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On the projectivized r-th order cotangent bundle

By W. M. MIKULSKI (Kraków)

Abstract. Let P r∗ = P (T r∗) : Mfn → FM be the projectivized r-th order
cotangent bundle functor. That for n ≥ r + 1 every natural operator T|Mfn

Ã
TP r∗ is a constant multiple of the complete lifting is deduced. That for n ≥ r+1
every natural affinor on P r∗ over n-manifolds is a constant multiple of the identity
affinor is obtained. That for n ≥ 2 every natural operator T ∗|Mfn

Ã T ∗P r∗ is a
constant multiple of the vertical lifting is verified.

0. Introduction

Let M be an n-dimensional manifold. In [16], we considered the nat-
urality problem how a vector field X on M induces a vector field A(X)
on the projectivized cotangent bundle P (T ∗M) and proved that for n ≥ 2
every natural operator A : T|Mfn

Ã T (P (T ∗)) is a constant multiple of
the complete lifting. We also studied the naturality problem with affinors
C : T (P (T ∗M)) → T (P (T ∗M)) on P (T ∗M) and derived that for n ≥ 2 ev-
ery natural affinor C : T (P (T ∗)) → T (P (T ∗)) on P (T ∗) over n-manifolds is
a constant multiple of the identity one. Moreover, we considered the natu-
rality problem how a 1-form ω on M can induce a 1-form D(ω) on P (T ∗M)
and proved that for n ≥ 2 every natural operator D : T ∗|Mfn

Ã T ∗(P (T ∗))
is a constant multiple of the vertical lifting.

We inform the reader that the results presented above are particular
cases (for r = k = 1) of the respective (proved in [16]) facts for the bundle
Kr∗

k M = regT r∗
k M/Lr

k of the so called contact (k, r)-coelements. The

Mathematics Subject Classification: 58A05, 58A20.
Key words and phrases: bundle functor, natural operator, natural transformation.



100 W. M. Mikulski

mentioned results for Kr∗
k M are “dualizations” of respective facts from [5]

and [6] (and generalized in [10]) for the bundle Kr
kM = regT r

k M/Lr
k of

contact (k, r)-elements in the sense of C. Ehresmann, [2].
In the present paper we generalize the cited above results concerning

P (T ∗) as follows. Let P r∗M = P (T r∗M) denote the projectivized r-th
order cotangent bundle T r∗M = Jr(M,R)0. We consider the naturality
problem how a vector field X on M induces a vector field A(X) on P r∗M
and prove that for n ≥ r+1 every natural operator A : T|Mfn

Ã TP r∗ is a
constant multiple of the complete lifting Pr∗. We also study the naturality
problem with affinors C : TP r∗M → TP r∗M on P r∗M and obtain that
for n ≥ r + 1 every natural affinor C : TP r∗ → TP r∗ on P r∗ is a constant
multiple of the identity one. Moreover, we consider the naturality problem
how a 1-form ω on M induces a 1-form D(ω) on P r∗M and prove that for
n ≥ 2 every natural operator D : T ∗|Mfn

Ã T ∗P r∗ is a constant multiple of

the vertical lifting. If r = 1 we have T ∗=̃T ∗1 and we reobtain the results
for P (T ∗).

Natural operators lifting vector fields, functions and 1-forms to some
natural bundles were used practically in all papers in which problem of
prolongations of geometric structures was studied, see [17], [18], etc. That
is why such natural operators are studied, see e.g. [3], [5], [11], [13]–[15],
[19], etc.

The respective results of the present paper shows that if dim(M) ≥
r + 1 then P r∗M is poor with respect to liftings of vector fields and 1-
forms. This indicate that there are small possibilities to prolonge classical
geometric structures from M to P r∗M . However, it seems to be interesting
that the complete lifting Pr∗ can be characterized as the unique natural
operator A : T|Mfn

Ã TP r∗ such that A(X) is a projectable vector field
on P r∗M covering X for any vector field X on M .

Natural affinors on some natural bundle FM play importrant roles in
the differential geometry. We present the following reason.

A generalized connection on FM is an affinor Γ : TFM → V FM ⊂
TFM on FM (horizontal projector) such that Γ ◦ Γ = Γ and dim(Γ) =
V FM , [5]. Given a natural affinor C : TFM → TFM on FM the
Frolicher–Nijenhuis bracket [C, Γ] is the so called generalized torsion of
Γ with respect to C. Such generalized torsions were studied in [7], [1], etc.
(The classical torsion of a linear connection Γ on TM is proportional to
[J,Γ], where J is the canonical tangent structure affinor on TM .)
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That is why natural affinors are studied, see [4]–[6], [9], [10], [12] etc.
The result of the present paper concerning natural affinors on P r∗M

brings the following two negative answers. The first one is that if dim(M) ≥
r+1 then there is no canonical generalized connection on P r∗M . The sec-
ond one is that if dim(M) ≥ r + 1 then the notion of generalized torsions
of a generalized connection Γ on P r∗M makes no sense because [id,Γ] = 0.

