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On the Todorov’s conjecture for Nevanlinna classes

By N. SAMARIS (Patras)

Abstract. Let f ∈ N2 and f−1(w) = w+n2(f)w2+n3(f)w3+ . . . where N2

is the well known Nevanlinna’s class of the second type. The problem of finding
the sharp lower and upper bounds of nk(f) over N2 for n = 5, 6, . . . is open. We
solve this problem for n = 5, 6.

1. Introduction

Let N1 and N2 be the classes of Nevanlinna functions of the first and
second type, respectively. N1 consists of all functions g(z) of the form

g(z) =
∫ 1

−1

dµ(t)
z − t

, z 6∈ {z − 1 ≤ z ≤ 1} (1)

where µ(t) is a probability measure in [−1 1], and N2 consists of all func-
tions f(z) of the form

f(z) ≡ g

(
1
z

)
≡

∫ 1

−1

zdµ(t)
1− tz

(2)

in the appropriate cut of z-plane. In [1] it was noted that the functions
(1) and (2) are univalent for |z| > 1 and |z| < 1, respectively. Now let

f−1(w) = w +
∞∑

n=1

nk(f)wk (3)
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denote the inverse for any function defined by (2). The largest common
region of series (3) is the disc |w| < 1

2 , (see [3], p. 345).
P. G. Todorov in [2] posed the problem of calculating the values

Mk and mk, k = 2, 3, . . . where

Mk = max
f∈N2

nk(f) and mk = min
f∈N2

nk(f).

He also proved that

M2 = M3 = 1, m2 = m3 = −1.

Let now

fλ(z) =
λ + 1

2
z

1 + z
+

λ− 1
2

z

1− z
, −1 ≤ λ ≤ 1,

f−1
λ (w) =

∞∑

n=1

bn(λ)wn, M∗
n = max

−1≤λ≤1
bn(λ), m∗

n = min
−1≤λ≤1

bn(λ).

Todorov in [4] and [5] shows that m2n = −M2n, n = 1, 2, . . . , (M∗
k , m∗

k) =
(Mk,mk), k = 2, 3, 4 where

M4 = −m4 =
16
√

15
45

= 1.3770607 . . . ,

calculates (M∗
k ,m∗

k) for all k≤ 7 and conjectures that (M∗
k ,m∗

k)= (Mk,mk)
for k = 2, 3, . . . .

In the next theorem we find Mk and mk for k = 5, 6. The results are
in accordance with Todorov’s conjecture.

We think that it will be helpful to describe in brief below the basic
ideas and technics.

If F is a class of holomorphic functions in the unit disk it is known that
the n-th coefficient region Cn(F) consists of the points (w0, w1, . . . , wn−1)
such that wk = f (k)(0)/k! (k = 0, 1, . . . , n − 1) for some f in F . By PR
we denote the class of holomorphic functions in the unit disk with real
Taylor coefficients, f(0) = 1 and <f(z) > 0, (|z| < 1). Since we deal
with a problem of estimation of quantities on which Taylor coefficients are
involved, it is natural to search for the stronger conditions holding between
them. For the class PR such conditions are given by the Caratheodory–
Toeplitz (C–T) Theorem. Using an one-to-one correspondence between
Cn(PR) and Cn(N2) we get analogous conditions for the class N2.
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In this way the initial problem for nth coefficient is converted to a
problem of finding the maximum and the minimum of a polynomial of n

variables over the compact set Cn+1(PR).
In order to find all necessary critical points, we had to calculate all

the solutions of some polynomial systems

Di(x1, x2, . . . , xk) = 0, i = 1, 2, . . . , k (k ≤ 5).

In order to solve this systems we follow the following procedure:
We consider Di as polynomials with respect to xk and we find the divi-
sion’s remainder between D1 and D2. Next we find the division’s remainder
between D2 and the previous remainder and we continue until the elimi-
nation of xk. Next we eliminate xk between Di, i > 2, and the first degree
polynomial that was obtained in the previous part of the procedure. After
elimination of xk, repeating the procedure we eliminate xk−1, xk−2, . . . and
we finally get a polynomial equation p(x1) = 0.

It is a fact that the procedure described, leads us to hard calculations
containing operations of symbolic algebra, which were completed with com-
puter algebra system Mathematica 4. Also, for each final polynomial, it
was possible to obtain all its roots (complex and real) with Mathematica 4,
even with a 200-decimal points precision. Notice that although the roots
of the polynomials are given below with precision of less than 10-decimal
points, our computations were performed with precision of 200-decimal
points. Because the solutions calculated through the procedure of succes-
sive polynomial divisions are a superset of the critical points demanded,
they are checked and verified over the initial system.

