}^{r}\left(\left(x^{1}\right)^{q}\right)\right]$ for some $q=1, \ldots, r$.

If $q \geq 2$ then the local diffeomorphisms
$\left(\tau x^{1}+\left(x^{1}\right)^{r}+\left(x^{2}\right)^{r}, x^{2}, \ldots, x^{n}\right)^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ for $\tau \neq 0$ preserve $\left[j_{0}^{r}\left(\left(x^{1}\right)^{q}\right)\right]$.

Using the invariance of B with respect to these diffeomorphisms we obtain that $B\left(\left[j_{0}^{r}\left(\tau x^{1}+\left(x^{1}\right)^{r}+\left(x^{2}\right)^{r}\right)\right]\right)=\left[j_{0}^{r}\left(\left(x^{1}\right)^{q}\right)\right]$ for $\tau \neq 0$. Putting $\tau \rightarrow 0$ we get $B\left(\left[j_{0}^{r}\left(\left(x^{1}\right)^{r}+\left(x^{2}\right)^{r}\right)\right]\right)=\left[j_{0}^{r}\left(\left(x^{1}\right)^{q}\right)\right]$. Now, changing x^{1} by x^{2} and vice-versa we get $\left[j_{0}^{r}\left(\left(x^{1}\right)^{q}\right)\right]=\left[j_{0}^{r}\left(\left(x^{2}\right)^{q}\right)\right]$. Contradiction.

Hence $q=1$, i.e. $B\left(\sigma_{o}\right)=\left[j_{0}^{r}\left(x^{1}\right)\right]=\sigma_{o}$. This ends the proof.
Remark 1. If $n=1$ and $r \geq 2$, then $P^{r *}: \mathcal{M} f_{1} \rightarrow \mathcal{F M}$ is not rigid. For, $\sigma^{o}=\left[j_{0}^{r}\left(\left(x^{1}\right)^{r}\right)\right] \in P_{0}^{r *} \mathbb{R}$ is L_{1}^{r}-invariant. Hence there exists the natural transformation $B: P^{r *} \rightarrow P^{r *}$ over 1-manifolds corresponding to the constant L_{1}^{r}-equivariant map $P_{0}^{r *} \mathbb{R} \rightarrow\left\{\sigma^{o}\right\} \subset P_{0}^{r *} \mathbb{R}$.

Corollary 1. If $n \geq 2$ then every absolute natural operator $A: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T P^{r *}$ is 0 .

Proof. Every such A is a canonical vector field on $P^{r *} M$ for any $M \in \operatorname{obj}\left(\mathcal{M} f_{n}\right)$. On the other hand $F_{0} \mathbb{R}^{n}$ is compact, then the flow of a canonical vector field on $F M$ is formed by authomorphisms $F M \rightarrow F M$. Then the flow of A is trivial because of Theorem 5. So, $A=0$.

4. The natural operators $T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T P^{r *}$

In general, if $F: \mathcal{M} f_{n} \rightarrow \mathcal{F} \mathcal{M}$ is a bundle functor then given a vector field X on $M \in \operatorname{obj}\left(\mathcal{M} f_{n}\right)$ we have the vector field $\mathcal{F} X$ on $F M$ via prolongation of flows. It is called the complete lifting of X to $F M$. If $\left\{\varphi_{t}\right\}$ is the flow of X then $\left\{F \varphi_{t}\right\}$ is the flow of $\mathcal{F} X$, see [5].

In the case $F=P^{r *}$ we have the following theorem.
Theorem 6. If $n \geq r+1$ then every natural operator $A: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow$ $T P^{r *}$ is a constant multiple of the complete lifting $\mathcal{P}^{r *}$.

The proof of Theorem 6 will occupy the rest of this section and Section 5.

Given $b=\left(b_{0}, \ldots, b_{r-1}\right) \in \mathbb{R}^{r}$ and $d=\left(d_{1}, \ldots, d_{r-1}\right) \in \mathbb{R}^{r-1}$ let

$$
\begin{equation*}
\sigma_{d, b}=\left[j_{0}^{r}\left(\eta_{d, b}\right)\right] \in P_{0}^{r *} \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

where $\eta_{d, b}:=\left(x^{1}\right)^{r}+\sum_{l=1}^{r-1} d_{l}\left(x^{1}\right)^{l}+\sum_{q=0}^{r-1} b_{q} x^{q+2}\left(x^{1}\right)^{q}: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
We have the following reducibility lemma.

Lemma 1 (First Reducibility Lemma). Let $A: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T P^{r *}$ be a natural operator, $n \geq r+1$. If $A\left(\partial_{1}\right)_{\sigma_{d, b}}=0$ for any $b \in \mathbb{R}^{k}$ and $d \in \mathbb{R}^{k-1}$, then $A=0$. If $A\left(\partial_{1}\right)_{\sigma_{d, b}}$ is vertical for any $d \in \mathbb{R}^{r-1}$ and $b \in \mathbb{R}^{n}$, then A is of vertical type.

Proof. It is sufficient to show that $A\left(\partial_{1}\right)_{\sigma}$ is equal to 0 (vertical) for any $\sigma \in P_{0}^{r *} \mathbb{R}^{n}$.

By the density argument we can assume that

$$
\sigma=\left[j_{0}^{r}\left(\left(x^{1}\right)^{r}+\sum_{l=1}^{r-1} d_{l}\left(x^{1}\right)^{l}+\sum_{q=0}^{r-1} \gamma_{q}\left(x^{2}, \ldots, x^{n}\right)\left(x^{1}\right)^{q}\right)\right]
$$

for some smooth maps $\gamma_{q}: \mathbb{R}^{n-1} \rightarrow \mathbb{R}$ with $\gamma_{q}(0)=0$.
By the density argument we can assume that the system $\left(\gamma_{q}\left(x^{2}, \ldots, x^{n}\right)\right)_{q=0}^{r-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{r}$ is of rank r at $0 \in \mathbb{R}^{n}$. Then there exists an embedding $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ preserving $0, \partial_{1}$ and x^{1} near 0 and sending $\left(\gamma_{q}\left(x^{2}, \ldots, x^{n}\right)\right)_{q=0}^{r-1}$ into $\left(x^{2}, \ldots, x^{r+1}\right)$. Now using the invariance of A with respect to φ we can assume that $\sigma=\sigma_{d, b}$.

Now, we prove the following decomposition lemma.
Lemma 2 (Decomposition Lemma). Let $A: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T P^{r *}$ be a natural operator, $n \geq r+1$. Then there exists $\alpha \in \mathbb{R}$ such that $A-\alpha \mathcal{P}^{r *}$ is a vertical operator.

