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Oscillation criteria of hyperbolic equations
with deviating arguments

By S. H. SAKER (Mansoura)

Abstract. In this paper we shall consider a class of hyperbolic nonlinear
equations with deviating arguments. Some new sufficient conditions for oscillation
of all solutions with three kinds of boundary conditions are obtained.

1. Introduction

The study of oscillatory behavior of solutions of partial differential
equations with deviating arguments, besides its theoretical interest, is im-
portant from the viewpoint of applications. Examples of applications can
be found in [12]. But only a few results on the oscillatory behavior of
hyperbolic equations with deviating arguments were recently obtained in
[2], [3], [5], [6], [9]–[11] and the references cited therein. In this paper, we
shall consider the nonlinear hyperbolic equation with deviating arguments

∂2u(x, t)
∂t2

= a(t)∆u(x, t) +
m∑

i=1

ai(t)∆u(x, τi(t))

− q(x, t)f(u(x, g(t))), (x, t) ∈ Ω× R+ = G,

(E)

where Ω is a bounded domain in Rn, n ≥ 1, with a piecewise smooth
boundary ∂Ω, and ∆u is the Laplacian in Rn.

Throughout, we will assume that the following conditions hold:

Mathematics Subject Classification: 34K11, 35L10.
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(H1) a, ai ∈ C(R+,R+) for i = 1, . . . , m;
(H2) q ∈ C(G,R+) and q(t) = minx∈Ω q(x, t) is not identically zero on

[t0,∞) for some t0 > 0;
(H3) τi, g ∈ C(R+,R+), g′(t) > 0, limt→∞ g(t) = limt→∞ τi(t) = ∞ for

i = 1, . . . , m;
(H4) f ∈ C(R,R) is convex in R+, uf(u) > 0 and f(u)/u ≥ k > 0 for u 6= 0.

We consider three kinds of boundary conditions:

∂u(x, t)
∂N

= 0, on (x, t) ∈ ∂Ω× R+, (B1)

∂u(x, t)
∂N

+ γ(x, t)u = 0, on (x, t) ∈ ∂Ω× R+, (B2)

u(x, t) = 0, on (x, t) ∈ ∂Ω× R+, (B3)

where N is the unit exterior normal vector to ∂Ω and γ is a nonnegative
continuous function on ∂Ω× R+.

Definition 1. A function u(x, t) ∈ C2(Ω× [t−1,∞),R)∩
C1(Ω× [t−1,∞),R) is called a solution of the problem (E), (B), if it satis-
fies (E) in the domain G along with the corresponding boundary condition,
where

t−1 = min
{

min
1≤i≤m

{
inf
t≥0

τi(t)
}
, inf
t≥0

g(t)
}

.

Definition 2. A solution u(x, t) of the problem (E), (B) is said to be
oscillatory in the domain G, if for each positive number µ there exists a
point (x1, t1) ∈ Ω× [µ,∞) where u(x1, t1) = 0.

Definition 3. A function U(t) is called eventually positive (negative) if
there exists a number t1 ≥ t0 such that U(t) > 0(< 0) holds for all t1 ≥ t0.

In [3], the author considered the equation (E) with two kinds of bound-
ary conditions, B2 and B3, and extended the oscillation criterion of Aitkin-
son [1] for second order differential equation and given some sufficient con-
ditions which guarantee that every solution of (E) and (B2), (E) and (B3),
is oscillatory in G. Our aim in this paper is to give some new oscilla-
tion criteria, Kamenev-type [4] and Philos-type [8] oscillation criteria
for equation (E) with the boundary conditions (B1)–(B3). Our results in
this paper extend and improve the results in [3], since Kamenev-type and
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Philos-type oscillation criteria improve the Atkinson criterion for oscilla-
tion of second order differential equations.

2. Main Results

In this section we will give some oscillation criteria of (E) with the
boundary conditions (B1), (B2) and (B3).

First, we consider the oscillation of the problem (E), (B1).

Theorem 2.1. Suppose that the conditions (H1)–(H4) hold. If there

exists a function ρ ∈ C1([t0,∞),R+) such that

lim sup
t→∞

∫ t

t0

(
ρ(s)q(s)− (ρ′(s))2

4kρ(s)g′(s)

)
ds = ∞. (2.1)

Then every solution of (E), (B1) is oscillatory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution
u(x, t) of the problem (E), (B1). Without loss of generality, we assume that
u(x, t) > 0, u(x, t) ∈ Ω× (t0,∞), (t0 ≥ 0). By condition (H3) there exists
a t1 > t0 such that τi(t) ≥ t0 and g(t) ≥ t0, t ≥ t1. Then u(x, τi(t)) > 0,
u(x, g(t)) > 0, (x, t) ∈ Ω× [t1,∞), i = i, . . . , m. Integrating equation (E)
with respect to x over the domain Ω, we have

d2

dt2

∫

Ω
u(x, t)dx = a(t)

∫

Ω
∆u(x, t)dx +

m∑

i=1

ai(t)
∫

Ω
∆u(x, τi(t))dx

−
∫

Ω
q(x, t)f(u(x, g(t)))dx.

