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Certain application of an integral formula
to CR submanifold of complex projective space

By MIRJANA DJORIĆ (Belgrade) and MASAFUMI OKUMURA (Urawa)

Abstract. Let M be an n-dimensional CR submanifold of CR dimension
n−1

2 of complex projective space. In this case M is necessarily odd-dimensional
and there exists a unit vector field ξ1 normal to M such that JT (M) ⊂ T (M)⊕ξ1.
Under the assumption that ξ1 is parallel with respect to the normal connection, we
bring into use an integral formula which leads to an inequality between the Ricci
tensor, the scalar curvature and the mean curvature of M . Using this inequality,
we provide a sufficient condition for the submanifold M to be a tube over a totally
geodesic complex subspace of P

n+k
2 (C).

0. Introduction

The study of hypersurfaces of complex projective space has been a
fertile field for differential geometricians for many years now. Much of this
work has involved finding sufficient conditions for a hypersurface to be one
of the “standard examples”.

However, contrary to the case of hypersurfaces of a Euclidean space
where totally geodesic hypersurfaces and totally umbilical hypersurfaces
characterize hyperplanes and hyperspheres, respectively, and to the case
of a sphere as an ambient space where they characterize great and small
spheres, respectively, in complex projective space there exist neither to-
tally geodesic real hypersurfaces nor totally umbilical real hypersurfaces.
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H. B. Lawson introduced the notion of “generalized equators” MC
p,q in a

complex projective space, which naturally generalize the equatorial hyper-
surfaces of spheres [7]. Following the idea of constructing a circle bundle
over a real hypersurface, which is compatible with the Hopf fibration, he
introduced the notion of “generalized equators” MC

p,q in a complex projec-
tive space. In the same paper H. B. Lawson proved the theorem asserting
that if M is an n-dimensional compact, minimal real hypersurface of a
complex projective space P

n+1
2 (C) over which the square of the length of

the second fundamental form is less or equal to n− 1 (or, equivalently, the
scalar curvature is greater or equal to (n+2)(n−1)), then M is congruent
up to isometry to MC

p,q for some p, q satisfying 2p + 2q = n− 1.
Recently, Y. W. Choe and the second author of this paper gave

one generalization of H. B. Lawson’s theorem for higher codimensions [5].
Namely, they proved that if M is an n-dimensional compact, minimal

CR-submanifold of CR-dimension n−1
2 of P

n+k
2 (C), such that the normal

vector field is parallel with respect to the normal connection and the scalar
curvature is greater or equal to (n + 2)(n− 1), then M is MC

p,q for some p,
q satisfying 2p + 2q = n− 1.

The main purpose of this paper is to give one more generalization of
H. B. Lawson’s result, also for higher codimensions, but avoiding the con-
dition of minimality. Namely, using the integral formula established by K.

Yano [13], we give certain characterization of the “generalized equators”
MC

p,q

(
1/
√

2, 1/
√

2
)
, for some p, q satisfying 2p + 2q = n− 1.

In Section 1 we deduce for later use a series of fundamental formulas
for n-dimensional CR submanifolds of CR dimension n−1

2 and in Section 2

we study the model space MC
p,q

(
1/
√

2, 1/
√

2
)

in detail. In Section 3 we
give an application of an integral formula which we use to derive our main
results. Finally, in Section 4 we characterize MC

p,q

(
1/
√

2, 1/
√

2
)

by certain
inequality between the Ricci tensor, the scalar curvature and the mean
curvature of an n-dimensional compact CR submanifold of CR dimension
n−1

2 of a complex projective space P
n+k

2 (C) and we give a sufficient con-
dition for the submanifold M to be a tube over a totally geodesic complex

subspace of P
n+k

2 (C).
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1. n-dimensional CR submanifolds
of CR dimension n−1

2

Let (M̄, ḡ, J) be an (n + k)-dimensional Hermitian manifold and let
M be a connected n-dimensional submanifold of M̄ with induced metric g.
For x ∈ M we denote by TxM and T⊥x M the tangent space and the normal
space of M at x, respectively and by ı the immersion M in M̄ (we denote
also by ı the differential of the immersion). If the maximal holomorphic
subspace JıTx(M)∩ ıTx(M) of ıTx(M) has constant dimension for x ∈ M ,
then M is called a CR submanifold and the constant is called the CR
dimension of M ([8]). Moreover, let us recall that a submanifold M of M̄

is also said to be a CR submanifold if it is endowed with a pair of mutually
orthogonal and complementary distributions (∆, ∆⊥) such that for any
x ∈ M we have J∆x = ∆x, J∆⊥

x ⊂ T⊥x M ([1]).
Now, let us assume that the maximal holomorphic subspace of TxM is

(n−1)-dimensional for any x ∈ M , that is, dim(JıTx(M)∩ıTx(M)) = n−1.
In this case both definitions of CR submanifolds coincide. Moreover, this
implies that M is necessarily odd-dimensional manifold and our assump-
tion is equivalent to the condition that M is a CR submanifold with
dim∆⊥ = 1.