Proof. For every $a \in \mathbb{R}, d \in \mathbb{R}^{r-1}$ and $b \in \mathbb{R}^{r}$ we can write

$$
T \pi\left(A\left(a \partial_{1}\right)_{\sigma_{d, b}}\right)=\sum_{i=1}^{n} \alpha_{i}(a, d, b) \partial_{i \mid 0}
$$

for some smooth maps $\alpha_{i}: \mathbb{R} \times \mathbb{R}^{r-1} \times \mathbb{R}^{r} \rightarrow \mathbb{R}$.
Using the invariance of A with respect to the homotheties $\left(\tau x^{1}, x^{2}, \ldots, x^{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ for $\tau \neq 0$ we get

$$
\begin{aligned}
& \tau \alpha_{1}(a, d, b) \partial_{1 \mid 0}+\sum_{i=2}^{n} \alpha_{i}(a, d, b) \partial_{i \mid 0} \\
& \quad=T \pi\left(A\left(\tau a \partial_{1}\right)_{\left[j_{0}^{r}\left(\frac{1}{\tau^{r}}\left(x^{1}\right)^{r}+\sum_{l=1}^{r-1} \frac{1}{\tau^{2}} d_{l}\left(x^{1}\right)^{l}+\sum_{q=0}^{r-1} \frac{1}{\tau^{q}} b_{q} x^{q+2}\left(x^{1}\right)^{q}\right)\right]}\right)
\end{aligned}
$$

$$
=T \pi\left(A\left(\tau a \partial_{1}\right)_{\left.\left[\left(x^{1}\right)^{r}+\sum_{l=1}^{r-1} \tau^{r-l} d_{l}\left(x^{1}\right)^{l}+\sum_{q=0}^{r-1} \tau^{r-q} b_{q} x^{q+2}\left(x^{1}\right)^{q}\right)\right]}\right)
$$

Then we get homogeneity conditions
$\tau \alpha_{1}(a, d, b)=\alpha_{1}\left(\tau a,\left(\tau^{r-l} d_{l}\right),\left(\tau^{r-q} b_{q}\right)\right)$ and $\alpha_{i}(a, d, b)=\alpha_{i}\left(\tau a,\left(\tau^{r-l} d_{l}\right),\left(\tau^{r-q} b_{q}\right)\right)$ for $i=2, \ldots, n$ and $\tau \neq 0$.

Now, by the homogeneous function theorem, $[5], \alpha_{1}(a, d, b)$ is the linear combination of a, d_{r-1} and b_{r-1} with real coefficients and $\alpha_{i}(a, d, b)=$ const for $i=2, \ldots, n$.

Since $A(0)$ corresponds to the absolute operator, $A(0)=0$ because of Corollary 1. Then $\alpha_{i}=0$ for $i=2, \ldots, n$, and $\alpha_{1}(a, d, b)=\alpha_{1} a$ for some $\alpha_{1} \in \mathbb{R}$. Then $T \pi\left(A\left(\partial_{1}\right)_{\sigma_{d, b}}\right)=\alpha_{1} \partial_{1 \mid 0}=\alpha_{1} T \pi\left(\mathcal{P}^{r *}\left(\partial_{1}\right)_{\sigma_{d, b}}\right)$. Hence $A-\alpha_{1} \mathcal{P}^{r *}$ is a vertical operator because of the reducibility lemma (Lemma 1).

5. The natural operators $T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T P^{r *}$ of vertical type

Thanks to the decomposition lemma (Lemma 2), Theorem 6 will be proved after proving the following proposition.

Proposition 1. If $n \geq r+1$ then every natural operator $A: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow$ $T P^{r *}$ of vertical type is 0 .

Proof. From now on $A: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T P^{r *}$ is a natural operator of vertical type, where $n \geq r+1$.

We will use the notations of Section 4.
Since A is vertical, $A(X) \mid P_{0}^{r *} \mathbb{R}^{n}$ is a vector field on $P_{0}^{r *} \mathbb{R}^{n}$ for every $X \in \mathcal{X}\left(\mathbb{R}^{n}\right)$. Let $\left\{F_{t}^{A(X)}\right\}$ denotes the flow of $A(X) \mid P_{0}^{r *} \mathbb{R}^{n}, X \in \mathcal{X}\left(\mathbb{R}^{n}\right)$. Since every projective space is compact, the flow $\left\{F_{t}^{A(X)}\right\}$ is global.

Let $a \in \mathbb{R}, b=\left(b_{q}\right)_{q=0}^{r-1} \in \mathbb{R}^{r}, d=\left(d_{l}\right)_{l=1}^{r-1} \in \mathbb{R}^{r-1}$ and $t \in \mathbb{R}$ be arbitrary. Then we have $\sigma_{d, b} \in P_{0}^{r *} \mathbb{R}^{n}$, see Section 4 .

Step 1. On the points $F_{t}^{A\left(a \partial_{1}\right)}\left(\sigma_{d, b}\right)$.
Clearly, $F_{0}^{A(0)}\left(\sigma_{(0),(0)}\right)=\left[j_{0}^{r}\left(\left(x^{1}\right)^{r}\right)\right]$. So, there is $\epsilon>0$ such that

$$
\begin{equation*}
F_{t}^{A\left(a \partial_{1}\right)}\left(\sigma_{d, b}\right)=\left[j_{0}^{r}\left(\left(x^{1}\right)^{r}+\sum_{\alpha \in G} B_{\alpha}(t, a, d, b) x^{\alpha}\right)\right] \tag{2}
\end{equation*}
$$

for all $(t, a, d, b) \in(-\epsilon, \epsilon) \times(-\epsilon, \epsilon) \times(-\epsilon, \epsilon)^{r-1} \times(-\epsilon, \epsilon)^{r}$, where B_{α} : $(-\epsilon, \epsilon) \times(-\epsilon, \epsilon) \times(-\epsilon, \epsilon)^{r-1} \times(-\epsilon, \epsilon)^{r} \rightarrow \mathbb{R}$ are the smooth maps. Here G is the set of all $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in(\mathbb{N} \cup\{0\})^{n}$ with $1 \leq|\alpha| \leq r$ and $\alpha \neq(r, 0, \ldots, 0)$.