(2.2)

Using Green’s formula and (B1), we have

∫

Ω
∆u(x, t)dx =

∫

∂Ω

∂u(x, t)
∂N

dS = 0, t ≥ t1, (2.3)

∫

Ω
∆u(x, τi(t))dx =

∫

∂Ω

∂u(x, τi(t))
∂N

dS = 0, i = 1, . . . , m, t ≥ t1, (2.4)
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where dS is the surface element on ∂Ω. Using Jensen’s inequality and
(H2), we have

∫

Ω
q(x, t)f(u(x, g(t)))dx ≥ q(t)

∫

Ω
f(u(x, g(t)))dx

≥ q(t)
∫

Ω
dxf

(∫
Ω u(x, g(t))dx∫

Ω dx

)
, t ≥ t1.

(2.5)

Therefore, from (2.2)–(2.5), we have

U ′′(t) + q(t)f(U(g(t))) ≤ 0, t ≥ t1, (2.6)

where

U(t) =

∫
Ω u(x, t)dx∫

Ω dx
, t ≥ t1. (2.7)

It is shown that U(t) > 0 and U ′′(t) ≤ 0 for t > t1. We claim that

U ′(t) > 0, for t > t1. (2.8)

If not, there is a t2 > t1 such that U ′(t2) < 0. Then U ′(t) ≤ U ′(t2) and

U(t) ≤ U(t2) + U ′(t2)(t− t2). (2.9)

Let t → ∞ then limt→∞ U(t) = −∞, which contradicts the fact that
U(t) > 0 for t ≥ t1. Therefore (2.8) holds. Set

w(t) = ρ(t)
U ′(t)

U(g(t))
for t ≥ t1. (2.10)

Then w(t) > 0 for t ≥ t1. From (2.10) and (2.6), we have

w′(t) ≤ −kρ(t)q(t) + ρ′(t)
U ′(t)

U(g(t))
− g′(t)ρ(t)

U ′(t)U ′(g(t))
U2(g(t))

. (2.11)

Using the fact that U ′′(t) ≤ 0 and g(t) ≤ t, then we obtain

U ′(t) ≤ U ′(g(t)), t ≥ t1. (2.12)

Combining (2.11) and (2.12) we have

w′(t) ≤ −kρ(t)q(t) +
ρ′(t)
ρ(t)

w(t)− g′(t)ρ(t)
(U ′(t))2

U2(g(t))
. (2.13)
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Then, from (2.10) and (2.13), we have

w′(t) ≤ −kρ(t)q(t) +
ρ′(t)
ρ(t)

w(t)− g′(t)
ρ(t)

w2(t), t ≥ t1, (2.14)

thus

w′(t) ≤ −kρ(t)q(t) +
(ρ′(t))2

4ρ(t)g′(t)

−
[√

g′(t)
ρ(t)

w(t)− ρ′(t)
2ρ(t)

√
ρ(t)
g′(t)

]2

.

(2.15)

Then

w′(t) ≤ −
[
kρ(t)q(t)− (ρ′(t))2

4ρ(t)g′(t)

]
. (2.16)

Integrating (2.16) from t1 to t we have

w(t) ≤ w(t1)− k

∫ t

t1

[
ρ(s)q(s)− (ρ′(s))2

4kρ(s)g′(s)

]
ds. (2.17)

Letting t →∞, we have in view of (2.1) that w(t) → −∞, a contradiction,
since w(t) > 0. If u(x, t) < 0 for Ω × (t0,∞) then −u(x, t) is a positive
solution of (E), (B1) and the proof is similar. This completes the proof. ¤

Theorem 2.1 improve Theorems 1 and 2 in [3], since the oscillation
criterion in Theorem 2.1 do not require the conditions ρ′(t) ≥ 0 and(

ρ′(t)
g′(t)

)′
≤ 0 for t ≥ t0 > 0.

Now, we present some new oscillation criterion for.(E), (B1) by using
integral averages condition of Kamenev-type.