From now on x1, . . . , xn denote the usual coordinates on Rn and ∂i =
∂

∂xi are the vector fields on Rn.
All manifolds are assumed to be without boundary, finite dimensional,

Hausdorff and smooth, i.e. of class C∞. All maps between manifolds are
assumed to be smooth. Natural operators and natural transformations are
in the sense of [5].

1. On the projectivized cotangent bundle functor
P (T ∗) : Mfn → FM

For a comfort we cite below some results about the projectivized cotan-
gent bundle functor P (T ∗) : Mfn → FM.

For every n-manifold M we have the cotangent bundle T ∗M and its
projectivization P (T ∗M) =

⋃
x∈M P (T ∗xM) over M , P (T ∗xM) = the pro-

jective space corresponding to T ∗xM . Every embedding ϕ : M → N of two
n-manifolds induces a bundle map P (T ∗ϕ) =

⋃
x∈M P (T ∗xϕ) : P (T ∗M) →

P (T ∗N). The correspondence P (T ∗) : Mfn → FM is a bundle functor.

In [16], we proved the following results.

Theorem 1. Every natural transformation B : P (T ∗) → P (T ∗) over

n-manifolds is the identity one.

Theorem 2. Let n ≥ 2. Every natural operator A : T|Mfn
Ã

T (P (T ∗)) is a constant multiple of the complete lifting.

Theorem 3. Let n ≥ 2. Every natural affinor C : T (P (T ∗)) →
T (P (T ∗)) on P (T ∗) over n-manifolds is a constant multiple of the identity

affinor.

Theorem 4. Let n ≥ 2. Every natural operator A : T ∗|Mfn
Ã

T ∗(P (T ∗)) is a constant multiple of the vertical lifting.
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2. The projectivized r-th order cotangent bundle functor
P r∗ = P (T r∗) : Mfn → FM

For every n-manifold M we have the r-cotangent vector bundle T r∗M=
Jr(M,Rk)0 over M . Every embedding ϕ : M → N of two n-manifolds in-
duces a vector bundle map T r∗ϕ : T r∗M → T r∗N , T r∗ϕ(jr

xγ) = jr
ϕ(x)(γ ◦

ϕ−1), γ : M → R, x ∈ M , γ(x) = 0.
It is well-known that the correspondence T r∗ : Mfn → VB is a vector

bundle functor.

For every n-manifold M we have the bundle P r∗M = P (T r∗M) =⋃
x∈M P (T r∗

x M) over M , P (T r∗
x M)= the projective space corresponding to

the fibre T r∗
x M . Every embedding ϕ : M → N of two n-manifolds induces

a bundle map P r∗ϕ = P (T r∗ϕ) =
⋃

x∈M P (T r∗
x ϕ) : P r∗M → P r∗N . The

correspondence P r∗ = P (T r∗) : Mfn → FM is a bundle functor. It is
called the projectivized r-th order cotangent bundle functor.

3. On natural endomorphisms of P r∗ = P (T r∗)

Theorem 5. Let n ≥ 2. Every natural transformation B : P r∗ → P r∗

over n-manifolds is the identity one.

Proof. Consider a natural transformation B : P r∗ → P r∗ over n-
manifolds, n ≥ 2. Since σo = [jr

0(x
1)] ∈ P r∗

0 Rn has dense orbit in P r∗Rn

with respect to Diff(Rn,Rn), it is sufficient to verify that B(σo) = σo.
We can write B(σo) = [jr

0(
∑

α∈G aαxα)] for some (aα)α∈G ∈ RG \ {0},
where G is the set of all α = (α1, . . . , αn) ∈ (N ∪ {0})n with 1 ≤ |α| ≤ r.

Using the invariance of B(σo) with respect to ( 1
τ1

x1, . . . , 1
τn

xn) : Rn →
Rn for τ =(τ1, . . . , τn)∈ (R\{0})n we get [jr

0(
∑

α∈G

aαxα)]=[jr
0(

∑
α∈G

aαταxα)].

So, only one of the aα’s is not equal to 0. Hence B(σo) = [jr
0(x

α)] for some
α ∈ G.

