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Noncommutative line spaces derived from certain ovals
of 4-dimensional translation planes

By DIETER BETTEN (Kiel) and ROLF RIESINGER (Vienna)

Abstract. We start with a differentiable function f : R2 → R2 with the
property that derivation defines a spread (partition) of R4. Using chords of the
graph Γ of f we construct a system of curves of R2 having a base point. If Γ
is an oval in the associated translation plane, then this system of curves can be
endowed with a join operation such that we get a noncommutative line space in
the sense of J. André.

1. Introduction

1.1. We construct examples of (in general) noncommutative geome-
tries in the sense of J. André with point set R2. Such a geometry will be
derived from any 4-dimensional compact projective translation plane con-
taining a closed oval tangent to the translation axis. More precisely, the
point set of the geometry will be the oval minus its point of tangency with
the translation axis, and the blocks will be the socket curves on the oval
that we shall introduce in Section 1.3. A socket curve contains a distin-
guished point, and this fact allows us to define an a priori noncommutative
operation of joining ordered pairs of points.

We shall give an explicit description of four examples of such geome-
tries. The ovals used for this are lines Γf of well known 4-dimensional shift
planes, compare [9, Section 74]. It turns out that in these examples, each
socket curve is a closed subset of Γf homeomorphic to R. It remains an
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open question whether or not this is true in general. Exactly one of the
four examples (namely that which is derived from a conic in the complex
plane) turns out to be commutative (in fact, it is the real affine plane).
Here the question arises whether or not there are other commutative (or
other affine) examples that can be obtained in the same way. The non-
commutative topological geometries we present are explicit examples for
the theory developed in [7].

The shift planes generated by the four examples of ovals considered
here are the parabola model of the complex plane and the complex skew
parabola plane, see [9, 74.2], and the two single shift planes generated by
the first and second Knarr surface, see [9, 74.24]. The generating ovals are
either algebraic R-varieties, or they are composed of two such varieties, a
fact that makes computation easy.

It is unknown whether or not each oval in a translation plane tangent
to the axis generates a shift plane, compare [9, 74.17]. The construction
of the socket curves reflects some of the difficulties arising in this context.
Hence, our paper can be seen as a contribution to the problems arising in
connection with differentiating of shift planes and integration of translation
planes, compare [9, Section 74].

1.2. Let f : R2 → R2 : (s, t) 7→
(
w(s, t), z(s, t)

)
be an arbitrary dif-

ferentiable function and Γf :=
{(

s, t, w(s, t), z(s, t)
)

=: ps,t

∣∣∣ (s, t) ∈ R2
}

its graph. By virtue of (x1, x2, x3, x4) 7→ (1, x1, x2, x3, x4)R we embed
the affine space R4 into the projective space PG(4,R); by Ω we denote
the 3-space at infinity (x0 = 0) and by `34 the line at infinity with
x0 = x1 = x2 = 0. Let τs,t be the tangent plane of Γf at the point
ps,t. We call f a partition function, if the line set

{τs,t ∩ Ω | (s, t) ∈ R2} ∪ {`34} =: Sf (1)

is a spread of Ω. We speak of the derived spread Sf of the partition surface
Γf . The spread Sf generates an affine translation plane ASf

whose point
set is R4 and whose lines are the translates of the tangent planes τs,t.
Usually ASf

is called the associated affine translation plane of f and its
projective closure PSf

the associated projective translation plane of f . The
lines of the spread Sf can be interpreted as points at infinity of PSf

, hence
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Sf can be seen as translation line of PSf
. In Section 2 we will prove that

PSf
is a compact connected translation plane.
We speak of an oval partition surface Γf , if Γh ∪ {`34} is1 a compact

oval in the associated projective translation plane PSf
.

The logical transition from 1.1. to 1.2 is described in Section 5.