Theorem 2.2. Assume that all the assumptions of Theorem 2.1 are

satisfied, except the condition (2.1) is replaced by

lim sup
t→∞

1
tn

∫ t

t0

(t− s)n

(
ρ(s)q(s)− (ρ′(s))2

4kρ(s)g′(s)

)
ds = ∞. (2.18)

Then every solution of (E), (B1) is oscillatory in G.
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Proof. Suppose to the contrary that there is a nonoscillatory solution
u(x, t) of the problem (E), (B1). Without loss of generality, we assume that
u(x, t) > 0, u(x, t) ∈ Ω× (t0,∞), (t0 ≥ 0). By condition (H3) there exists
a t1 > t0 such that τi(t) ≥ t0 and g(t) ≥ t0, t ≥ t1. Then u(x, τi(t)) > 0,
u(x, g(t)) > 0, (x, t) ∈ Ω× [t1,∞), i = i, . . . ,m. By Theorem 2.1 we have

w′(t) ≤ −kρ(t)q(t) +
ρ′(t)
ρ(t)

w(t)− g′(t)
ρ(t)

w2(t), t ≥ t1. (2.14)

Multiplying both sides of (2.14) by (t− s)n and integrate from t1 to t we
have

∫ t

t1

(t− s)n

[
ρ(s)q(s)− (ρ′(s))2

4kρ(s)g′(s)

]
ds

≤ −1
k

∫ t

t1

(t− s)nw′(s)ds, t ≥ t1.

(2.19)

Since
∫ t

t1

(t− s)nw′(s)ds = n

∫ t

t1

(t− s)n−1w(s)ds− w(t1)(t− t1)n (2.20)

we get

1
tn

∫ t

t1

(t− s)nQ(s)ds ≤ 1
k
w(t1)

(
t− t1

t

)n

− n

ktn

∫ t

t1

(t− s)n−1w(s)ds

(2.21)

where Q(s) = ρ(s)q(s)− (ρ′(s))2

4kρ(s)g′(s) . Hence

1
tn

∫ t

t1

(t− s)nQ(s)ds ≤ 1
k
w(t1)

(
t− t1

t

)n

(2.22)

where w(t) > 0. Then

lim sup
t→∞

1
tn

∫ t

t1

(t− s)nQ(s)ds → w(t1) ≡ finite number (2.23)

which contradicts (2.18). If u(x, t) < 0 for Ω × (t0,∞) then −u(x, t) is a
positive solution of (E), (B1) and the proof is similar. This completes the
proof. ¤
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Next, we present some new oscillation criteria for (E) and (B1) by
using integral averages condition of Philos-type. Following Philos [8], we
introduce a class of functions <. Let

D0 = {(t, s) : t > s ≥ t0} and D = {(t, s) : t ≥ s ≥ t0}. (2.24)

The function H ∈ C(D,R) is said to belongs to the class < if
(I) H(t, t) = 0 for t ≥ t0, H(t, s) > 0 on D0;
(II) H has a continuous and nonpositive partial derivative on D0 with

respect to the second variable such that and there exists a continuous
function h(t, s) such that

−∂H(t, s)
∂s

= h(t, s)
√

H(t, s) for all (t, s) ∈ D0. (2.25)

Theorem 2.3. Assume that (H1)–(H4) hold. Let the differentiable

function ρ as in Theorem 2.1 and let H belongs to the class < such that

lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
kH(t, s)ρ(s)q(s)− ρ(s)Q2(t, s)

4g′(s)

]
ds = ∞, (2.26)

where

Q(t, s) = h(t, s)− ρ′(s)
ρ(s)

√
H(t, s). (2.27)

Then every solution of (E), (B1) is oscillatory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution
u(x, t) of the problem (E), (B1). Without loss of generality, we assume that
u(x, t) > 0, u(x, t) ∈ Ω× (t0,∞), (t0 ≥ 0). By condition (H3) there exists
a t1 > t0 such that τi(t) ≥ t0 and g(t) ≥ t0, t ≥ t1. Then u(x, τi(t)) > 0,
u(x, g(t)) > 0, (x, t) ∈ Ω× [t1,∞), i = i, . . . , m. By Theorem 2.1 we obtain
(2.14). In order to simplify notations we denote by

γ1(s) =
ρ′(s)
ρ(s)

, W1(s) =
g′(s)
ρ(s)

. (2.28)

Then from (2.14) for all t > t1, we have
∫ t

t1

H(t, s)w′(s)ds +
∫ t

t1

kH(t, s)ρ(s)q(s)ds

−
∫ t

t1

H(t, s)γ1(s)w(s)ds +
∫ t

t1

H(t, s)W1(s)w2(s)ds ≤ 0

(2.29)
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which implies that

∫ t

t1

kH(t, s)ρ(s)q(s)ds≤
∫ t

t1

H(t, s)γ1(s)w(s)ds (2.30)

−
∫ t

t1

H(t, s)w′(s)ds−
∫ t

t1

H(t, s)W1(s)w2(s)ds

= −H(t, s)w(s)
∣∣t
t1

−
∫ t

t1

[
− ∂H(t, s)

∂s
w(s)−H(t, s)γ1(s)w(s)+ H(t, s)W1(s)w2(s)

]
ds

= H(t, t1)w(t1)