If αi 6= 0 for some i ≥ 2, then by the invariance of B(σo) with respect
to the isomorphism (x1, . . . , xi−1, xi − x1, xi+1, . . . , xn) : Rn → Rn we get
[jr

0((x
1)α1 . . . . . . (xn)αn)] = [jr

0((x
1)α1 . . . (xi + x1)αi . . . (xn)αn)], i.e. we

obtain the contradiction. Hence B(σo) = [jr
0((x

1)q)] for some q = 1, . . . , r.
If q ≥ 2 then the local diffeomorphisms

(τx1+(x1)r +(x2)r, x2, . . . , xn)−1 : Rn → Rn for τ 6= 0 preserve [jr
0((x

1)q)].
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Using the invariance of B with respect to these diffeomorphisms we obtain
that B([jr

0(τx1 + (x1)r + (x2)r)]) = [jr
0((x

1)q)] for τ 6= 0. Putting τ → 0
we get B([jr

0((x
1)r + (x2)r)]) = [jr

0((x
1)q)]. Now, changing x1 by x2 and

vice-versa we get [jr
0((x

1)q)] = [jr
0((x

2)q)]. Contradiction.
Hence q = 1, i.e. B(σo) = [jr

0(x
1)] = σo. This ends the proof. ¤

Remark 1. If n = 1 and r ≥ 2, then P r∗ : Mf1 → FM is not
rigid. For, σo = [jr

0((x
1)r)] ∈ P r∗

0 R is Lr
1-invariant. Hence there exists the

natural transformation B : P r∗ → P r∗ over 1-manifolds corresponding to
the constant Lr

1-equivariant map P r∗
0 R→ {σo} ⊂ P r∗

0 R.

Corollary 1. If n ≥ 2 then every absolute natural operator

A : T|Mfn
Ã TP r∗ is 0.

Proof. Every such A is a canonical vector field on P r∗M for any
M ∈ obj(Mfn). On the other hand F0Rn is compact, then the flow of a
canonical vector field on FM is formed by authomorphisms FM → FM .
Then the flow of A is trivial because of Theorem 5. So, A = 0. ¤

4. The natural operators T|Mfn
Ã TP r∗

In general, if F : Mfn → FM is a bundle functor then given a
vector field X on M ∈ obj(Mfn) we have the vector field FX on FM via
prolongation of flows. It is called the complete lifting of X to FM . If {ϕt}
is the flow of X then {Fϕt} is the flow of FX, see [5].

In the case F = P r∗ we have the following theorem.

Theorem 6. If n ≥ r + 1 then every natural operator A : T|Mfn
Ã

TP r∗ is a constant multiple of the complete lifting Pr∗.

The proof of Theorem 6 will occupy the rest of this section and Sec-
tion 5.

Given b = (b0, . . . , br−1) ∈ Rr and d = (d1, . . . , dr−1) ∈ Rr−1 let

σd,b = [jr
0(ηd,b)] ∈ P r∗

0 Rn, (1)

where ηd,b := (x1)r +
∑r−1

l=1 dl(x1)l +
∑r−1

q=0 bqx
q+2(x1)q : Rn → R.

We have the following reducibility lemma.
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Lemma 1 (First Reducibility Lemma). Let A : T|Mfn
Ã TP r∗ be a

natural operator, n ≥ r + 1. If A(∂1)σd,b
= 0 for any b ∈ Rk and d ∈ Rk−1,

then A = 0. If A(∂1)σd,b
is vertical for any d ∈ Rr−1 and b ∈ Rn, then A is

of vertical type.

Proof. It is sufficient to show that A(∂1)σ is equal to 0 (vertical) for
any σ ∈ P r∗

0 Rn.
By the density argument we can assume that

σ =
[
jr
0

(
(x1)r +

r−1∑

l=1

dl(x1)l +
r−1∑

q=0

γq(x2, . . . , xn)(x1)q

)]

for some smooth maps γq : Rn−1 → R with γq(0) = 0.
By the density argument we can assume that the system

(γq(x2, . . . , xn))r−1
q=0 : Rn → Rr is of rank r at 0 ∈ Rn. Then there exists

an embedding ϕ : Rn → Rn preserving 0, ∂1 and x1 near 0 and sending
(γq(x2, . . . , xn))r−1

q=0 into (x2, . . . , xr+1). Now using the invariance of A with
respect to ϕ we can assume that σ = σd,b. ¤

Now, we prove the following decomposition lemma.

Lemma 2 (Decomposition Lemma). Let A : T|Mfn
Ã TP r∗ be a

natural operator, n ≥ r + 1. Then there exists α ∈ R such that A− αPr∗

is a vertical operator.

Proof. For every a ∈ R, d ∈ Rr−1 and b ∈ Rr we can write

Tπ(A(a∂1)σd,b
) =

n∑

i=1

αi(a, d, b)∂i|0

for some smooth maps αi : R× Rr−1 × Rr → R.
Using the invariance of A with respect to the homotheties

(τx1, x2, . . . , xn) : Rn → Rn for τ 6= 0 we get

τα1(a, d, b)∂1|0 +
n∑

i=2

αi(a, d, b)∂i|0

= Tπ
(
A(τa∂1)[jr

0( 1
τr (x1)r+

Pr−1
l=1

1

τl dl(x1)l+
Pr−1

q=0
1

τq bqxq+2(x1)q)]

)
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= Tπ
(
A(τa∂1)[(x1)r+

Pr−1
l=1 τr−ldl(x1)l+

Pr−1
q=0 τr−qbqxq+2(x1)q)]

)
.