Step 2. On the maps $B_{\alpha, s}(t, a, d, b)$.
We use the invariance of $A\left(a \partial_{1}\right)$ with respect to $\left(x^{1}, \frac{1}{\tau_{2}} x^{2}, \ldots, \frac{1}{\tau_{n}} x^{n}\right)$: $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ for all $\tau_{i} \neq 0$ with $\left|\tau_{i}\right|<1$. We obtain the homogeneity condition

$$
B_{\alpha}\left(t, a, d,\left(\tau_{q+2} b_{q}\right)\right)=B_{\alpha}(t, a, d, b)\left(\tau_{2}\right)^{\alpha_{2}} \ldots\left(\tau_{n}\right)^{\alpha_{n}}
$$

for $\alpha \in G$, where $(t, a, d, b) \in(-\epsilon, \epsilon) \times(-\epsilon, \epsilon) \times(-\epsilon, \epsilon)^{r-1} \times(-\epsilon, \epsilon)^{r}$. Now, we apply the (obviously adapted) homogeneous function theorem, [2]. We deduce that $B_{\alpha}=0$ for all $\alpha \in G$ with $\alpha_{r+2}+\cdots+\alpha_{n} \neq 0$, and

$$
\begin{equation*}
B_{\alpha}(t, a, d, b)=B_{\alpha}(t, a, d) \prod_{q=0}^{r-1}\left(b_{q}\right)^{\alpha_{q+2}} \tag{3}
\end{equation*}
$$

for all $\alpha \in G$ with $\alpha_{r+2}+\cdots+\alpha_{n}=0$, where $B_{\alpha}:(-\epsilon, \epsilon) \times(-\epsilon, \epsilon) \times$ $(-\epsilon, \epsilon)^{r-1} \rightarrow \mathbb{R}$ are the smooth maps.

Hence

$$
\begin{equation*}
F_{t}^{A\left(a \partial_{1}\right)}\left(\sigma_{d, b}\right)=\left[j_{0}^{r}\left(\left(x^{1}\right)^{r}+\sum_{\alpha \in H} B_{\alpha}(t, a, d) \prod_{q=0}^{r-1}\left(b_{q}\right)^{\alpha_{q+2}} x^{\alpha}\right)\right] \tag{4}
\end{equation*}
$$

for all $(t, a, d, b) \in(-\epsilon, \epsilon) \times(-\epsilon, \epsilon) \times(-\epsilon, \epsilon)^{r-1} \times(-\epsilon, \epsilon)^{r}$. Here H is the set of all $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in(\mathbb{N} \cup\{0\})^{n}$ with $1 \leq|\alpha| \leq r, \alpha \neq(r, 0, \ldots, 0)$ and $\alpha_{r+2}+\cdots+\alpha_{n}=0$.
Step 3. On the maps $B_{\alpha}(t, a, d)$ for $\alpha \in H$.
Using the invariance of $F_{t}^{A\left(a \partial_{1}\right)}\left(\sigma_{d, b}\right)$ with respect to the local diffeomorphisms $\left(x^{1},\left(x^{q+2}+\mu\left(x^{q+2}\right)^{r-q+1}\right)_{q=0}^{r-1}, x^{r+2}, \ldots, x^{n}\right)^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ for all μ we get the condition

$$
\begin{aligned}
& j_{0}^{r}\left(\sum_{\alpha \in H} B_{\alpha}(t, a, d) \prod_{q=0}^{r-1}\left(b_{q}\right)^{\alpha_{q+2}}\left(x^{1}\right)^{\alpha_{1}} \prod_{q=0}^{r-1}\left(x^{q+2}\right)^{\alpha_{q+2}}\right) \\
= & j_{0}^{r}\left(\sum_{\alpha \in H} B_{\alpha}(t, a, d) \prod_{q=0}^{r-1}\left(b_{q}\right)^{\alpha_{q+2}}\left(x^{1}\right)^{\alpha_{1}} \prod_{q=0}^{r-1}\left(x^{q+2}+\mu\left(x^{q+2}\right)^{r-q+1}\right)^{\alpha_{q+2}}\right) .
\end{aligned}
$$

Both sides of the last equality are polynomials in μ. Considering the coefficients corresponding to $\mu=\mu^{1}$ we get

$$
\begin{aligned}
j_{0}^{r}\left(\sum_{k=0}^{r-1} \sum_{\alpha \in H} \alpha_{k+2} B_{\alpha}(t, a, d)\right. & \prod_{q=0}^{r-1}\left(b_{q}\right)^{\alpha_{q+2}}\left(x^{1}\right)^{\alpha_{1}} \\
& \left.\times \prod_{q=0}^{r-1}\left(x^{q+2}\right)^{\alpha_{q+2}}\left(x^{k+2}\right)^{r-k}\right)=0
\end{aligned}
$$

Therefore we have the implication:
(*) If $\alpha \in H$ and $k=0, \ldots, r-1$ are such that $B_{\alpha} \neq 0$ and $\alpha_{k+2} \neq 0$, then $\alpha_{2}+\cdots+\alpha_{r+1} \geq k+1-\alpha_{1}$.
Step 4. On the maps $B_{\alpha}(t, a, d)$ for $\alpha \in H$ anew.
Let $\alpha \in H$.
Using the invariance of $A\left(a \partial_{1}\right)$ with respect to $\left(\tau x^{1}, x^{2}, \ldots, x^{n}\right)$: $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ for $\tau \neq 0$ with $|\tau|<1$ we obtain $B_{\alpha}(t, a, d, b) \tau^{r-\alpha_{1}}=$ $B_{\alpha}\left(t, \tau a, d_{l} \tau^{r-l}, b_{q} \tau^{r-q}\right)$ for all $(t, a, d, b) \in(-\epsilon, \epsilon) \times(-\epsilon, \epsilon) \times(-\epsilon, \epsilon)^{r-1} \times$ $(-\epsilon, \epsilon)^{r}$. Applying (3) we can write this condition in the form

$$
B_{\alpha}(t, a, d) \tau^{r-\alpha_{1}}=B_{\alpha}\left(t, \tau a, d_{l} \tau^{r-l}\right) \prod_{q=0}^{r-1}\left(\tau^{r-q}\right)^{\alpha_{q+2}}
$$

for all $(t, a, d) \in(-\epsilon, \epsilon) \times(-\epsilon, \epsilon) \times(-\epsilon, \epsilon)^{r-1}$ and $0<|\tau|<1$.
Hence