−
∫ t

t1

[√
H(t, s)(h(t, s)−

√
H(t, s)γ1(s))w(s) + H(t, s)W1(s)w2(s)

]
ds

= H(t, t1)w(t1)

−
∫ t

t1

[√
H(t, s)W1(s)w(s) +

1
2

Q(t, s)√
W1(s)

]2

+
∫ t

t1

Q2(t, s)
4W1(s)

ds

where Q(t, s) = (h(t1, s)−
√

H(t1, s)γ1(s)). Thereby, we conclude that

∫ t

t1

[
kH(t, s)ρ(s)q(s)− Q2(t, s)

4W1(s)

]
ds

≤ H(t, t1)w(t1)−
∫ t

t1

[√
H(t, s)W1(s)w(s) +

1
2

Q(t, s)√
W1(s)

]2

ds.

(2.31)

By virtue of (2.31) and (II) for all t > t1, we obtain

∫ t

t1

[
kH(t, s)ρ(s)q(s)− Q2(t1, s)

4W1(s)

]
ds ≤ H(t, t1)|w(t1). (2.32)

Then by (2.32) and (II), we have

1
H(t, t0)

∫ t

t0

[
kH(t, s)ρ(s)q(s)− Q2(t, s)

4W1(s)

]
ds

≤
∫ t1

t0

ρ(s)q(s)ds + |w(t1)|.
(2.33)
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Inequality (2.33) yields

lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
kH(t, s)ρ(s)q(s)− Q2(t, s)

4W1(s)

]
ds < ∞, (2.34)

and the latter inequality contradicts assumption (2.26). If u(x, t) < 0 for
Ω× (t0,∞) then −u(x, t) is a positive solution of (E), (B1) and the proof
is similar. This completes the proof. ¤

The following theorem is immediate from Theorem 2.3.

Theorem 2.4. Assume that (H1)–(H4) hold. Let the differentiable

function ρ as in Theorem 2.1 and let H belongs to the class < such that

lim sup
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)ρ(s)q(s)ds = ∞, (2.35)

lim sup
t→∞

1
H(t, t0)

∫ t

t0

ρ(s)Q2(t, s)
g′(s)

ds < ∞. (2.36)

Then every solution of (E), (B1) is oscillatory in G.

Corollary 2.1. Assume that (H1)–(H4) hold. Let the differentiable

function ρ(t) = 1 and let H belongs to the class < such that

lim sup
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)q(s)ds = ∞,

lim sup
t→∞

1
H(t, t0)

∫ t

t0

ρ(s)h2(t, s)
g′(s)

ds < ∞.

(2.37)

Then every solution of (E), (B1) is oscillatory in G.

The following two oscillation criteria treat the case when it is not
possible to verify easily condition (2.26).

Theorem 2.5. Assume that (H1)–(H4) hold. Let the differentiable

function ρas in Theorem 2.1 and let H belongs to the class < such that

0 < inf
s≥t0

[
lim inf
t→∞

H(t, s)
H(t, t0)

]
≤ ∞. (2.38)
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Let ψ ∈ C[[t0,∞),R] such that for t ≥ t1

lim sup
t→∞

1
H(t, t0)

∫ t

t0

Q2(t, s)
W1(s)

ds < ∞, (2.39)

lim sup
t→∞

∫ t

t0

ψ2
+(s)W1(s)ds = ∞, (2.40)

and

lim sup
t→∞

1
H(t, t0)

∫ t

t0

(
kH(t, s)ρ(s)q(s)− Q2(t, s)

4W1(s)

)
ds ≥ sup

t≥t0

ψ(t), (2.41)

where Q(t, s) as in Theorem 2.3 and ψ+ = max{ψ(t), 0}, then every solu-

tion of (E), (B1) is oscillatory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution
u(x, t) of the problem (E), (B1). Without loss of generality, we assume that
u(x, t) > 0, u(x, t) ∈ Ω× (t0,∞), (t0 ≥ 0). By condition (H3) there exists
a t1 > t0 such that τi(t) ≥ t0 and g(t) ≥ t0, t ≥ t1. Then u(x, τi(t)) > 0,
u(x, g(t)) > 0, (x, t) ∈ Ω× [t1,∞), i = i, . . . , m. By Theorem 2.3 we obtain
(2.31). By (2.31) we have for t > t1

1
H(t, t1)

∫ t

t1

[
kH(t, s)ρ(s)q(s)− Q2(t, s)

4W1(s)

]
ds

≤ w(t1)− 1
H(t, t1)

∫ t

t1

[√
H(t, s)W1(s)w(s) +

Q(t, s)
2
√

W1(s)

]2

ds.