Then we get homogeneity conditions
τα1(a, d, b) = α1(τa, (τ r−ldl), (τ r−qbq)) and
αi(a, d, b) = αi(τa, (τ r−ldl), (τ r−qbq)) for i = 2, . . . , n and τ 6= 0.

Now, by the homogeneous function theorem, [5], α1(a, d, b) is the linear
combination of a, dr−1 and br−1 with real coefficients and αi(a, d, b) =
const for i = 2, . . . , n.

Since A(0) corresponds to the absolute operator, A(0) = 0 because
of Corollary 1. Then αi = 0 for i = 2, . . . , n, and α1(a, d, b) = α1a for
some α1 ∈ R. Then Tπ(A(∂1)σd,b

) = α1∂1|0 = α1Tπ(Pr∗(∂1)σd,b
). Hence

A− α1Pr∗ is a vertical operator because of the reducibility lemma (Lem-
ma 1). ¤

5. The natural operators T|Mfn
Ã TP r∗ of vertical type

Thanks to the decomposition lemma (Lemma 2), Theorem 6 will be
proved after proving the following proposition.

Proposition 1. If n ≥ r+1 then every natural operator A : T|Mfn
Ã

TP r∗ of vertical type is 0.

Proof. From now on A : T|Mfn
Ã TP r∗ is a natural operator of

vertical type, where n ≥ r + 1.
We will use the notations of Section 4.
Since A is vertical, A(X)|P r∗

0 Rn is a vector field on P r∗
0 Rn for every

X ∈ X (Rn). Let {FA(X)
t } denotes the flow of A(X)|P r∗

0 Rn, X ∈ X (Rn).

Since every projective space is compact, the flow {FA(X)
t } is global.

Let a ∈ R, b = (bq)r−1
q=0 ∈ Rr, d = (dl)r−1

l=1 ∈ Rr−1 and t ∈ R be
arbitrary. Then we have σd,b ∈ P r∗

0 Rn, see Section 4.

Step 1. On the points F
A(a∂1)
t (σd,b).

Clearly, F
A(0)
0 (σ(0),(0)) = [jr

0((x
1)r)]. So, there is ε > 0 such that

F
A(a∂1)
t (σd,b) =

[
jr
0

(
(x1)r +

∑

α∈G

Bα(t, a, d, b)xα
)]

(2)
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for all (t, a, d, b) ∈ (−ε, ε) × (−ε, ε) × (−ε, ε)r−1 × (−ε, ε)r, where Bα :
(−ε, ε) × (−ε, ε) × (−ε, ε)r−1 × (−ε, ε)r → R are the smooth maps. Here
G is the set of all α = (α1, . . . , αn) ∈ (N ∪ {0})n with 1 ≤ |α| ≤ r and
α 6= (r, 0, . . . , 0).

Step 2. On the maps Bα,s(t, a, d, b).
We use the invariance of A(a∂1) with respect to (x1, 1

τ2
x2, . . . , 1

τn
xn) :

Rn → Rn for all τi 6= 0 with |τi| < 1. We obtain the homogeneity condition

Bα(t, a, d, (τq+2bq)) = Bα(t, a, d, b)(τ2)α2 . . . (τn)αn

for α ∈ G, where (t, a, d, b) ∈ (−ε, ε)× (−ε, ε)× (−ε, ε)r−1× (−ε, ε)r. Now,
we apply the (obviously adapted) homogeneous function theorem, [2]. We
deduce that Bα = 0 for all α ∈ G with αr+2 + · · ·+ αn 6= 0, and

Bα(t, a, d, b) = Bα(t, a, d)
r−1∏

q=0

(bq)αq+2 (3)

for all α ∈ G with αr+2 + · · · + αn = 0, where Bα : (−ε, ε) × (−ε, ε) ×
(−ε, ε)r−1 → R are the smooth maps.

Hence

F
A(a∂1)
t (σd,b) =

[
jr
0

(
(x1)r +

∑

α∈H

Bα(t, a, d)
r−1∏

q=0

(bq)αq+2xα
)]

(4)

for all (t, a, d, b) ∈ (−ε, ε) × (−ε, ε) × (−ε, ε)r−1 × (−ε, ε)r. Here H is the
set of all α = (α1, . . . , αn) ∈ (N ∪ {0})n with 1 ≤ |α| ≤ r, α 6= (r, 0, . . . , 0)
and αr+2 + · · ·+ αn = 0.

Step 3. On the maps Bα(t, a, d) for α ∈ H.