1.3. For the following we assume that Γf is a partition surface of R4. By
a chord of Γf we mean a line of R4 which either is tangent to Γf or has at
least two common points with Γf ; by CΓf

we denote the set of all chords
of Γf . Let L be an arbitrary line of R4 not meeting `34, then we call

{X ∈ CΓf
| X ‖ L} =: ZL (2)

the chord cylinder2 of Γf parallel to L and

⋃

X∈ZL

(X ∩ Γf ) =: aL (3)

socket curve of the chord cylinder ZL or socket curve corresponding to L.
Moreover, we consider the incidence structure Gf = (Γf ,AΓf

,∈) where
Γf is the set of points and the line set AΓf

consists of all socket curves on
Γf ; we speak of the geometry Gf of socket curves on Γf . We can visualize
Gf in R2 by applying the ground projection

γ : R4 → R4 : (x1, x2, x3, x4) 7→ (x1, x2, 0, 0). (4)

A point ps,t ∈ aL ⊆ Γf is called a base point of aL, if the tangent plane
τs,t of Γf at ps,t is parallel to L. By a star Aa,b, (a, b) ∈ R2, with base
point pa,b we mean the set of all socket curves having the base point pa,b.
We will prove

Theorem 1. Let Γf be an oval partition surface. Then each star Aa,b,

(a, b) ∈ R2, of socket curves on Γf with vertex pa,b is a simple (schlicht)

covering of Γf \ {pa,b}.

1Here we have to interpret `34 as point at infinity of the associated translation plane
PSf .
2We use the terms “chord cylinder” and, later, “socket curve” only as names.
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Theorem 1 enables us to define an, in general, noncommutative geom-
etry on Γf in the sense of J. André.

2. Constructing noncommutative line spaces from oval
partition surfaces

Lemma 1. If f : R2 → R2 is a partition function, then the associated

projective translation plane PSf
of f is compact and connected.

Proof. The map σf : R2 → Sf \ {`34} : (s, t) 7→ τs,t ∩ Ω is a homeo-
morphism because f is of class C1. By [9, 64.8(a), p. 355], Sf is compact
and PSf

is a topological translation plane. Moreover, Sf is homeomorphic
to the sphere S2. As S2 is compact and connected, so the same holds for
the translation line Sf of PSf

. Now [9, 41.7(a)] and [9, 42.1] show that
PSf

is compact and connected. ¤

By L[ps,t, τs,t] we denote the pencil of lines with vertex ps,t in the
tangent plane τs,t. Then for the star3 As,t we have

As,t = {aX | X ∈ L[ps,t, τs,t]}.

Proof of Theorem 1. Let ps,t ∈ Γf \ {pa,b} be arbitrary and let τa,b

be the tangent plane of Γf at pa,b. There is exactly one plane τ
‖
a,b which

is incident with ps,t and parallel to τa,b. Now τ
‖
a,b must be different from

the tangent plane of Γf at ps,t because otherwise the translation line Sf ,

the line τa,b, and the line τ
‖
a,b of PSf

would be three different concurrent
tangents of the topological oval Γf ∪ {`34} of PSf

, a situation that con-
tradicts [6, (3.7),p.412]. Hence the topological oval Γf ∪ {`34} of PSf

and

the line τ
‖
a,b of PSf

have exactly two points in common, namely ps,t and a

point q with q ∈
(
Γf ∪{`34}

)
\{ps,t}. As τa,b∩Ω(∈ Sf \{`34}) and `34 are

skew lines of Ω, so q and `34 are different points of PSf
, i.e., q ∈ Γf . Thus

the line ps,t ∨ q =: C is the only chord of Γf which is incident with ps,t

and parallel to τa,b. Therefore aC is the only socket curve of Aa,b which
contains ps,t. ¤
3We follow the notation of K. Niemann [7, p. iii].
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We take the concept “line space” from [1, Chpt. 1]:

Definition 1. A structure R = (X,t) with a set X 6= ∅ and a map

t : X2 → PX, (x, y) 7→ x t y ⊆ X

is called line space (L-space), if for all x, y ∈ X the following properties
hold:

(L0) x t x = {x}
(L1) x, y ∈ x t y

(L2) z ∈ (x t y) \ {x} ⇒ x t y = x t z.
Subsets of the form x t y are called proper lines for x 6= y and improper
lines for x = y.

Let pa,b, ps,t be arbitrary points of the oval partition surface Γf ; for
pa,b 6= ps,t we define pa,b tf ps,t to4 be the unique socket curve of the
star Aa,b which contains ps,t; for pa,b = ps,t we put pa,b tf ps,t := {pa,b}.
Obviously, the structure Rf := (Γf ,tf ) is a line space. We call Rf the line
space of socket curves on the oval partition surface Γf . We can visualize
Rf in R2 by the γ-images of the socket curves.

Remark 1. Our construction can be extended to ovals Γ of any affine
translation plane T , if Γ satisfies the following two conditions:

1. Γ plus one ideal point I is an oval of the projective completion of T .
2. Γ ∪ {I} does not have three confluent tangents.