Furthermore, our hypothesis implies that there exists a unit vector
field ξ1 normal to M such that JıT (M) ⊂ ıT (M) ⊕ span{ξ1}. Hence,
for any tangent vector field X and for a local orthonormal basis {ξα, α =
1, 2, . . . , k} of vectors normal to M , we have the following decomposition
into tangential and normal components:

JıX = ıFX + u1(X)ξ1, (1.1)

Jξα = −ıUα + Pξα, (α = 1, 2, . . . , k), (1.2)

where Uα, α = 1, 2, . . . , k are tangent vector fields of M and u1 is 1-form
on M . Here F and P are skew-symmetric endomorphisms acting on T (M)
and T⊥(M), respectively. Moreover, using (1.1) and (1.2), the Hermitian
property of J implies

g(U1, X) = u1(X), Uα = 0, α = 2, . . . , k, (1.3)

F 2X = −X + u1(X)U1, u1(X)Pξ1 = −u1(FX)ξ1, (1.4)
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u1(FX) = 0, P ξ1 = 0, FU1 = 0. (1.5)

Therefore, (1.2) may be written in the form

Jξ1 = −ıU1, Jξα = Pξα, α = 2, . . . , k (1.6)

and further, we may write

Pξα =
k∑

β=2

Pαβξβ, α = 2, . . . , k (1.7)

where (Pαβ) is a skew-symmetric matrix which satisfies
∑

β PαβPβγ =
−δαγ .

These results imply that (F,U1, u
1, g) defines an almost contact metric

structure on M (see [12]). We refer to [2], [15] for more details about
contact geometry.

Now, let ∇ and ∇ denote the Levi Civita connection on (M̄, ḡ) and
(M, g), respectively, and let D denote the normal connection induced from
∇ in the normal bundle T⊥(M) of M . Then they are related by the
following Gauss and Weingarten equations

∇ıX ıY = ı∇XY + h(X, Y ), (1.8)

∇ıXξα = −ıAαX + DXξα, α = 1, . . . , k (1.9)

for any tangent vectors X, Y to M . Here h denotes the second fundamental
form and Aα is a symmetric linear transformation of T (M) which is called
the shape operator with respect to the normal ξα. They are related by
h(X, Y ) =

∑k
α=1 g(AαX, Y )ξα. The mean curvature vector field µ of M is

defined by

µ =
1
n

k∑

α=1

(trAα)ξα (1.10)

and it is well known that µ is independent of the choice of ξα’s. (We refer
to [4] for more details about submanifold theory.) Furthermore, if we put

DXξα =
k∑

β=1

sαβ(X)ξβ, (1.11)
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it follows that (sαβ) is the skew-symmetric matrix of connection forms
of D.

Finally, let the ambient manifold M̄ be the complex projective space

P
n+k

2 (C) with Fubini–Study metric of constant holomorphic sectional cur-

vature 4. Then, since the curvature tensor R̄X̄Ȳ Z̄ of P
n+k

2 (C) satisfies

R̄X̄Ȳ Z̄ = ḡ(Ȳ , Z̄)X̄ − ḡ(X̄, Z̄)Ȳ + ḡ(JȲ , Z̄)JX̄ − ḡ(JX̄, Z̄)JȲ

− 2ḡ(JX̄, Ȳ )JZ̄,

the Gauss equation becomes ([6])

RXY Z = g(Y, Z)X − g(X, Z)Y + g(FY,Z)FX

− g(FX, Z)FY − 2g(FX, Y )FZ

+
k∑

α=1

{g(AαY, Z)AαX − g(AαX, Z)AαY },
(1.12)

from which

Ric(X, Y ) = (n + 2)g(X, Y )− 3u1(X)u1(Y )

+
k∑

α=1

(trAα)g(AαY, X)−
k∑

α=1

g(A2
αY,X),

(1.13)

% = (n + 3)(n− 1) +
k∑

α=1

(trAα)2 −
k∑

α=1

trA2
α, (1.14)

where Ric and % denote, respectively, the Ricci tensor and the scalar cur-
vature.