$$
\begin{gathered}
B_{\alpha}=0 \text { if } \sum_{q=0}^{r-1}(r-q) \alpha_{q+2}>r-\alpha_{1}, \\
B_{\alpha} \text { depends only on } t \text { if } \sum_{q=0}^{r-1}(r-q) \alpha_{q+2}=r-\alpha_{1}
\end{gathered}
$$

and
$B_{\alpha}=0$ if $\alpha_{k+2} \neq 0$ for some $k=0, \ldots, r-1$ and $\sum_{q=0}^{r-1}(r-q) \alpha_{q+2}<r-\alpha_{1}$.
(The last implication we can prove as follows. Suppose that $B_{\alpha} \neq 0$, $\alpha_{k+2} \neq 0$ and $\sum_{q=0}^{r-1}(r-q) \alpha_{q+2}<r-\alpha_{1}$. Then $r-k-1+\left(\alpha_{2}+\cdots+\right.$
$\left.\alpha_{r+1}\right) \leq \sum_{q=0}^{r-1}(r-q) \alpha_{q+2}<r-\alpha_{1}$ and by the implication $(*)$ we get $r-k-1+\alpha_{1}<r-\left(\alpha_{2}+\cdots+\alpha_{r+1}\right) \leq r-k-1+\alpha_{1}$. Contradiction. $)$

Step 5. On the points $F_{t}^{A\left(a \partial_{1}\right)}\left(\sigma_{d, b}\right)$ anew.
Because of the Step 4 and (4) we can write

$$
\begin{aligned}
F_{t}^{A\left(a \partial_{1}\right)}\left(\sigma_{d, b}\right)=\left[j _ { 0 } ^ { r } \left(\left(x^{1}\right)^{r}\right.\right. & +\sum_{j=1}^{r-1} B_{j}(t, a, d)\left(x^{1}\right)^{j} \\
& \left.\left.+\sum_{\alpha \in J} B_{\alpha}(t) \prod_{q=0}^{r-1}\left(b_{q}\right)^{\alpha_{q+2}} x^{\alpha}\right)\right]
\end{aligned}
$$

for all $(t, a, d, b) \in(-\epsilon, \epsilon) \times(-\epsilon, \epsilon) \times(-\epsilon, \epsilon)^{r-1} \times(-\epsilon, \epsilon)^{r}$, where B_{α} : $(-\epsilon, \epsilon) \rightarrow \mathbb{R}$ and $B_{j}:(-\epsilon, \epsilon) \times(-\epsilon, \epsilon) \times(-\epsilon, \epsilon)^{r-1} \rightarrow \mathbb{R}$ are the smooth maps. Here J is the set of all $\alpha \in H$ such that $\sum_{q=0}^{r-1}(r-q) \alpha_{q+2}=r-\alpha_{1}$ (then $\alpha_{q+2} \neq 0$ for some $q=0, \ldots, r-1$).

If $a=0$ we get $F_{t}^{A(0)}\left(\sigma_{d, b}\right)=\sigma_{d, b}$ as $A(0)=0$ because of Corollary 1. Hence

$$
\begin{align*}
F_{t}^{A\left(a \partial_{1}\right)}\left(\sigma_{d, b}\right)=\left[j _ { 0 } ^ { r } \left(\left(x^{1}\right)^{r}\right.\right. & +\sum_{j=1}^{r-1} B_{j}(t, a, d)\left(x^{1}\right)^{j} \\
& \left.\left.+\sum_{q=0}^{r-1} b_{q} x^{q+2}\left(x^{1}\right)^{q}\right)\right] \tag{5}
\end{align*}
$$

for all $(t, a, d, b) \in(-\epsilon, \epsilon) \times(-\epsilon, \epsilon) \times(-\epsilon, \epsilon)^{r-1} \times(-\epsilon, \epsilon)^{r}$, where B_{j} : $(-\epsilon, \epsilon) \times(-\epsilon, \epsilon) \times(-\epsilon, \epsilon)^{r-1} \rightarrow \mathbb{R}$ are the smooth maps.

Step 6. On the maps $B_{j}(t, a, d)$.
Let B_{j} be as in Step 5 . We have

$$
\begin{align*}
F_{t}^{A\left(a \partial_{1}\right)} & \left(\left[j_{0}^{r}\left(\left(x^{1}\right)^{r}+\sum_{l=1}^{r-1} d_{l}\left(x^{1}\right)^{l}\right)\right]\right) \\
& =\left[j_{0}^{r}\left(\left(x^{1}\right)^{r}+\sum_{j=1}^{r-1} B_{j}(t, a, d)\left(x^{1}\right)^{j}\right)\right] \tag{6}
\end{align*}
$$

for all $(t, a, d) \in(-\epsilon, \epsilon) \times(-\epsilon, \epsilon) \times(-\epsilon, \epsilon)^{r-1}$.

Using the invariance of A with respect to $\left(\tau x^{1}, x^{2}, \ldots, x^{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ for $\tau \neq 0$ with $|\tau|<1$ we get the homogeneity conditions

$$
B_{j}(t, a, d) \tau^{r-j}=B_{j}\left(t, \tau a,\left(\tau^{r-l} d_{l}\right)\right)
$$

for all $(t, a, d) \in(-\epsilon, \epsilon) \times(-\epsilon, \epsilon) \times(-\epsilon, \epsilon)^{r-1}$. Now, by the homogeneous function theorem we have

$$
\begin{equation*}
B_{j}(t, a, d)=C_{j}(t) a^{r-j}+D_{j}(t) d_{j}+\tilde{B}_{j}\left(t, a, d_{j+1}, \ldots, d_{r-1}\right) \tag{7}
\end{equation*}
$$

for $j=1, \ldots, r-1$, where $C_{j}:(-\epsilon, \epsilon) \rightarrow \mathbb{R}, D_{j}:(-\epsilon, \epsilon) \rightarrow \mathbb{R}$ and $\tilde{B}_{j}:$ $(-\epsilon, \epsilon) \times(-\epsilon, \epsilon) \times(-\epsilon, \epsilon)^{r-j-1} \rightarrow \mathbb{R}$ are smooth and $\tilde{B}_{j}\left(t, a, d_{j+1}, \ldots, d_{r-1}\right)$ is the finite linear combination of monomials in a and d_{j+1}, \ldots, d_{r-1}, not equal to a^{r-j}, with coefficients being smooth maps depending on t. In particular, $\tilde{B}_{r-1}(t, a, d)=0$.
Step 7. $A\left(a \partial_{1}\right)_{\left[j_{0}^{r}\left(\left(x^{1}\right)^{r}\right)\right]}=0$
Using the invariance of $A\left(a \partial_{1}\right)_{\left.\mid j_{0}^{r}\left(\left(x^{1}\right)^{r}\right)\right]}$ with respect to the diffeomorphisms $\left(x^{1}+\mu\left(x^{2}\right)^{2}, x^{2}, \ldots, x^{n}\right)^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ for all μ we get