Using the invariance of F
A(a∂1)
t (σd,b) with respect to the local diffeo-

morphisms (x1, (xq+2 + µ(xq+2)r−q+1)r−1
q=0, x

r+2, . . . , xn)−1 : Rn → Rn for
all µ we get the condition

jr
0

( ∑

α∈H

Bα(t, a, d)
r−1∏

q=0

(bq)αq+2(x1)α1

r−1∏

q=0

(xq+2)αq+2

)

= jr
0

( ∑

α∈H

Bα(t, a, d)
r−1∏

q=0

(bq)αq+2(x1)α1

r−1∏

q=0

(xq+2 + µ(xq+2)r−q+1)αq+2

)
.
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Both sides of the last equality are polynomials in µ. Considering the
coefficients corresponding to µ = µ1 we get

jr
0

( r−1∑

k=0

∑

α∈H

αk+2Bα(t, a, d)
r−1∏

q=0

(bq)αq+2(x1)α1

×
r−1∏

q=0

(xq+2)αq+2(xk+2)r−k

)
= 0.

Therefore we have the implication:
(∗) If α ∈ H and k = 0, . . . , r− 1 are such that Bα 6= 0 and αk+2 6= 0,

then α2 + · · ·+ αr+1 ≥ k + 1− α1.

Step 4. On the maps Bα(t, a, d) for α ∈ H anew.
Let α ∈ H.
Using the invariance of A(a∂1) with respect to (τx1, x2, . . . , , xn) :

Rn → Rn for τ 6= 0 with |τ | < 1 we obtain Bα(t, a, d, b)τ r−α1 =
Bα(t, τa, dlτ

r−l, bqτ
r−q) for all (t, a, d, b) ∈ (−ε, ε) × (−ε, ε) × (−ε, ε)r−1 ×

(−ε, ε)r. Applying (3) we can write this condition in the form

Bα(t, a, d)τ r−α1 = Bα(t, τa, dlτ
r−l)

r−1∏

q=0

(τ r−q)αq+2

for all (t, a, d) ∈ (−ε, ε)× (−ε, ε)× (−ε, ε)r−1 and 0 < |τ | < 1.
Hence

Bα = 0 if
r−1∑

q=0

(r − q)αq+2 > r − α1,

Bα depends only on t if
r−1∑

q=0

(r − q)αq+2 = r − α1

and

Bα = 0 if αk+2 6= 0 for some k = 0, . . . , r−1 and
r−1∑

q=0

(r−q)αq+2 < r−α1.

(The last implication we can prove as follows. Suppose that Bα 6= 0,
αk+2 6= 0 and

∑r−1
q=0(r − q)αq+2 < r − α1. Then r − k − 1 + (α2 + · · · +
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αr+1) ≤
∑r−1

q=0(r − q)αq+2 < r − α1 and by the implication (∗) we get
r − k − 1 + α1 < r − (α2 + · · ·+ αr+1) ≤ r − k − 1 + α1. Contradiction.)

Step 5. On the points F
A(a∂1)
t (σd,b) anew.

Because of the Step 4 and (4) we can write

F
A(a∂1)
t (σd,b) =

[
jr
0

(
(x1)r +

r−1∑

j=1

Bj(t, a, d)(x1)j

+
∑

α∈J

Bα(t)
r−1∏

q=0

(bq)αq+2xα

)]

for all (t, a, d, b) ∈ (−ε, ε) × (−ε, ε) × (−ε, ε)r−1 × (−ε, ε)r, where Bα :
(−ε, ε) → R and Bj : (−ε, ε) × (−ε, ε) × (−ε, ε)r−1 → R are the smooth
maps. Here J is the set of all α ∈ H such that

∑r−1
q=0(r − q)αq+2 = r − α1

(then αq+2 6= 0 for some q = 0, . . . , r − 1).

If a = 0 we get F
A(0)
t (σd,b) = σd,b as A(0) = 0 because of Corollary 1.

Hence

F
A(a∂1)
t (σd,b) =

[
jr
0

(
(x1)r +

r−1∑

j=1

Bj(t, a, d)(x1)j

+
r−1∑

q=0

bqx
q+2(x1)q

)] (5)

for all (t, a, d, b) ∈ (−ε, ε) × (−ε, ε) × (−ε, ε)r−1 × (−ε, ε)r, where Bj :
(−ε, ε)× (−ε, ε)× (−ε, ε)r−1 → R are the smooth maps.