The second condition is always true for closed ovals in compact connected
planes of finite topological dimension and also for ovals in finite planes of
odd order.

3. Examples of oval partition surfaces

A generating line of a 4-dimensional shift plane is also called shift
surface.

Example 0. f0 : R2 → R2 : (s, t) 7→ (s2 − t2, 2st); by [9, 74.2], Γf0 is a
shift surface and, by [9, p.430], Γf0 is a partition surface. We call Γf0 the
classical partition surface.

4When it is clear from the situation we write the join symbol without subscript f .
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Example 1. Assume that w is a fixed real number with w > 1 and

f1 : R2 → R2 : (s, t) 7→
{

(s2 − t2, 2st) for t ≥ 0,

(s2 − wt2, 2st) for t < 0;

by [9, 74.2], Γf1 is a shift surface and, by [3, Proof of Satz 3], Γf1 is a
partition surface. We call Γf1 a skew classical partition surface5.

Example 2 and 3. f[k] : R2 → R2 : (s, t) 7→ (st− 1
3s3 +ks, 1

2(t2 +ks2)−
1
12s4); we put f2 =: f[0] and f3 =: f[−1] and call Γf2 and Γf3 the first resp.
second Knarr surface. By [9, 74.24], Γf2 and Γf3 are shift surfaces and
partition surfaces.

We show next that all four examples are oval partition surfaces.
Given two planar functions f and g on R which are both convex,

Polster [8] constructs a planar function f ∗ g on R2, called the product
of f and g, as follows

(f ∗ g)(x1, x2) = (f(x1)− g(x2), x1x2) for (x1, x2) ∈ R2.

In particular, for q : R → R : x 7→ x2 we get the shift surface Γq∗q
which is the image of the classical shift surface Γf0 under the affinity
α : R4 → R4 : (x1, x2, x3, x4) 7→ (x1, x2, x3,

1
2x4). Suppose w > 1 and

choose f = q and g = qw with

qw : R→ R : x 7→
{

x2 for x ≤ 0
wx2 for x > 0,

then Γq∗qw = α(Γf1). By [8, Prop.3.4.1 and 3.5.2], Γq∗q and Γq∗qw , are oval
partition surfaces, hence the same is valid for Γf0 and Γf1 .

The Knarr surfaces Γf2 and Γf3 are oval partition surfaces because of
[4, Prop. 3].

5This example belongs to a larger class of shift planes, see [9, 74.30 and 74.31].
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Only now we are allowed to speak of the line spaces Rfj (j = 0, . . . , 3)
of socket curves on the classical, the skew classical partition surface, the
first and second Knarr surface, respectively.

4. Testing the examples for commutativity

A line space R = (X,t) with x t y = y t x for all x, y ∈ X is called
commutative, otherwise noncommutative.

Theorem 2. (a) The line space (Γf0 ,tf0) of socket curves on the

classical partition surface is commutative.

(b) The line space (Γf1 ,tf1) of socket curves on a skew classical par-

tition surface is noncommutative.

(c) The line spaces (Γf2 ,tf2) and (Γf3 ,tf3) of socket curves on the

first resp. second Knarr surface are noncommutative.

Proof. (a) The classical partition surface Γf0 = {(s, t, s2− t2, 2st) =:
ps,t | s, t ∈ R} is the intersection of the two quadratic coordinate hyper-
cylinders:

Cdi = {(x1, x2, x3, x4) ∈ R4 | x2
1 − x2

2 − x3 = 0} (5)

and

Cmu = {(x1, x2, x3, x4) ∈ R4 | 2x1x2 − x4 = 0}. (6)

Let L = {(d1, d2, d3, d4)ξ | ξ ∈ R} with (d1, d2, d3, d4) ∈ R4 \ {(0, 0, 0, 0)}
be an arbitrary line not meeting `34, i.e., (d1, d2) 6= (0, 0). In order to
describe the socket curve aL of the chord cylinder of Γf0 parallel to L, we
take the line D := {ps,t + (d1, d2, d3, d4) · ξ | ξ ∈ R} and determine D ∩Cdi

and D ∩ Cmu. This is equivalent to the determination of the zeros of the
two polynomials

ξ · p1(ξ) ∈ R[ξ] with p1(ξ) := ξ(d1
2 − d2

2) + 2sd1 − 2td2 − d3 resp.