Hence, for t ≥ t1

lim sup
t1→∞

1
H(t, t1)

∫ t

t1

[
H(t, s)ρ(s)q(s)− Q2(t, s)

4W1(s)

]
ds

≤ w(t1)− lim inf
t1→∞

1
H(t, t1)

∫ t

t1

[√
H(t, s)W1(s)w(s) +

Q(t, s)
2
√

W1(s)

]2

ds.
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By (2.41) and the last inequality, we have for t ≥ t1

w(t1) ≥ ψ(t1) + lim inf
t→∞

1
H(t, t1)

×
∫ t

t1

[√
H(t1, s)W1(s)w(s) +

Q(t1, s)
2
√

W1(s)

]2

ds,

(2.42)

and hence

0 ≤ lim inf
t→∞

1
H(t, t1)

∫ t

t1

[√
H(t, s)W1(s)w(s) +

Q(t, s)
2
√

W1(s)

]2

ds

≤ w(t1)− ψ(t1) < ∞.

(2.43)

Define the functions α(t) and β(t) as follows

α(t) =
1

H(t, t1)

∫ t

t1

H(t, s)W1(s)w2(s)ds

β(t) =
1

H(t, t1)

∫ t

t1

√
H(t, s)Q(t, s)w(s)ds.

(2.44)

The reminder of the proof is similar to that the proof of Theorem 2.6 in [7]
and hence is omitted. ¤

Theorem 2.6. Assume that (H1)–(H4) hold. Let the differentiable

function ρ as in Theorem 2.1 and let H belongs to the class <, and assume

that (2.38) holds. Suppose there exists a function ψ ∈ C[[t0,∞),R] such

that for t > t0, T ≥ t0 (2.40) holds, and

lim sup
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)ρ(s)q(s)ds < ∞, (2.45)

and

lim sup
t→∞

1
H(t, t0)

∫ t

t0

(
kH(t, s)ρ(s)q(s)− Q2(t, s)

4W1(s)

)
ds ≥ sup

t≥t0

ψ(t), (2.46)

where Q(t, s) as in Theorem 2.3 and ψ+ = max{ψ(t), 0}, then every solu-

tion of (E), (B1) is oscillatory in G.
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Proof. We proceed as in Theorem 2.3, we assume that equation (E)
has an eventually positive solution. Defining again w(t) by (2.18), and in
the same way as in Theorem 2.3, we have that the inequality (2.31) holds.
By (2.31) we have for t > t1

lim inf
t→∞

1
H(t, t1)

∫ t

t1

[
kH(t, s)ρ(s)q(s)− Q2(t, s)

4W1(s)

]
ds

≤ w(t1)− lim sup
t→∞

1
H(t, t1)

∫ t

t1

[√
H(t, s)W1(s)w(s) +

Q(t, s)
2
√

W1(s)

]2

ds.

It follows from (2.46) that for t > t1

w(t1) ≥ ψ(t1) + lim sup
t→∞

1
H(t, t1)

×
∫ t

t1

[√
H(t, s)W1(s)w(s) +

Q(t, s)
2
√

W1(s)

]2

ds,

(2.47)

and, hence

lim sup
t→∞

1
H(t, t1)

∫ t

t1

[√
H(t, s)W1(s)w(s) +

Q(t, s)
2
√

W1(s)

]2

ds

≤ w(t1)− ψ(t1) < ∞.

By defining again α(t) and β(t) as in Theorem 2.5, the remainder of the
proof is similar to that the proof of Theorem 2.8 in [7] and hence omitted.

¤

Now, we consider the oscillation of the problem (E), (B2).

Theorem 2.7. Suppose that the conditions (H1)–(H4) hold. If there

exists a function ρ ∈ C1([t0,∞),R+) such that (2.1) holds, then every

solution of (E), (B2) is oscillatory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution
u(x, t) of the problem (E), (B2). Without loss of generality, we assume that
u(x, t) > 0, u(x, t) ∈ Ω× (t0,∞), (t0 ≥ 0). By condition (H3) there exists
a t1 > t0 such that τi(t) ≥ t0 and g(t) ≥ t0, t ≥ t1. Then u(x, τi(t)) > 0,
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u(x, g(t)) > 0, (x, t) ∈ Ω× [t1,∞), i = i, . . . , m. Integrating equation (E)
with respect to x over the domain Ω, we have

d2

dt2

∫

Ω
u(x, t)dx = a(t)

∫

Ω
∆u(x, t)dx +

m∑

i=1

ai(t)
∫

Ω
∆u(x, τi(t))dx

−
∫

Ω
q(x, t)f(u(x, g(t)))dx.