We now state our main results:

2. Main results

Theorem.

(i) M5 = 2, m5 = −113
56

;

(ii) M6 =
2(19

√
14 + 28

√
31)

175
√

5

√
28−

√
434

= 3.10592 . . . , m6 = −M6.
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For the proof of the Theorem we will need the following lemmas.

Lemma 1. (i) Cn+1(PR) = {1} × An, n = 1, 2, . . . , where An is the

set of points x = (x1, x2, . . . , xn) ∈ Rn such that Dk(x) > 0, k = 1, 2, . . . , n

where

Dk(x) =

∣∣∣∣∣∣∣∣∣∣∣

2 x1 x2 . . . xk

x1 2 x1 . . . xk−1

x2 x1 2 . . . xk−2
...

...
...

. . .
...

xk xk−1 xk−2 . . . 2

∣∣∣∣∣∣∣∣∣∣∣

.

(ii) If (1, x1, x2, . . . , xn) ∈ Cn+1(PR) such that Dk(x) = 0 for some

k < n then Dk(x) = Dk+1(x) = . . . , Dn(x) = 0.

Lemma 1 is a part of Caratheodory’s Toeplitz’s theorem (see [6]).

Lemma 2. For n ≤ 6 the following propositions are equivalent:

(i) (0, 1, q2, . . . , qn) ∈ Cn+1(N2).
(ii) There is a point (1, p1, . . . , pn) ∈ Cn+1(PR) such that

qk = Qk−1(p1, p2, . . . , pk−1) where:

Q1(p1) =
−p1

2
,

Q2(p1, p2) =
2p2

1 − p2 − 2
4

,

Q3(p1, p2, p3) =
7p1 − 5p3

1 + 5p1p2 − p3

8
,

Q4(p1, p2, ptp3, p4) =
6− 24p2

1 + 14p4
1 + 8p2 − 21p2

1p2 + 3p2
2 + 6p1p3 − p4

16

and

Q5(p1, p2, p3, p4, p5) =
1
32

(−38p1 + 84p3
1 − 42p5

1 − 63p1p2 + 84p3
1p2

− 28p1p
2
2 + 9p3 − 28p2

1p3 + 7p2p3 + 7p1p4 − p5).

Proof. To every

f(z) =
∫ 1

−1

z

1− tz
dµ(t) = z +

∞∑

n=2

bnzn ∈ N2,
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we correspond the function

L(f)(z) =
∫ 1

−1

1− z2

1− 2tz + z2
dµ(t) = 1 +

∞∑

n=1

pnzn.

Since the operators

µ →
∫ 1

−1

z

1− tz
dµ(t) and µ →

∫ 1

−1

1− z2

1− 2tz + z2
dµ(t)

from the class of probability measures in [−1, 1] to the classes N2 and PR
respectively are one-to-one and onto then the operator L is one-to-one and
in addition L(N2) = PR. Using now Taylor’s expansion for f and L(f) we
get

p1 = 2b2, p2 = −2 + 4b3, p3 = 2(−3b2 + 4b4),

p4 = 2(1− 8b3 + 8b5), p5 = 2(5b2 − 20b4 + 16b6)

or

b2 =
p1

2
, b3 =

(p2 + 2)
4

, b4 =
(p3 + 3p1)

8
,

b5 =
p4 + 4p2 + 6

16
, b6 =

10p1 + 5p3 + p5

32
.

Let now

f(z) = z + b2z
2 + b3z

3 + . . . , f ∈ N2 and f−1(w) = w + q2z
2 + . . . .

Since

(f ◦ f−1)′(0) = 1 and (f ◦ f−1)(n)(0) = 0, n = 2, 3 . . .

after the calculations we get

qk = Qk−1(p1, p2, . . . , pk−1), k = 2, 3, . . . , 6. ¤
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3. Proof of the theorem

We will prove part (ii) of the theorem. At first we make the following
remarks.

(a) By Lemma 1 and 2 we obtain that M6 and m6 coincides with
maximum and minimum respectively, of the polynomial Q5 over A5. Since
Q5 is of the first degree with respect to p5 the previous maximum and
minimum are not given over the open set A5.