ξ · p2(ξ) ∈ R[ξ] with p2(ξ) := 2ξd1d2 + 2sd2 + 2td1 − d4

in the unknown ξ. The line D is a chord of Γf0 if, and only if, the poly-
nomials p1(ξ) and p2(ξ) have a common zero. Firstly, we discuss the case
with d1d2 6= 0 and d2

1 − d2
2 6= 0.
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Case d1d2 6= 0 and d2
1 − d2

2 6= 0. By [10, p. 55 Elimination] the two
(linear) polynomials p1(ξ) and p2(ξ) have a common zero if, and only if,
their resultant vanishes. For the resultant R of p1(ξ) and p2(ξ) we compute

R = −2d2(d2
1 + d2

2)s + 2d1(d2
1 + d2

2)t + 2d1d2d3 − d4(d2
1 − d2

2). (7)

For fixed (d1, d2, d3, d4) and variable (s, t) = (x1, x2) ∈ R2 the condition
R = 0 describes the γ-image of the socket curve aL; obviously, γ(aL) is a
(straight) line6.

Also for the remaining cases the socket curve images γ(aL) are (straight)
lines.

This shows together with Theorem 1 that the γ-image of Rf0 is the
classical model of the real affine plane.

(b) Now we put

ps,t :=

{
(s, t, s2 − t2, 2st) for t ≥ 0
(s, t, s2 − wt2, 2st) for t < 0

with w > 1, and Γ≥f1
resp. Γ≤f1

:= {ps,t | s, t ∈ R and t ≥ 0 resp. t ≤ 0}; we
denote the tangent plane of Γf1 at ps,t by τs,t. Moreover,

Cw := {(x1, x2, x3, x4) ∈ R4 | x2
1 − wx2

2 − x3 = 0}. (8)

Now Γ≥f1
and Γ≤f1

are proper subsets of the two different classical partition
surfaces Φ1 := Cdi ∩ Cmu and Φw := Cw ∩ Cmu, respectively. We get Γf1

by tacking together Γ≥f1
and Γ≤f1

along their common parabola Γ≥f1
∩Γ≤f1

=

{(s, 0, s2, 0) | s ∈ R} := pcom: at each point x ∈ pcom the surfaces Φ1 and
Φw have the same tangent plane. We prove the assertion (b) by showing:

p0,0 t p1,1 6= p1,1 t p0,0. (9)

Let τ
‖
0,0 be the plane which is parallel to τ0,0 and incident with p1,1; we

compute:

τ0,0 = {(x1, x2, x3, x4) ∈ R4 | x3 = x4 = 0}
6This way of finding the description of socket curves via a resultant has the advantage
that it works, mutatis mutandis, for all partition surfaces that are algebraic varieties.
The first and second Knarr surface Γf2 and Γf3 are of this kind.
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and

τ
‖
0,0 = {(x1, x2, x3, x4) ∈ R4 | x3 = 0, x4 = 2}.

By Theorem 1, (τ‖0,0 \ {p1,1}) ∩ Γf1 contains exactly one point, say ps0,t0 ;
we get:

ps0,t0 =
(
−w1/4,− 1

w1/4
, 0, 2

)
.

According to the definition, p0,0tp1,1 is the socket curve corresponding to
G := p1,1∨ps0,t0 (where ∨ denotes the join in the affine space R4). Clearly,

ps0,t0 ∈ p0,0 t p1,1. (10)

Let τ
‖
1,1 be the plane which is parallel to τ1,1 and incident with p0,0, i.e.,

τ
‖
1,1 = {(ξ, η, 2ξ − 2η, 2ξ + 2η) | (ξ, η) ∈ R2}.

By Theorem 1, (τ‖1,1 \ {p0,0}) ∩ Γf1 contains exactly one point, namely
ps1,t1 := (2, 2, 0, 8). Thus we have that p1,1 t p0,0 is the socket curve
corresponding to

H := p0,0 ∨ ps1,t1 = {(2, 2, 0, 8)ξ | ξ ∈ R}.

By H‖ we denote the line which is parallel to H and incident with ps0,t0 .
It suffices to show (

H‖ \ {ps0,t0}
) ∩ Γf1 = ∅, (11)

because from (11) follows that H‖ is no chord of Γf1 and therefore

ps0,t0 /∈ p1,1 t p0,0 (12)

which together with (10) implies (9).
We are now going to prove (11). We compute

H‖ =
{(

− w1/4 + 2ξ,− 1
w1/4

+ 2ξ, 0, 2 + 8ξ
)

=: bξ

∣∣∣ ξ ∈ R
}

.