(2.2)

Using Green’s formula and (B2), we have
∫

Ω
∆u(x, t)dx =

∫

∂Ω

∂u(x, t)
∂N

dS

= −
∫

∂Ω
γ(x, t)u(x, t)dS ≤ 0, t ≥ t1,

(2.48)

and
∫

Ω
∆u(x, τi(t))dx =

∫

∂Ω

∂u(x, τi(t))
∂N

dS

= −
∫

∂Ω
γ(x, t)u(x, τi(t))dS ≤ 0, i = 1, . . . , m, t ≥ t1,

(2.49)

where dS is the surface element on ∂Ω. Using Jensen’s inequality and
(H2), we have

∫

Ω
q(x, t)f(u(x, g(t)))dx ≥ q(t)

∫

Ω
f(u(x, g(t)))dx

≥ q(t)
∫

Ω
dxf

(∫
Ω u(x, g(t))dx∫

Ω dx

)
, t ≥ t1.

(2.50)

Therefore, from (2.2), (2.48)–(2.50), we have

U ′′(t) + q(t)f(U(g(t))) ≤ 0, t ≥ t1, (2.51)

where U(t) is defined by (2.7). The remainder of the proof is similar to
that of Theorem 2.1 and hence is omitted. ¤

Theorem 2.8. Assume that all the assumptions of Theorem 2.7 are

satisfied, except the condition (2.1) is replaced by (2.18). Then every

solution of (E), (B2) is oscillatory in G.
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Proof. The proof is similar to that of Theorem 2.2 and hence is
omitted. ¤

Theorem 2.9. Assume that (H1)–(H4) hold. Let the differentiable

function ρ as in Theorem 2.1 and let H belongs to the class < such that

(2.26) holds. Then every solution of (E), (B2) is oscillatory in G.

Proof. The proof is similar to that of Theorem 2.3 and hence is
omitted. ¤

The following theorem is immediate from Theorem 2.9.

Theorem 2.10. Assume that (H1)–(H4) hold. Let the differentiable

function ρ as in Theorem 2.1 and let H belongs to the class < such that

(2.35) and (2.36) hold. Then every solution of (E), (B2) is oscillatory in G.

The following two theorems follow immediately from Theorems 2.5
and 2.6 for oscillation criteria of (E), (B2).

Theorem 2.11. Assume that all the assumptions of Theorem 2.5

hold. Then every solution of (E), (B2) is oscillatory in G.

Theorem 2.12. Assume that all the assumptions of Theorem 2.6

hold. Then every solution of (E), (B2) is oscillatory in G.

Next, we consider the oscillation of the problem (E), (B3).
With each solution u(x, t) of the problem (E), (B3), we associate a

function V (t) defined by

V (t) =

∫
Ω u(x, t)Φ(x)dx∫

Ω Φ(x)dx
, t ≥ t1. (2.52)

Consider the Dirichlet problem in the domain Ω

∆u + αu = 0 in (x, t) ∈ Ω× R+, (2.53)

u = 0 on (x, t) ∈ ∂Ω× R+, (2.54)

in which α is a constant. It is well known [13] that the smallest eigenvalue
α1 of problem (2.53)–(2.54) is positive and the corresponding eigenfunction
Φ(x) is also positive for x ∈ Ω.
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Theorem 2.13. Suppose that the conditions (H1)–(H4) hold, g(t) ≤
τi(t) ≤ t for i = 1, 2, . . . ,m. If there exists a function ρ ∈ C1([t0,∞),R+)
such that

lim sup
t→∞

∫ t

t0

(
ρ(s)Q(s)− (ρ′(s))2

4kρ(s)g′(s)

)
ds = ∞, (2.55)

where

Q(t) = α1[a(t) +
m∑

i=1

ai(t)] + kq(t).

Then every solution of (E), (B3) is oscillatory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution
u(x, t) of the problem (E), (B3). Without loss of generality, we assume that
u(x, t) > 0, u(x, t) ∈ Ω× (t0,∞), (t0 ≥ 0). By condition (H3) there exists
a t1 > t0 such that τi(t) ≥ t0 and g(t) ≥ t0, t ≥ t1. Then u(x, τi(t)) > 0,
u(x, g(t)) > 0, (x, t) ∈ Ω × [t1,∞, i = i, . . . , m. Multiplying both sides
of equation (E) Φ(x), and integrating equation (E) with respect to x over
the domain Ω, we have

d2

dt2

∫

Ω
u(x, t)Φ(x)dx = a(t)

∫

Ω
∆u(x, t)Φ(x)dx

+
m∑

i=1

ai(t)
∫

Ω
∆u(x, τi(t))Φ(x)dx

−
∫

Ω
q(x, t)f(u(x, g(t)))Φ(x)dx.