(b) Since Dk(p1, p2, . . . , pk) are polynomials of the second degree with
respect to pk, the equations Dk(p1, p2, . . . , pk) = 0 give as roots the con-
tinuous functions Pk,i(p1, p2, . . . , pk−1), i = 1, 2, k ≤ 5. (The functions Pk,i

are given in the appendix). In the case that Dk(p1, p2, . . . , pk) = 0 (k ≤ 5)
after the calculations we get:

Pρ,1(p1, p2, . . . , pρ) = Pρ,2(p1, p2, . . . , pρ), ρ = k + 1, . . . , 5.

We now define the restrictions H
(5)
k,i over Ak−1 of the functions Q5 as

follows: H
(5)
k,i (p1, p2, . . . , pk−1) = Q5(p1, p2, . . . , p5) with

pρ = Pρ,i(p1, p2, . . . , pρ−1), ρ = k, k + 1, . . . , 5.

We consider the set C
(5)
k,i of all (p1, p2 . . . , pk−1) which are the critical points

in the functions H
(5)
k,i over Ak and the set V

(5)
k,i which includes the maximum

and minimum of the respective values.
By the two previous remarks it is easy to see that M6 and m6 are the

maximum and minimum of all the values V
(5)
k,i .

We will now find the set C
(5)
5,1 . We consider the polynomial system

that is obtained after elimination of the denominators of the equations

∂H
(5)
5,1

∂pk
= 0, k = 1, 2, 3, 4.

In the procedure of polynomial remainders that we apply in order to solve
the above system after factorization of every remainder expect of the de-
nominators we omit also and the factors of the form Dk(p1, p2, . . . , pk)
(k < 5). Among the equations which are obtained in the above procedure
we consider the following:
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−24p1 − 12p2
1 + 7p3

1 − 2p1p2 + 14p2
1p2 − 2p2

2

+7p1p
2
2 − 16p1p3 − 7p2

1p3 − 2p2p3 + 4p4 + 2p1p4 = 0,

−252p1−112p2
1+287p3

1+168p4
1−4p2−196p1p2−161p2

1p2+24p3+28p1p3 = 0

27584+114240p1+223440p2
1+260960p3

1+161700p4
1+44100p5

1+3675p6
1 = 0.

Let R
(5)
5,1 be the set of all points (p1, p2, p3, p4) that are solutions of the

above system. Solving this system we obtain:

R
(5)
5,1 = {(784.11,−686.303, 64.2589,−6.99709), (−141.238, 21.7373,

0.904313,−2.32053), (8.54405,−2.65501, 0.76221,−1.34458), (0.515794,
1.12714,−1.32933,−0.656607), (4.83205 + 0.49452i, 0.64871 + 2.48806i,
−2.29805+0.198561i),(−0.340597−0.638435i),4.83205+0.49452i,0.64871−
2.48806i,−2.29805− 0.198561i, 0.340597 + 0.638435i)}.
Checking all the above solutions we obtain

C
(5)
5,1 = {(0.515794, 1.12714,−1.32933,−0.656607)} and V

(5)
5,1 =

{0.00140562}. Since H
(5)
5,2 (p1, p2, p3, p4) = −H

(5)
5,2 (−p1, p2,−p3, p4) we ob-

tain that V
(5)
5,2 = −V

(5)
5,1 = {−0.00140562}.

Following the same procedure for the function H4,1 we get the system
of equations:

934p1−1050p3
1+371p1p2+560p3

1p2−455p1p
2
2−66p3−70p2

1p3+105p2p3 = 0,

−8087582453760 + 162830301622272p2
1 − 889886700581760p4

1+
2028040709688000p6

1 − 208912199563200p8
1 + 1013704871970000p10

1 −
220626705506250p6

12 + 18461401546875p14
1 + p2(−556223+

108234507709440p2
1 − 443713854024000p4

1 + 692136093600000p6
1−

455672481600000p8
1 + 116130727650000p10

1 − 10723428734375p12
1 ) = 0

and
(5076− 131760p2

1 + 51725p4
1)(−57517056 + 60963840p2

1 + 2070841920p6
1+

1129156000p8
1 − 168070000p10

1 + 7503125p12
1 )(−41929933824−

844096619520p2
1 + 22180104313920p4

1 − 60190321766400p6
1+

39504762948000p8
1 − 9536171750000p10

1 + 722288328125p12
1 ) = 0.