Step 6. On the maps Bj(t, a, d).
Let Bj be as in Step 5. We have

F
A(a∂1)
t

([
jr
0

(
(x1)r +

r−1∑

l=1

dl(x1)l

)])

=
[
jr
0

(
(x1)r +

r−1∑

j=1

Bj(t, a, d)(x1)j

)] (6)

for all (t, a, d) ∈ (−ε, ε)× (−ε, ε)× (−ε, ε)r−1.
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Using the invariance of A with respect to (τx1, x2, . . . , xn) : Rn → Rn

for τ 6= 0 with |τ | < 1 we get the homogeneity conditions

Bj(t, a, d)τ r−j = Bj(t, τa,
(
τ r−ldl)

)

for all (t, a, d) ∈ (−ε, ε) × (−ε, ε) × (−ε, ε)r−1. Now, by the homogeneous
function theorem we have

Bj(t, a, d) = Cj(t)ar−j + Dj(t)dj + B̃j(t, a, dj+1, . . . , dr−1) (7)

for j = 1, . . . , r − 1, where Cj : (−ε, ε) → R, Dj : (−ε, ε) → R and B̃j :
(−ε, ε)× (−ε, ε)× (−ε, ε)r−j−1 → R are smooth and B̃j(t, a, dj+1, . . . , dr−1)
is the finite linear combination of monomials in a and dj+1, . . . , dr−1, not
equal to ar−j , with coefficients being smooth maps depending on t. In
particular, B̃r−1(t, a, d) = 0.

Step 7. A(a∂1)|[jr
0((x1)r)] = 0

Using the invariance of A(a∂1)|[jr
0((x1)r)] with respect to the diffeomor-

phisms (x1 + µ(x2)2, x2, . . . , xn)−1 : Rn → Rn for all µ we get

[
jr
0

(
(x1)r +

r−1∑

j=1

Bj(t, a, (0))(x1)j

)]
= F

A(a∂1)
t

(
[jr

0((x
1)r)]

)

=
[
jr
0

(
(x1)r +

r−1∑

j=1

Bj(t, a, (0))
(
x1 + µ(x2)2

)j
)]

for t, a ∈ (−ε, ε). Hence

jr
0

( r−1∑

j=1

Bj(t, a, (0))(x1)j

)
= jr

0

( r−1∑

j=1

Bj(t, a, (0))(x1 + µ(x2)2)j

)
.

Both sides of this equality are polynomials in µ. Considering the coeffi-
cients on µ = µ1 we get jr

0(
∑r−1

j=1 jBj(t, a, (0))(x1)j−1(x2)2) = 0. Hence
Bj(t, a, (0)) = 0 for j = 1, . . . , r − 1 and small t, a. Therefore

F
A(a∂1)
t ([jr

0((x
1)r)]) = [jr

0((x
1)r)], i.e. A(a∂1)|[jr

0((x1)r)] = 0 for a ∈ (−ε, ε).

Step 8. Br−1(t, a, d) = dr−1

By (7) we have Br−1(t, a, dr−1) = Cr−1(t)a + Dr−1(t)dr−1.
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Since A(a∂1)[jr
0((x1)r)] = 0, we get [jr

0((x
1)r +Cr−1(t)a(x1)r−1+ . . . )] =

F
A(a∂1)
t ([jr

0((x
1)r)]) = [jr

0((x
1)r)], i.e. Cr−1(t) = 0.

Since A(0)σd,(0)
= 0 (Corollary 1), [jr

0((x
1)r + Dr−1(t)dr−1(x1)r−1 +

. . . )] = F
A(0)
t (σd,(0)) = σd,(0) = [jr

0((x
1)r + dr−1(x1)r−1 + . . . )]. Hence

Dr−1(t) = 1.
Then Br−1(t, a, d) = dr−1 for small t, a, d.

Step 9. Bj(t, a, d) = dj for j = 1, . . . , r − 1.
We will proced by the induction on j.

(1) If j = r − 1, Br−1(t, a, d) = dr−1, see Step 8.

(2) Assume that Bj+1(t, a, d) = dj+1,. . . , Br−1(t, a, d) = dr−1 for small
t, a, d. We prove that Bj(t, a, d) = dj as follows.

From the inductive assumption it follows that

F
A(a∂1)
t

([
jr
0

(
(x1)r +

r−1∑

l=j+1

dl(x1)l

)])

=
[
jr
0

(
(x1)r +

r−1∑

l=j+1

dl(x1)l

+
j∑

l=1

Bl(t, a, 0, . . . , 0, dj+1, . . . , dr−1)(x1)l

)]
.

Now, by the invariance with respect to the diffeomorphisms
(x1 + µ(x2)r−j+1, x2, . . . , xn)−1 : Rn → Rn preserving a∂1 and [jr

0((x
1)r +∑r−1

l=j+1 dl(x1)l)] for all µ we get

[
jr
0

(
(x1)r +

r−1∑

l=j+1

dl(x1)l

+
j∑

l=1

Bl(t, a, 0, . . . , 0, dj+1, . . . , dr−1)(x1)l

)]

=
[
jr
0

(
(x1)r +

r−1∑

l=j+1

dl(x1)l
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+
j∑

l=1

Bl(t, a, 0, dj+1, . . . , dr−1)(x1 + µ(x2)r−j+1)l

)]
.