(2.56)

Using Green’s formula and (B3), we have
∫

Ω
∆u(x, t)Φdx =

∫

∂Ω

(
Φ(x)

∂u

∂N
− u

∂Φ(x)
∂N

)
dS +

∫

Ω
u∆Φ(x)dx

= −α1

∫

Ω
u(x, t)Φ(x)dx, t ≥ t1,

(2.57)

and ∫

Ω
∆u(x, τi(t))Φdx = −α1

∫

Ω
u(x, τi(t))Φ(x)dx,

i = 1, . . . , m t ≥ t1,

(2.58)
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where α1 is the smallest eigenvalue of problem (2.53)–(2.54). Using Jen-
sen’s inequality and (H2), we have

∫

Ω
q(x, t)f(u(x, g(t)))dx ≥ q(t)

∫

Ω
f(u(x, g(t)))dx

≥ q(t)
∫

Ω
Φ(x)dxf

(∫
Ω u(x, g(t))Φ(x)dx∫

Ω Φ(x)dx

)
, t ≥ t1.

(2.59)

Therefore, from (2.56)–(2.59), we have

V ′′(t) + α1V (t) + α1

m∑

i=1

ai(t)V (τi(t))

+ q(t)f(V (g(t))) ≤ 0, t ≥ t1.

(2.60)

It is shown that V (t) > 0 and V ′′(t) < 0 for t > t1. As in the proof of
Theorem 2.1 we can prove easily that V ′(t) > 0, then since g(t) ≤ τi(t) ≤ t,
then V (t) ≥ V (τi(t)) ≥ V (g(t)), then (2.60) reduces to

V ′′(t) + Q(t)V (g(t)) ≤ 0, t ≥ t1. (2.61)

Set

w(t) = ρ(t)
V ′(t)

V (g(t))
for t ≥ t2. (2.62)

Then w(t) > 0 for t ≥ t1. From (2.61) and (2.62), we have

w′(t) ≤ −ρ(t)Q(t) + ρ′(t)
U ′(t)

U(g(t))
− g′(t)ρ(t)

U ′(t)U ′(g(t))
U2(g(t))

. (2.63)

Using the fact that V ′′(t) < 0 and g(t) ≤ t, then we obtain

V ′(t) ≤ V ′(g(t)), t ≥ t1. (2.64)

Combining (2.63) and (2.64) we have

w′(t) ≤ −ρ(t)Q(t) +
ρ′(t)
ρ(t)

w(t)− g′(t)
ρ(t)

w2(t). (2.65)

The remainder of the proof is similar to that of Theorem 2.1 and hence is
omitted. ¤
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Theorem 2.13 improve Theorems 4 and 5 in [3], since the oscilla-
tion criterion in Theorem 2.1 do not require the conditions ρ′(t) ≥ 0 and(

ρ′(t)
g′(t)

)′
≤ 0 for t ≥ t0 > 0.

Theorem 2.14. Assume that all the assumptions of Theorem 2.13

are satisfied, except the condition (2.55) is replaced by

lim sup
t→∞

1
tn

∫ t

t0

(t− s)n

(
ρ(s)Q(s)− (ρ′(s))2

4ρ(s)g′(s)

)
ds = ∞. (2.66)

Then every solution of (E), (B3) is oscillatory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution
u(x, t) of the problem (E), (B1). Without loss of generality, we assume
that u(x, t) > 0, u(x, t) ∈ Ω× (t0,∞), (t0 ≥ 0). By Theorem 2.13 we have
(2.65), and the remainder of the proof is similar to that of Theorem 2.2
and hence is omitted. ¤

Theorem 2.15. Assume that (H1)–(H4) hold. Let the differentiable

function ρ as in Theorem 2.1 and let H belongs to the class < such that

lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
H(t, s)ρ(s)Q(s)− ρ(s)Q2(t, s)

4g′(s)

]
ds = ∞,

where

Q(t, s) = h(t, s)− ρ′(s)
ρ(s)

√
H(t, s).

Then every solution of (E), (B3) is oscillatory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution
u(x, t) of the problem (E), (B1). Without loss of generality, we assume that
u(x, t) > 0, u(x, t) ∈ Ω× (t0,∞), (t0 ≥ 0). By condition (H3) there exists
a t1 > µ such that τi(t) ≥ t0 and g(t) ≥ t0, t ≥ t1. Then u(x, τi(t)) > 0,
u(x, g(t)) > 0, (x, t) ∈ Ω × [t1,∞), i = i, . . . , m. By Theorem 2.13 we
obtain (2.65). In order to simplify notations we use (2.28). Then from
(2.65) for all t > t1, we have

∫ t

t1

H(t, s)w′(s)ds +
∫ t

t1

H(t, s)ρ(s)Q(s)ds

−
∫ t

t1

H(t, s)γ1(s)w(s)ds +
∫ t

t1

H(t, s)W1(s)w2(s)ds ≤ 0.

(2.67)
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The reminder of the proof is similar to that of Theorem 2.3 and hence is
omitted. ¤

The following theorem is immediate from Theorem 2.15.