$$
\begin{gathered}
{\left[j_{0}^{r}\left(\left(x^{1}\right)^{r}+\sum_{j=1}^{r-1} B_{j}(t, a,(0))\left(x^{1}\right)^{j}\right)\right]=F_{t}^{A\left(a \partial_{1}\right)}\left(\left[j_{0}^{r}\left(\left(x^{1}\right)^{r}\right)\right]\right)} \\
\quad=\left[j_{0}^{r}\left(\left(x^{1}\right)^{r}+\sum_{j=1}^{r-1} B_{j}(t, a,(0))\left(x^{1}+\mu\left(x^{2}\right)^{2}\right)^{j}\right)\right]
\end{gathered}
$$

for $t, a \in(-\epsilon, \epsilon)$. Hence

$$
j_{0}^{r}\left(\sum_{j=1}^{r-1} B_{j}(t, a,(0))\left(x^{1}\right)^{j}\right)=j_{0}^{r}\left(\sum_{j=1}^{r-1} B_{j}(t, a,(0))\left(x^{1}+\mu\left(x^{2}\right)^{2}\right)^{j}\right)
$$

Both sides of this equality are polynomials in μ. Considering the coefficients on $\mu=\mu^{1}$ we get $j_{0}^{r}\left(\sum_{j=1}^{r-1} j B_{j}(t, a,(0))\left(x^{1}\right)^{j-1}\left(x^{2}\right)^{2}\right)=0$. Hence $B_{j}(t, a,(0))=0$ for $j=1, \ldots, r-1$ and small t, a. Therefore $F_{t}^{A\left(a \partial_{1}\right)}\left(\left[j_{0}^{r}\left(\left(x^{1}\right)^{r}\right)\right]\right)=\left[j_{0}^{r}\left(\left(x^{1}\right)^{r}\right)\right]$, i.e. $A\left(a \partial_{1}\right)_{\mid\left[j_{0}^{r}\left(\left(x^{1}\right)^{r}\right)\right]}=0$ for $a \in(-\epsilon, \epsilon)$.
Step 8. $B_{r-1}(t, a, d)=d_{r-1}$
By (7) we have $B_{r-1}\left(t, a, d_{r-1}\right)=C_{r-1}(t) a+D_{r-1}(t) d_{r-1}$.

Since $A\left(a \partial_{1}\right)_{\left[j_{0}^{r}\left(\left(x^{1}\right)^{r}\right)\right]}=0$, we get $\left[j_{0}^{r}\left(\left(x^{1}\right)^{r}+C_{r-1}(t) a\left(x^{1}\right)^{r-1}+\ldots\right)\right]=$ $F_{t}^{A\left(a \partial_{1}\right)}\left(\left[j_{0}^{r}\left(\left(x^{1}\right)^{r}\right)\right]\right)=\left[j_{0}^{r}\left(\left(x^{1}\right)^{r}\right)\right]$, i.e. $C_{r-1}(t)=0$.

Since $A(0)_{\sigma_{d,(0)}}=0$ (Corollary 1), $\left[j_{0}^{r}\left(\left(x^{1}\right)^{r}+D_{r-1}(t) d_{r-1}\left(x^{1}\right)^{r-1}+\right.\right.$ $\ldots)]=F_{t}^{A(0)}\left(\sigma_{d,(0)}\right)=\sigma_{d,(0)}=\left[j_{0}^{r}\left(\left(x^{1}\right)^{r}+d_{r-1}\left(x^{1}\right)^{r-1}+\ldots\right)\right]$. Hence $D_{r-1}(t)=1$.

Then $B_{r-1}(t, a, d)=d_{r-1}$ for small t, a, d.
Step 9. $B_{j}(t, a, d)=d_{j}$ for $j=1, \ldots, r-1$.
We will proced by the induction on j.
(1) If $j=r-1, B_{r-1}(t, a, d)=d_{r-1}$, see Step 8 .
(2) Assume that $B_{j+1}(t, a, d)=d_{j+1}, \ldots, B_{r-1}(t, a, d)=d_{r-1}$ for small t, a, d. We prove that $B_{j}(t, a, d)=d_{j}$ as follows.

From the inductive assumption it follows that

$$
\begin{aligned}
F_{t}^{A\left(a \partial_{1}\right)} & \left(\left[j_{0}^{r}\left(\left(x^{1}\right)^{r}+\sum_{l=j+1}^{r-1} d_{l}\left(x^{1}\right)^{l}\right)\right]\right) \\
= & {\left[j _ { 0 } ^ { r } \left(\left(x^{1}\right)^{r}+\sum_{l=j+1}^{r-1} d_{l}\left(x^{1}\right)^{l}\right.\right.} \\
& \left.\left.\quad+\sum_{l=1}^{j} B_{l}\left(t, a, 0, \ldots, 0, d_{j+1}, \ldots, d_{r-1}\right)\left(x^{1}\right)^{l}\right)\right]
\end{aligned}
$$

Now, by the invariance with respect to the diffeomorphisms $\left(x^{1}+\mu\left(x^{2}\right)^{r-j+1}, x^{2}, \ldots, x^{n}\right)^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ preserving $a \partial_{1}$ and $\left[j_{0}^{r}\left(\left(x^{1}\right)^{r}+\right.\right.$ $\left.\left.\sum_{l=j+1}^{r-1} d_{l}\left(x^{1}\right)^{l}\right)\right]$ for all μ we get

$$
\begin{aligned}
& \quad\left[j _ { 0 } ^ { r } \left(\left(x^{1}\right)^{r}+\sum_{l=j+1}^{r-1} d_{l}\left(x^{1}\right)^{l}\right.\right. \\
& \left.\left.\quad \quad+\sum_{l=1}^{j} B_{l}\left(t, a, 0, \ldots, 0, d_{j+1}, \ldots, d_{r-1}\right)\left(x^{1}\right)^{l}\right)\right] \\
& = \\
& \quad\left[j _ { 0 } ^ { r } \left(\left(x^{1}\right)^{r}+\sum_{l=j+1}^{r-1} d_{l}\left(x^{1}\right)^{l}\right.\right.
\end{aligned}
$$

$$
\left.\left.+\sum_{l=1}^{j} B_{l}\left(t, a, 0, d_{j+1}, \ldots, d_{r-1}\right)\left(x^{1}+\mu\left(x^{2}\right)^{r-j+1}\right)^{l}\right)\right]
$$