It turns out to be convenient to begin with the determination of the
intersection of H‖\{ps0,t0} and the quadratic hypercylinder Cmu described
by (6):

(H‖ \ {ps0,t0}) ∩ Cmu = {bξ0} with ξ0 =
√

w + 1 + 2 4
√

w

2 4
√

w
.
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We will show that the point bξ0 is not on the quadratic hypercylinder Cdi

described by (5). For bξ0 ∈ Cdi we compute the following condition:

0 = w + 4w3/4 − 4w1/4 − 1

= (z − 1)(z + 1)(z + 2−
√

3)(z + 2 +
√

3) with z = w1/4.

The zeros z = 1 and z = −1 are impossible because of w > 1 and w ∈ R,
respectively; as −2 +

√
3 < 0 and −2−√3 < 0, so the two other zeros are

also impossible. Consequently,

bξ0 /∈ Cdi. (13)

Secondly, we show that the point bξ0 is not on the quadratic hypercylinder
Cw described by (8). For bξ0 ∈ Cw we compute the following condition:

0 = −4w1/2 − 1− 4w1/4 + w2 + 4w7/4 + 4w3/2

= (z − 1) (z + 1)3 A(z)B(z)C(z)

with

A(z) :=
(
z2 +

(
1−

√
3
)

z + 1
)

, B(z) :=
(

z +
1
2

+
1
2

√
3− 1

2

√
2 4
√

3
)

,

and C(z) :=
(

z +
1
2

+
1
2

√
3 +

1
2

√
2 4
√

3
)

.

As above z = 1 and z = −1 are impossible. The polynomial A(z) has no
real zero. Because of −1

2− 1
2

√
3+ 1

2

√
2 4
√

3 < 0 and −1
2− 1

2

√
3− 1

2

√
2 4
√

3 < 0,
the zeros of B(z) and C(z) are also impossible. Thus we have

bξ0 /∈ Cw. (14)

From (13) and (14) we deduce bξ0 /∈ Φ1 ∪ Φw which implies bξ0 /∈ Γf1 .
Hence we have (H‖ \ {ps0,t0}) ∩ Γf1 = ∅.

(c) We put

p
[k]
s,t :=

(
s, t, st− 1

3
s3 + ks,

1
2
(t2 + ks2)− 1

12
s4

)
,
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C
[k]
cub =

{
(x1, x2, x3, x4) ∈ R4

∣∣∣ x1x2 − 1
3
x3

1 + kx1 − x3 = 0
}

,

and

C
[k]
biq =

{
(x1, x2, x3, x4) ∈ R4

∣∣∣ 1
2
(x2

2 + kx2
1)−

1
12

x4
1 − x4 = 0

}

for k ∈ {0,−1}.

Knarr’s surfaces are the intersections of the two coordinate cylinders C
[k]
cub

and C
[k]
biq, in symbols

Γf[k]
= C

[k]
cub ∩ C

[k]
biq for k ∈ {0,−1}.

The line T[k] := {(1, 0, k, 0)ξ | ξ ∈ R} belongs to the tangent plane of

Γf[k]
at the point p

[k]
0,0. In order to determine the socket curve aT[k]

on

Γf[k]
we assume that (s, t) ∈ R2 is fixed and intersect the line T

‖
[k] :=

{p[k]
s,t + (1, 0, k, 0)ξ | ξ ∈ R} with C

[k]
cub and C

[k]
biq. This is equivalent to the

determination of the zeros of the two polynomials ξ · p1(ξ) ∈ R[ξ] and
ξ · p2(ξ, k) ∈ R[ξ] with

p1(ξ) := ξ2 + 3sξ − 3t + 3s2 and

p2(ξ, k) := (ξ + 2s)
(−2s2 − 2sξ − ξ2 + 6k

)

in the unknown ξ. The line T
‖
[k] is a chord of Γf[k]

if, and only if, the

polynomials p1(ξ) and p2(ξ, k) have a common zero. Firstly, p1(ξ) and
(ξ +2s) have a common zero if, and only if, their resultant R1 := −3t+ s2

vanishes. Secondly, p1(ξ) and (−2s2−2sξ−ξ2+6k) have a common zero if,
and only if, their resultant R2(k) := s4−6ks2 +36k2−36kt+9t2 vanishes.