Hence

jr
0

( j∑

l=1

Bl(t, a, 0, . . . , 0, dj+1, . . . , dr−1)(x1)l

)

= jr
0

( j∑

l=1

Bl(t, a, 0, dj+1, . . . , dr−1)(x1 + µ(x2)r−j+1)l

)
.

Both sides of the last equality are the polynomials in µ. Considering the co-

efficients on µ we get jr
0

( j∑
l=1

lBl(t, a, 0, dj+1, . . . , dr−1)(x1)l−1(x2)r−j+1
)
=0.

Then, in particular, Bj(t, a, 0, dj+1, . . . , dr−1) = 0, i.e.
B̃j(t, a, dj+1, . . . , dr−1) = 0 and Cj(t) = 0. Hence Bj(t, a, 0, dj , . . . , dr−1) =

Dj(t)dj . Now, since A(0) = 0 (see Corollary 1), F
A(0)
t σd,0 = σd,0, i.e.

D(t) = 1. So, Bj(t, a, dj , . . . , dr−1) = dj .

Step 10. The end of the proof of Proposition 1.

Because of formula (5) and Step 9 we have F
A(a∂1)
t (σd,b) = σd,b for all

small t, a, d, b. Hence A(a∂1)σd,b
= 0 for small a, d, b.

Using the naturality of A with respect to (τx1, x2, . . . , xn) for τ 6= 0 it
is easy to show that A(a∂1)σd,b

= 0 for any a ∈ Rn, b ∈ Rk and d ∈ Rk−1.
Then the reducibility lemma (Lemma 1) ends the proof of Proposition 1.

The proof of Theorem 6 is complete. ¤

6. The natural affinors on P r∗ = P (T r∗)

In this section we study the natural affinors on P r∗. We prove the
following theorem.

Theorem 7. Let n ≥ r + 1. Every natural affinor C on P r∗ over

n-manifolds is a constant multiple of the identity one.

At first we prove the following reducibility lemma.
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Lemma 3 (Second Reducibility Lemma). Let C : TP r∗ → TP r∗ be

a natural affinor on P r∗ : Mfn → FM, n ≥ 2. Assume that

C(Pr∗(∂1)σ) = 0 for every σ ∈ P r∗
0 Rn. Then C = 0.

Proof. Since σo = [jr
0(x

1)] ∈ P r∗
0 Rn has dense orbit in P r∗Rn with

respect to Diff(Rn,Rn), it is sufficient to verify that C(v) = 0 for any
v ∈ TσoP

r∗Rn.
Because of the linearity we can assume v = Pr∗(∂i)σo for i = 1, . . . , k

or v = d
dt t=0

[jr
0(x

1) + tjr
0γ], where γ : Rn → R, γ(0) = 0.

Since the isomorphism (x1, . . . , xi−1, xi + x1, xi+1, . . . , xn) : Rn → Rn

preserves σo and sends ∂1 into ∂1 + ∂i and C is natural and fibre linear we
can assume v = Pr∗(∂1)σo instead of v = Pr∗(∂i)σo .

By the density argument one can assume that (x1, γ) : Rn → R2 is of
rank 2 at 0 ∈ Rn. Then using a diffeomorphism Rn → Rn preserving x1

and sending γ into x2 near 0 ∈ Rn we can assume that γ = x2.
Using the flow method it is easy to verify that Pr∗(x2∂1)σo =

d
dt t=0

[jr
0(x

1) + tjr
0(x

2)].
So, it is sufficient to assume that v = Pr∗(∂1 + x2∂1)σo or v =

Pr∗(∂1)σo . Since ∂1 + x2∂1 = ϕ∗∂1 near 0 ∈ Rn for some diffeomorphism
ϕ : Rn → Rn preserving 0, it is sufficient to assume that v = Pr∗(∂1)σ,
σ ∈ P r∗

0 Rn. ¤

Proof of Theorem 7. Using C we have the natural operator C ◦Pr∗ :
T|Mfn

→ TP r∗. By Theorem 6, C ◦ Pr∗ = αPr∗ for some α ∈ R. Then
C(Pr∗(∂1)σ) = αPr∗(∂1)σ for all σ ∈ P r∗

0 Rn. Hence C = αid because of
the second reducibility lemma (Lemma 3). ¤

7. The natural operators T ∗|Mfn
Ã T ∗P r∗

Let ω : TM → R be a 1-form on M and q : Y → M be a fibre bundle.
Then we have a 1-form ωV = ω ◦ Tq : TY → R on Y . It is called the
vertical lifting of ω to Y .

Theorem 8. Let n ≥ 2. Every natural operator D : T ∗|Mfn
Ã T ∗P r∗

is a constant multiple of the vertical lifting DV : T ∗|Mfn
Ã T ∗P r∗.
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Lemma 4 (Third Reducibility Lemma). Let D : T ∗|Mfn
Ã T ∗P r∗ be

a natural operator, n ≥ 2. Suppose that D(ω)(Pr∗(∂1)σ) = 0 for any

σ ∈ P r∗
0 Rn and any ω ∈ Ω1(Rn). Then D = 0.