Solving the above system and checking its solutions we obtain

C
(5)
4,1 = {(0.460717327,−0.728901779, 0.413929249104), (−0.460717327,

−0.728901779,−0.413929249104)} and V
(5)
4,1 = {±0.1011430991}.

The same procedure applied to the function H4,2 gives that C
(5)
4,2 = ∅.
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Continuing with the remaining functions we obtain

C
(5)
3,1 = {(−1.57229, 0.573931)}, V

(5)
3,1 = {−0.00374433},

V
(5)
3,2 = {0.00374433}, C

(5)
2,1 = {∅}, C(5)

2,2 = {±0.63997,±1.67046},
V

(5)
2,2 = {±3.10592}

and
V

(5)
1,1 = −V

(5)
1,2 = {−1}.

Comparing the values of all the sets V
(5)
i,k we get that

{M6,m6} = V
(5)
2,2 .

Notice that the procedure of polynomial remainders we obtain that the set

C
(5)
2,2 coincides with the set of the roots of the equation

40− 112p2
1 + +35p4

1 = 0,

therefore the sets C
(5)
2,2 and V

(5)
2,2 get the exact form

C
(5)
2,2 =

{
±

√√√√8
5
−

2
√

62
7

5

}

and

V 5
2,2 =

{
±2(19

√
14 + 28

√
31 )

175
√

5

√
28−

√
434

}
.

The proof of the part (iii) is now complete.
Because the procedure of the proof of part (i) is the same as for part

(ii), we omit to give all the intermediate expressions explicitly, and we only

give the final sets C
(4)
k,i and V

(4)
k,i . Actually the intermediate expressions that

we omit are simpler than the corresponding ones in part (ii).
Part (ii).

C
(4)
4,1 = {(0,−1

3 , 0)}, V
(4)
4,1 = {− 4

12} and C
(4)
4,2 = ∅.

C
(4)
3,1 = {(−0.573434, 0.92694)}, V

(4)
3,1 = {0.0202514},

C
(4)
3,2 = {(0.573434, 0.92694)} and V

(4)
3,2 = {0.0202514}.

C
(4)
2,1 = {0}, V

(4)
2,1 = {0}, C

(4)
2,2 = {(0,±

√
15
7 )} and V

(4)
2,2 = {2,−113

56 }.
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V
(4)
1,1 = {1} and V

(4)
1,2 = {1}.
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4. Appendix

P1,1 = −2, P1,2 = 2,

P2,1 = 2, P2,2 = −2 + p2
1,

P3,1 = (−4 + 2p1 + p2
1 − 2p1p2 + p2

2) (−2 + p1)−1,

P3,2 = (−4− 2p1 + p2
1 + 2p1p2 + p2

2) (2 + p1)−1,

P4,1 = (−4 + p2
1 + 2p2 − 2p1p3 + p2

3) (−2 + p2)−1,

P4,2 = (−4 + 3p2
1− 2p2− 2p2

1p2 + 2p2
2 + p3

2 + 2p1p3− 2p1p2p3 + p2
3)

× (2− p2
1 + p2)−1,

P5,1 = (8 + 4p1 − 4p2
1 − p3

1 − 4p1p2 + 2p2
1p2 − 4p2

2 + 2p1p
2
2 + 4p3 + 2p1p3

+ 2p2
1p3 − 4p2p3 + 2p1p2p3 − p2

2p3

− 2p2
3 − 2p2p

2
3 − p3

3 − 4p1p4 − 2p2
1p4 + 2p1p2p4

+ 2p2
2p4 + 2p1p3p4 + 2p2p3p4 − 2p2

4 − p1p
2
4)

× (−4− 2p1 + p2
1 + 2p1p2 + p2

2 − 2p3 − p1p3)−1,

P5,2 = (−8 + 4p1 + 4p2
1 − p3

1 − 4p1p2 − 2p2
1p2 + 4p2

2 + 2p1p
2
2 + 4p3 − 2p1p3

+ 2p2
1p3 − 4p2p3 − 2p1p2p3 − p2

2p3 + 2p2
3 + 2p2p

2
3 − p3

3 − 4p1p4

+ 2p2
1p4 + 2p1p2p4 − 2p2

2p4 − 2p1p3p4 + 2p2p3p4 + 2p2
4 − p1p

2
4)

× (−4 + 2p1 + p2
1 − 2p1p2 + p2

2 + 2p3 − p1p3)−1.
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