Hence

$$
\begin{aligned}
& j_{0}^{r}\left(\sum_{l=1}^{j} B_{l}\left(t, a, 0, \ldots, 0, d_{j+1}, \ldots, d_{r-1}\right)\left(x^{1}\right)^{l}\right) \\
& \quad=j_{0}^{r}\left(\sum_{l=1}^{j} B_{l}\left(t, a, 0, d_{j+1}, \ldots, d_{r-1}\right)\left(x^{1}+\mu\left(x^{2}\right)^{r-j+1}\right)^{l}\right)
\end{aligned}
$$

Both sides of the last equality are the polynomials in μ. Considering the coefficients on μ we get $j_{0}^{r}\left(\sum_{l=1}^{j} l B_{l}\left(t, a, 0, d_{j+1}, \ldots, d_{r-1}\right)\left(x^{1}\right)^{l-1}\left(x^{2}\right)^{r-j+1}\right)=0$.
Then, in particular, $B_{j}\left(t, a, 0, d_{j+1}, \ldots, d_{r-1}\right)=0$, i.e.
$\tilde{B}_{j}\left(t, a, d_{j+1}, \ldots, d_{r-1}\right)=0$ and $C_{j}(t)=0$. Hence $B_{j}\left(t, a, 0, d_{j}, \ldots, d_{r-1}\right)=$ $D_{j}(t) d_{j}$. Now, since $A(0)=0$ (see Corollary 1), $F_{t}^{A(0)} \sigma_{d, 0}=\sigma_{d, 0}$, i.e. $D(t)=1$. So, $B_{j}\left(t, a, d_{j}, \ldots, d_{r-1}\right)=d_{j}$.
Step 10. The end of the proof of Proposition 1.
Because of formula (5) and Step 9 we have $F_{t}^{A\left(a \partial_{1}\right)}\left(\sigma_{d, b}\right)=\sigma_{d, b}$ for all small t, a, d, b. Hence $A\left(a \partial_{1}\right)_{\sigma_{d, b}}=0$ for small a, d, b.

Using the naturality of A with respect to $\left(\tau x^{1}, x^{2}, \ldots, x^{n}\right)$ for $\tau \neq 0$ it is easy to show that $A\left(a \partial_{1}\right)_{\sigma_{d, b}}=0$ for any $a \in \mathbb{R}^{n}, b \in \mathbb{R}^{k}$ and $d \in \mathbb{R}^{k-1}$. Then the reducibility lemma (Lemma 1) ends the proof of Proposition 1.

The proof of Theorem 6 is complete.

6. The natural affinors on $P^{r *}=P\left(T^{r *}\right)$

In this section we study the natural affinors on $P^{r *}$. We prove the following theorem.

Theorem 7. Let $n \geq r+1$. Every natural affinor C on $P^{r *}$ over n-manifolds is a constant multiple of the identity one.

At first we prove the following reducibility lemma.

Lemma 3 (Second Reducibility Lemma). Let $C: T P^{r *} \rightarrow T P^{r *}$ be a natural affinor on $P^{r *}: \mathcal{M} f_{n} \rightarrow \mathcal{F} \mathcal{M}, n \geq 2$. Assume that $C\left(\mathcal{P}^{r *}\left(\partial_{1}\right)_{\sigma}\right)=0$ for every $\sigma \in P_{0}^{r *} \mathbb{R}^{n}$. Then $C=0$.

Proof. Since $\sigma_{o}=\left[j_{0}^{r}\left(x^{1}\right)\right] \in P_{0}^{r *} \mathbb{R}^{n}$ has dense orbit in $P^{r *} \mathbb{R}^{n}$ with respect to $\operatorname{Diff}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$, it is sufficient to verify that $C(v)=0$ for any $v \in T_{\sigma_{o}} P^{r *} \mathbb{R}^{n}$.

Because of the linearity we can assume $v=\mathcal{P}^{r *}\left(\partial_{i}\right)_{\sigma_{o}}$ for $i=1, \ldots, k$ or $v=\frac{d}{d t}{ }_{t=0}\left[j_{0}^{r}\left(x^{1}\right)+t j_{0}^{r} \gamma\right]$, where $\gamma: \mathbb{R}^{n} \rightarrow \mathbb{R}, \gamma(0)=0$.

Since the isomorphism $\left(x^{1}, \ldots, x^{i-1}, x^{i}+x^{1}, x^{i+1}, \ldots, x^{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ preserves σ_{o} and sends ∂_{1} into $\partial_{1}+\partial_{i}$ and C is natural and fibre linear we can assume $v=\mathcal{P}^{r *}\left(\partial_{1}\right)_{\sigma_{o}}$ instead of $v=\mathcal{P}^{r *}\left(\partial_{i}\right)_{\sigma_{o}}$.

By the density argument one can assume that $\left(x^{1}, \gamma\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{2}$ is of rank 2 at $0 \in \mathbb{R}^{n}$. Then using a diffeomorphism $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ preserving x^{1} and sending γ into x^{2} near $0 \in \mathbb{R}^{n}$ we can assume that $\gamma=x^{2}$.

Using the flow method it is easy to verify that $\mathcal{P}^{r *}\left(x^{2} \partial_{1}\right)_{\sigma_{o}}=$ $\frac{d}{d t}{ }_{t=0}\left[j_{0}^{r}\left(x^{1}\right)+t j_{0}^{r}\left(x^{2}\right)\right]$.

So, it is sufficient to assume that $v=\mathcal{P}^{r *}\left(\partial_{1}+x^{2} \partial_{1}\right)_{\sigma_{o}}$ or $v=$ $\mathcal{P}^{r *}\left(\partial_{1}\right)_{\sigma_{o}}$. Since $\partial_{1}+x^{2} \partial_{1}=\varphi_{*} \partial_{1}$ near $0 \in \mathbb{R}^{n}$ for some diffeomorphism $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ preserving 0 , it is sufficient to assume that $v=\mathcal{P}^{r *}\left(\partial_{1}\right)_{\sigma}$, $\sigma \in P_{0}^{r *} \mathbb{R}^{n}$.