Proof. The proof is an obvious modification of Lemma 3. ¤
Proof of Theorem 8. Because of Theorem 4 we can assume r ≥ 2.
Consider arbitrary

∑n
i=1 ωidxi ∈ Ω1(Rn) and arbitrary

σ = [
∑

α∈G aαxα] ∈ P r∗
0 Rn, where G is the set of all α ∈ (N ∪ {0})n with

1 ≤ |α| ≤ r. Because of Lemma 4 we will study D(ω)(Pr∗(∂1)σ) ∈ R.
By the density argument we can assume that a(1,0,...,0) 6= 0. Then

replacing aα by aα
a(1,0,...,0)

we can assume that a(1,0,...,0) = 1.

Using the naturality of D with respect to (x1, 1
τ x2, . . . , 1

τ xn) : Rn → Rn

for τ 6= 0 and next putting τ → 0 we obtain

D(ω)(Pr∗(∂1)σ) = D(ω1(x1, 0, . . . , 0)dx1)

×
(
Pr∗(∂1)[jr

0(x1+
Pr

j=2 a(j,0,...,0)(x
1)j)]

)
.

Now, by the nonlinear Petree theorem, [5], there is R ∈ N such that

D(ω)(Pr∗(∂1)σ) = D

( R∑

k=1

ω1,k(x1)kdx1

)

×
(
Pr∗(∂1)[jr

0(x1+
Pr

j=2 a(j,0,...,0)(x
1)j)]

)
,

where ω1,k = 1
k!

∂kω1

∂(x1)k (0).

Using the naturality of D with respect to (τx1, x2, . . . , xn) for τ 6= 0
we get the homogeneity condition

D

( R∑

k=1

ω1,k(x1)kdx1τk+1

)(
Pr∗(∂1)[jr

0(x1+
Pr

j=2 τ j−1a(j,0,...,0)(x
1)j)]

)

= τD

( R∑

k=1

ω1,k(x1)kdx1

)(
Pr∗(∂1)[jr

0(x1+
Pr

j=2 a(j,0,...,0)(x
1)j)]

)
.

Hence by the homogeneous function theorem

D(ω)(Pr∗(∂1)σ) = αω1(0) + βa(2,0,...,0)
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for some real numbers α and β.
Replacing D by D − αDV we can assume that α = 0. Then

D(ω)(Pr∗(∂1)σ) = β
a(2,0,...,0)

a(1,0,...,0)
.

Suppose a(2,0,...,0) = 1. Then Pr∗(∂1)σ has the limit in TP r∗
0 Rn as

a(1,0,...,0) tends to 0. Then D(ω)(Pr∗(∂1)σ) has the (finite) limit as a(1,0,...,0)

tends to 0. Then β = 0.
Then D(ω)(Pr∗(∂1)σ) = αDV (ω)(Pr∗(∂1)σ) for any σ ∈ P r∗

0 Rn and
any ω ∈ Ω1(Rn). Hence D = αDV because of the third reducibility lemma.

This ends the proof of Theorem 8. ¤

8. Counterexamples

Let n, r and k be natural numbers.
Let T r∗

k = Jr(.,Rk)0 : Mfn → VB be the vector bundle functor of
(k, r)-covelocities and let P (T r∗

k ) : Mfn → FM be the projectivized (k, r)-
covelocities functor. Clearly, T r∗

1 = T r∗ and P (T r∗
1 ) = P (T r∗).

Example 1. (P (T r∗
k ) is not rigid for k ≥ 2.) We define a natural trans-

formation B : P (T r∗
k ) → P (T r∗

k ), B : P (T r∗
k M) → P (T r∗

k M), B([jr
xo

γ]) =
[jr

xo
(1γ1, 2γ2, . . . , kγk)], [jr

0(γ)] ∈ P r∗
k M , γ = (γ1, . . . , γk) : M → Rk

xo ∈ M , γ(xo) = 0, M ∈ obj(Mfn). Clearly, B is a well-defined nat-
ural transformation and if k ≥ 2 then B 6= id.

Example 2. (P (T r∗
k ) is not poor for k ≥ 2.) We define a natural oper-

ator of vertical type A : T|Mfn
Ã T (P (T r∗

k )), A : X (M) → X (P (T r∗
k M)),

A([jr
xo

γ]) = d
dt t=0

[jr
xo

γ + tjr
xo

(1γ1, 2γ2, . . . , kγk)], [jr
0(γ)] ∈ P r∗

k M , γ =

(γ1, . . . , γk) : M → Rk, xo ∈ M , γ(xo) = 0, M ∈ obj(Mfn). Clearly, A is
a well-defined natural operator of vertical type and if k ≥ 2 then A 6= 0.
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