For variable (s, t) ∈ R2 the condition R1 = 0 yields the rational curve

{(
s,

1
3
s2, ks,− 1

36
s4 +

1
2
ks2

) ∣∣∣ s ∈ R
}

=: c[k] for k ∈ {0,−1}. (15)
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We will show now: c[k] is the socket curve7 corresponding to T[k] and p
[k]
0,0

is a base point on c[k] for k ∈ {0,−1}.
Case k =0. The condition R2(0)= 0 implies s4 +9t2 =0; as (s, t)∈R2,

so s = t = 0. The point p
[0]
0,0 belongs to the curve c[0], hence c[0] is the

complete socket curve on Γf[0]
to the direction T[0], in symbols c[0] = aT[0]

.

Obviously, p
[0]
0,0 is a base point of aT[0]

.

Case k = −1. The condition R2(−1) = 0 implies (3t + 6)2 + s4 +

6s2 = 0, and consequently, s = 0 and t = −2. The line K := {p[−1]
0,−2 +

(1, 0,−1, 0)ξ | ξ ∈ R} meets Γf[−1]
exactly in p

[−1]
0,−2 and two complex con-

jugate points, therefore K is no real chord of Γf[−1]
and p

[−1]
0,−2 /∈ aT[−1]

.
Thus c[−1] is the complete socket curve on Γf[−1]

to the direction T[−1], in

symbols c[−1] = aT[−1]
. Obviously, p

[−1]
0,0 is a base point of aT[−1]

.

Because of p
[k]
3,3 ∈ c[k] = aT[k]

, we have p
[k]
3,3 ∈ p

[k]
0,0 t p

[k]
3,3 = aT[k]

= c[k]

for k ∈ {0,−1}. By τ
[k]
3,3 we denote the tangent plane to the Knarr surface

Γf[k]
at p

[k]
3,3, and by τ

[k]‖
3,3 the plane which is parallel to τ

[k]
3,3 and incident

with p
[k]
0,0 (k ∈ {0,−1}). We get:

τ
[k]‖
3,3 =

{
x1, x2, x3, x4) ∈ R4

∣∣∣

(6− k)x1 − 3x2 + x3 = (9− 3k)x1 − 3x2 + x4 = 0
}

for k ∈ {0,−1}. It is easy to verify

(
τ

[k]‖
3,3 \ {

p
[k]
0,0

})
∩ c[k] = ∅ for k ∈ {0,−1}. (16)

By Theorem 1 (τ [k]‖
3,3 \ {p[k]

0,0}) ∩ Γf[k]
contains a single point, say r[k], and

r[k] ∈ p
[k]
3,3 t p

[k]
0,0 (k ∈ {0,−1}). From (16) follows r[k] /∈ c[k] = aT[k]

=

7We point out that for the Knarr surfaces socket curves admitting a rational parametric
description are the exception to the rule. In general, socket curves on the Knarr surfaces
can be described as algebraic varieties.
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p
[k]
0,0 t p

[k]
3,3, therefore

p
[k]
0,0 t p

[k]
3,3 6= p

[k]
3,3 t p

[k]
0,0 for k ∈ {0,−1}. ¤

5. Remark on ovals and partition surfaces

In Subsection 1.2 we took the approach using a partition surface, and
then made the additional assumption that the surface is an oval. For
the purposes of the present paper the point of view taken in 1.1 is more
appropriate, since the differentiability of f will not be used. If we start
from any 4-dimensional compact translation plane P containing a compact
oval O tangent to the translation axis, then after passage to an affine
representation with the translation axis being the line at infinity and the
point of tangency of O being the infinite point of the y-axis, the affine
part of the oval becomes an oval partition surface as defined in 1.2, and
the corresponding spread is the spread defining the affine part of P. This
follows from the results of [6] as we show now.

Indeed, by the definition of an oval, O is the graph Γf of a function f .
The main result of [6] asserts that O is a topological oval. This means
that given any pair of sequences xn, yn in O such that both converge to
the same point p, the secants xn ∨ yn (or, in case xn = yn, the tangents in
these points) converge to the tangent at p. This implies that the function
f is continuously differentiable and that the tangent planes of Γf in the
analytic sense are just the geometric tangents of the oval. Moreover, it is
shown in [6] that the tangents of O form an oval in the dual projective
plane, and this implies that each point at infinity is incident with precisely
one tangent. It follows that Γf is a partition surface defining the spread
which generates P.

The authors thank the referee for his helpful proposals for improve-
ment.
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