Proof of Theorem 7. Using C we have the natural operator $C \circ \mathcal{P}^{r *}$: $T_{\mid \mathcal{M} f_{n}} \rightarrow T P^{r *}$. By Theorem 6, $C \circ \mathcal{P}^{r *}=\alpha \mathcal{P}^{r *}$ for some $\alpha \in \mathbb{R}$. Then $C\left(\mathcal{P}^{r *}\left(\partial_{1}\right)_{\sigma}\right)=\alpha \mathcal{P}^{r *}\left(\partial_{1}\right)_{\sigma}$ for all $\sigma \in P_{0}^{r *} \mathbb{R}^{n}$. Hence $C=\alpha i d$ because of the second reducibility lemma (Lemma 3).

7. The natural operators $T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T^{*} P^{r *}$

Let $\omega: T M \rightarrow \mathbb{R}$ be a 1-form on M and $q: Y \rightarrow M$ be a fibre bundle. Then we have a 1-form $\omega^{V}=\omega \circ T q: T Y \rightarrow \mathbb{R}$ on Y. It is called the vertical lifting of ω to Y.

Theorem 8. Let $n \geq 2$. Every natural operator $D: T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T^{*} P^{r *}$ is a constant multiple of the vertical lifting $D^{V}: T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T^{*} P^{r *}$.

Lemma 4 (Third Reducibility Lemma). Let $D: T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T^{*} P^{r *}$ be a natural operator, $n \geq 2$. Suppose that $D(\omega)\left(\mathcal{P}^{r *}\left(\partial_{1}\right)_{\sigma}\right)=0$ for any $\sigma \in P_{0}^{r *} \mathbb{R}^{n}$ and any $\omega \in \Omega^{1}\left(\mathbb{R}^{n}\right)$. Then $D=0$.

Proof. The proof is an obvious modification of Lemma 3.
Proof of Theorem 8. Because of Theorem 4 we can assume $r \geq 2$.
Consider arbitrary $\sum_{i=1}^{n} \omega_{i} d x^{i} \in \Omega^{1}\left(\mathbb{R}^{n}\right)$ and arbitrary $\sigma=\left[\sum_{\alpha \in G} a_{\alpha} x^{\alpha}\right] \in P_{0}^{r *} \mathbb{R}^{n}$, where G is the set of all $\alpha \in(\mathbb{N} \cup\{0\})^{n}$ with $1 \leq|\alpha| \leq r$. Because of Lemma 4 we will study $D(\omega)\left(\mathcal{P}^{r *}\left(\partial_{1}\right)_{\sigma}\right) \in \mathbb{R}$.

By the density argument we can assume that $a_{(1,0, \ldots, 0)} \neq 0$. Then replacing a_{α} by $\frac{a_{\alpha}}{a_{(1,0, \ldots, 0)}}$ we can assume that $a_{(1,0, \ldots, 0)}=1$.

Using the naturality of D with respect to $\left(x^{1}, \frac{1}{\tau} x^{2}, \ldots, \frac{1}{\tau} x^{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ for $\tau \neq 0$ and next putting $\tau \rightarrow 0$ we obtain

$$
\begin{aligned}
D(\omega)\left(\mathcal{P}^{r *}\left(\partial_{1}\right)_{\sigma}\right)= & D\left(\omega_{1}\left(x^{1}, 0, \ldots, 0\right) d x^{1}\right) \\
& \times\left(\mathcal{P}^{r *}\left(\partial_{1}\right)_{\left[j_{0}^{r}\left(x^{1}+\sum_{j=2}^{r} a_{(j, 0, \ldots, 0)}\left(x^{1}\right)^{j}\right)\right]}\right)
\end{aligned}
$$

Now, by the nonlinear Petree theorem, [5], there is $R \in \mathbb{N}$ such that

$$
\begin{aligned}
D(\omega)\left(\mathcal{P}^{r *}\left(\partial_{1}\right)_{\sigma}\right)= & D\left(\sum_{k=1}^{R} \omega_{1, k}\left(x^{1}\right)^{k} d x^{1}\right) \\
& \times\left(\mathcal{P}^{r *}\left(\partial_{1}\right)_{\left[j_{0}^{r}\left(x^{1}+\sum_{j=2}^{r} a_{(j, 0, \ldots, 0)}\left(x^{1}\right)^{j}\right)\right]}\right),
\end{aligned}
$$

where $\omega_{1, k}=\frac{1}{k!} \frac{\partial^{k} \omega_{1}}{\partial\left(x^{1}\right)^{k}}(0)$.
Using the naturality of D with respect to $\left(\tau x^{1}, x^{2}, \ldots, x^{n}\right)$ for $\tau \neq 0$ we get the homogeneity condition

$$
\begin{aligned}
& D\left(\sum_{k=1}^{R} \omega_{1, k}\left(x^{1}\right)^{k} d x^{1} \tau^{k+1}\right)\left(\mathcal{P}^{r *}\left(\partial_{1}\right)_{\left[j_{0}^{r}\left(x^{1}+\sum_{j=2}^{r} \tau^{j-1} a_{(j, 0, \ldots, 0)}\left(x^{1}\right)^{j}\right)\right]}\right) \\
& \quad=\tau D\left(\sum_{k=1}^{R} \omega_{1, k}\left(x^{1}\right)^{k} d x^{1}\right)\left(\mathcal{P}^{r *}\left(\partial_{1}\right)_{\left[j_{0}^{r}\left(x^{1}+\sum_{j=2}^{r} a_{(j, 0, \ldots, 0)}\left(x^{1}\right)^{j}\right)\right]}\right)
\end{aligned}
$$

Hence by the homogeneous function theorem

$$
D(\omega)\left(\mathcal{P}^{r *}\left(\partial_{1}\right)_{\sigma}\right)=\alpha \omega_{1}(0)+\beta a_{(2,0, \ldots, 0)}
$$

for some real numbers α and β.
Replacing D by $D-\alpha D^{V}$ we can assume that $\alpha=0$. Then

$$
D(\omega)\left(\mathcal{P}^{r *}\left(\partial_{1}\right)_{\sigma}\right)=\beta \frac{a_{(2,0, \ldots, 0)}}{a_{(1,0, \ldots, 0)}} .
$$

Suppose $a_{(2,0, \ldots, 0)}=1$. Then $\mathcal{P}^{r *}\left(\partial_{1}\right)_{\sigma}$ has the limit in $T P_{0}^{r *} \mathbb{R}^{n}$ as $a_{(1,0, \ldots, 0)}$ tends to 0 . Then $D(\omega)\left(\mathcal{P}^{r *}\left(\partial_{1}\right)_{\sigma}\right)$ has the (finite) limit as $a_{(1,0, \ldots, 0)}$ tends to 0 . Then $\beta=0$.