Theorem 2.16. Assume that (H1)–(H4) hold. Let the differentiable

function ρ as in Theorem 2.1 and let H belongs to the class < such that

lim sup
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)ρ(s)Q(s)ds = ∞,

lim sup
t→∞

1
H(t, t0)

∫ t

t0

ρ(s)Q2(t, s)
g′(s)

ds < ∞.

Then every solution of (E), (B3) is oscillatory in G.

Theorem 2.17. Assume that (H1)–(H4) hold. Let the differentiable

function ρ as in Theorem 2.1 and let H belongs to the class < such that

0 < inf
s≥t0

[
lim inf
t→∞

H(t, s)
H(t, t0)

]
≤ ∞.

Let ψ ∈ C[[t0,∞),R] such that for t ≥ t0,

lim sup
t→∞

1
H(t, t0)

∫ t

t0

Q2(t, s)
W1(s)

ds < ∞,

lim sup
t→∞

∫ t

t0

ψ2
+(s)W1(s)ds = ∞,

and

lim sup
t→∞

1
H(t, t0)

∫ t

t0

(
H(t, s)ρ(s)Q(s)− Q2(t, s)

4W1(s)

)
ds ≥ sup

t≥t0

ψ(t),

where Q(t, s) as in Theorem 2.15 and ψ+ = max{ψ(t), 0}, then every

solution of (E), (B3) is oscillatory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution
u(x, t) of the problem (E), (B1). Without loss of generality, we assume that
u(x, t) > 0, u(x, t) ∈ Ω× (t0,∞), (t0 ≥ 0). By condition (H3) there exists
a t1 > t0 such that τi(t) ≥ t0 and g(t) ≥ t0, t ≥ t1. Then u(x, τi(t)) > 0,
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u(x, g(t)) > 0 (x, t) ∈ Ω × [t1,∞), i = i, . . . ,m. From Theorem 2.15 by
using (2.67) as in the proof of Theorem 2.4, we obtain find for t > t1, that

1
H(t, t1)

∫ t

t1

[
H(t, s)ρ(s)Q(s)− Q2(t, s)

4W1(s)

]
ds

≤ w(t1)− 1
H(t, t1)

∫ t

t1

[√
H(t, s)W1(s)w(s) +

Q(t, s)
2
√

W1(s)

]2

ds.

Hence,

lim sup
t→∞

1
H(t, t1)

∫ t

t1

[
H(t, s)ρ(s)Q(s)− Q2(t, s)

4W1(s)

]
ds

≤ w(t1)− lim
t→∞ inf

1
H(t, t1)

∫ t

t1

[√
H(t, s)W1(s)w(s) +

Q(t, s)
2
√

W1(s)

]2

ds.

The reminder of the proof is similar to that the proof of Theorem 2.4 and
hence is omitted. ¤

Theorem 2.18. Assume that (H1)–(H4) hold. Let the differentiable

function ρ as in Theorem 2.1 and let H belongs to the class <, and assume

that (2.38) holds. Suppose there exists a function ψ ∈ C[[t0,∞),R] such

that for t > t0, T ≥ t0 (2.40) holds, and

lim sup
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)ρ(s)Q(s)ds < ∞,

and

lim sup
t→∞

1
H(t, t0)

∫ t

t0

(
H(t, s)ρ(s)Q(s)− Q2(t, s)

4W1(s)

)
ds ≥ sup

t≥t0

ψ(t),

where Q(t, s) as in Theorem 2.15 and ψ+ = max{ψ(t), 0}, then every

solution of (E), (B3) is oscillatory in G.

Proof. The proof is similar to that of Theorem 2.6 by using (2.65)
and the details are left to the reader.

With the appropriate choice of functions H and h, it is possible to
derive from Theorems 2.3–2.6 a number of oscillation criteria for equa-
tion (1.1). Defining, for example, for some integer n > 1, the function
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H(t, s) by

H(t, s) = (t− s)n, (t, s) ∈ D,

we can easily check that H ∈ <. Furthermore the function

h(t, s) = n(t− s)(n−2)/2, (t, s) ∈ D.

Another possibility is to choose the functions H and h as follows:

H(t, s) =
(

ln
t

s

)n

, h(t, s) =
n

s

(
ln

t

s

)n/2−1

, t ≥ s ≥ t0.

One may also choose the more general forms for the functions H and h:

H(t, s) =
(∫ t

s

du

θ(u)

)n

, h(t, s) =
n

θ(s)

(∫ t

s

du

θ(u)

)n/2−1

t ≥ s ≥ t0,

where n > 1 is an integer, and θ : [t0,∞) → R+ is a continuous function
satisfying condition

lim sup
t→∞

∫ t

t0

du

θ(u)
= ∞,

and

H(t, s) = (et − es)n, h(t, s) = nes
(
et − es

)(n−2)/2
, t ≥ s ≥ t0.

It is a simple matter to check that in all these cases assumption (I) and
(II) are verified. The details are left to the reader. ¤
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