Then $D(\omega)\left(\mathcal{P}^{r *}\left(\partial_{1}\right)_{\sigma}\right)=\alpha D^{V}(\omega)\left(\mathcal{P}^{r *}\left(\partial_{1}\right)_{\sigma}\right)$ for any $\sigma \in P_{0}^{r *} \mathbb{R}^{n}$ and any $\omega \in \Omega^{1}\left(\mathbb{R}^{n}\right)$. Hence $D=\alpha D^{V}$ because of the third reducibility lemma.

This ends the proof of Theorem 8.

8. Counterexamples

Let n, r and k be natural numbers.
Let $T_{k}^{r *}=J^{r}\left(., \mathbb{R}^{k}\right)_{0}: \mathcal{M} f_{n} \rightarrow \mathcal{V B}$ be the vector bundle functor of (k, r)-covelocities and let $P\left(T_{k}^{r *}\right): \mathcal{M} f_{n} \rightarrow \mathcal{F M}$ be the projectivized (k, r) covelocities functor. Clearly, $T_{1}^{r *}=T^{r *}$ and $P\left(T_{1}^{r *}\right)=P\left(T^{r *}\right)$.

Example 1. $\left(P\left(T_{k}^{r *}\right)\right.$ is not rigid for $k \geq 2$.) We define a natural transformation $B: P\left(T_{k}^{r *}\right) \rightarrow P\left(T_{k}^{r *}\right), B: P\left(T_{k}^{r *} M\right) \rightarrow P\left(T_{k}^{r *} M\right), B\left(\left[j_{x_{o}}^{r} \gamma\right]\right)=$ $\left[j_{x_{o}}^{r}\left(1 \gamma^{1}, 2 \gamma^{2}, \ldots, k \gamma^{k}\right)\right],\left[j_{0}^{r}(\gamma)\right] \in P_{k}^{r *} M, \gamma=\left(\gamma^{1}, \ldots, \gamma^{k}\right): M \rightarrow \mathbb{R}^{k}$ $x_{o} \in M, \gamma\left(x_{o}\right)=0, M \in \operatorname{obj}\left(\mathcal{M} f_{n}\right)$. Clearly, B is a well-defined natural transformation and if $k \geq 2$ then $B \neq i d$.

Example 2. $\left(P\left(T_{k}^{r *}\right)\right.$ is not poor for $k \geq 2$.) We define a natural operator of vertical type $A: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T\left(P\left(T_{k}^{r *}\right)\right), A: \mathcal{X}(M) \rightarrow \mathcal{X}\left(P\left(T_{k}^{r *} M\right)\right)$, $A\left(\left[j_{x_{o}}^{r} \gamma\right]\right)=\frac{d}{d t t=0}\left[j_{x_{o}}^{r} \gamma+t j_{x_{o}}^{r}\left(1 \gamma^{1}, 2 \gamma^{2}, \ldots, k \gamma^{k}\right)\right], \quad\left[j_{0}^{r}(\gamma)\right] \in P_{k}^{r *} M, \gamma=$ $\left(\gamma^{1}, \ldots, \gamma^{k}\right): M \rightarrow \mathbb{R}^{k}, x_{o} \in M, \gamma\left(x_{o}\right)=0, M \in \operatorname{obj}\left(\mathcal{M} f_{n}\right)$. Clearly, A is a well-defined natural operator of vertical type and if $k \geq 2$ then $A \neq 0$.

References

[1] M. Doupovec and J. Kurek, Torsions of connections of higher order cotangent bundles, Czech. Math. J. (to appear).
[2] C. Ehresmann, Introduction á la structures infinitésimales et des pseudogroupes de Lie, Colloque du C.N.R.S., Strasbourg, 1953, 97-110.
[3] J. Gancarzewicz, Liftings of functions and vector fields to natural bundles, Dissert. Math. CCXII, Warszawa, 1983.
[4] J. Gancarzewicz and I. Kolář, Natural affinors on the extended r-th order tangent bundles, Suppl. Rend. Circolo Mat. Palermo 30(II) (1993), 95-100.
[5] I. Koláǎ, P.W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer Verlag, 1993.
[6] I. Kolář and W. M. Mikulski, Contact elements on fibered manifolds, Czech. Math. J. (to appear).
[7] I. Kolář and M. Modugno, Torsions of connections on some natural bundles, Diff. Geom. and Appl. 2 (1992), 1-16.
[8] J. Kurek, Natural transformations of higher order cotangent bundle functors, Ann. Polon Math. 58 (1993), 29-35.
[9] J. Kurek, Natural affinors on higher order cotangent bundle functor, Arch. Math. Brno 28 (1992), 175-180.
[10] M. Kureš and W. M. Mikulski, Natural lifting of vector fields to bundles of Weil contact elements, Czech. Math. J. (to appear).
[11] W. M. Mikulski, The jet prolongations of fibered fibered manifolds and the flow operator, Publ. Math. Debrecen 59 (2001), 441-458.
[12] W. M. Mikulski, The natural affinors on $\left(J^{r} T^{*}\right)^{*}$, Arch. Math. Brno 36 (2000), 261-267.
[13] W. M. Mikulski, Some natural constructions on vector fields and higher order cotangent bundles, Mh. Math. 117 (1994), 107-119.
[14] W. M. Mikulski, The natural operators lifting 1-forms to the bundles of A-velocities, Mh. Math. 119 (1995), 63-77.
[15] W. M. Mikulski, The natural operators lifting vector fields to $\left(J^{r} T^{*}\right)^{*}$, Arch. Math. Brno 36 (2000), 255-260.
[16] W. M. Mikulski, On the contact (k, r)-coelements, Demonstratio Math. (2003) (to appear).
[17] A. Morimoto, Prolongations of connections to bundles of infinitely near points, J. Diff. Geom. 11 (1976), 476-498.
[18] K. Yano and S. Ishihara, Tangent and cotangent bundles, Marcel Dekker. INC., New York, 1973.
[19] J. Tomáš, Natural operators on vector fields on the cotangent bundles of (k, r)-velocities, Rend . Circ. Mat. Palermo 5431(II) (1998), 113-124, 239-249.

```
W. M. MIKULSKI
INSTITUTE OF MATHEMATICS
JAGIELLONIAN UNIVERSITY
REYMONTA 4, KRAKÓW
POLAND
E-mail: mikulski@im.uj.edu.pl
```

(Received August 31, 2001; revised May 23, 2002)