Further, by differentiating (1.1) and (1.6) covariantly and making use
of the fact that the Riemannian connection ∇ of M̄ leaves the almost com-
plex structure J invariant, and by comparing the tangential and normal
parts, we obtain

∇XU1 = FA1X, (1.15)

g(AαU1, X) = −
k∑

β=2

s1β(X)Pβα, α = 2, . . . , k (1.16)
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for any X,Y ∈ T (M).
In what follows, besides the hypothesis that M is an n-dimensional

compact submanifold of P
n+k

2 (C), we suppose that the normal vector field
ξ1 is parallel with respect to the normal connection, that is DXξ1 = 0.
Consequently, using (1.11), we obtain

sα1 = 0, α = 2, . . . , k. (1.17)

2. Model space MC
p,q

(
1/
√

2, 1/
√

2
)

By definition, an n-dimensional real hypersurface of a complex mani-
fold is a typical example of CR submanifold of CR dimension n−1

2 . In this
section we describe the model space MC

p,q in a complex projective space

P
n+k

2 (C), which is a real hypersurface of P
n+1

2 (C), and then consider the
relation between the Ricci tensor, the scalar curvature and the mean cur-
vature of the model space.

Let Mp,q be the family of generalized Clifford tori, i.e. the standard
product S2p+1× S2q+1, 2p + 2q = n− 1. Therefore, Mp,q is defined by the
following relations

p∑

j=0

|zj |2 = cos2 r,

n+1
2∑

j=p+1

|zj |2 = sin2 r, 0 < r <
π

2

and it is the hypersurface of the odd-dimensional sphere Sn+2. By choosing
the spheres so that they lie in complex subspaces, we get fibrations S1 →
Mp,q → MC

p,q compatible with the Hopf fibration π : Sn+2 → P
n+1

2 (C)
which submerses Mp,q onto a remarkable class of real hypersurfaces of

P
n+1

2 (C), denoted by MC
p,q. Let us remember that in [3] Cecil and Ryan

proved that MC
p,q is a tube of radius r over a totally geodesic P p(C) with

three constant principal curvatures: λ1 = cot r, λ2 = cot(r − π
2 ) and

µ = 2 cot 2r with respective multiplicities 2q, 2p, 1.
Further, we consider special generalized Clifford tori in

Sn+2(1) =
{(

z0, . . . , zn+1
2

) ∈ C
n+1

2 :

n+1
2∑

i=0

|zi|2 = 1
}
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defined by

S2p+1
(
1/
√

2
)× S2q+1

(
1/
√

2
)

=
{(

z0, . . . , zn+1
2

) ∈ Sn+2(1) :
p∑

i=0

|zi|2 =
1
2
,

n+1
2∑

i=p+1

|zi|2 =
1
2

}
,

where 2p + 2q = n − 1. Then, since S2p+1
(
1/
√

2
) × S2q+1

(
1/
√

2
)

is a
hypersurface of Sn+2(1), its shape operator Ā has the form

Ā =




1
. . . 0

1
−1

0
. . .

−1




for suitable orthonormal basis. The multiplicities of 1 and −1 are 2p + 1
and 2q + 1 respectively (see for example [11]). By choosing the spheres so
that they lie in complex subspaces, we get fibrations

S1 → S2p+1
(
1/
√

2
)× S2q+1

(
1/
√

2
) → MC

p,q

(
1/
√

2, 1/
√

2
)

compatible with the Hopf fibration, where 2p + 2q = n− 1. In this special
case we easily see that the geodesic distance from P p(C) to MC

p,q

(
1/
√

2,

1/
√

2
)

is π
4 and that the principal curvatures of MC

p,q

(
1/
√

2, 1/
√

2
)

are 1,
−1 and 0 with respective multiplicities n− 1− 2p, 2p and 1.

Further, let ξ be a unit normal vector field of MC
p,q

(
1/
√

2, 1/
√

2
)

and

let J be the natural almost complex structure of P
n+1

2 (C). Then U = −Jξ

is a principal vector field corresponding to the principal value 0, that is
AU = 0, where A is the shape operator of MC

p,q

(
1/
√

2, 1/
√

2
)

in P
n+1

2 (C).
Applying (1.10), (1.13) and (1.14) to a real hypersurface case, we obtain

trA = 4p− n− 1, trA2 = n− 1, (2.1)

Ric(U,U) = n− 1, (2.2)

ρ = (n + 2)(n− 1) + (4p− n− 1)2. (2.3)
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Hence, for MC
p,q

(
1/
√

2, 1/
√

2
)

we have

Ric(U,U) + ρ− n2|µ|2 = (n− 1)(n + 3), (2.4)

where |µ| is the length of the mean curvature vector field µ.

Remark. Let us remember that in [7] Lawson supposed that S2p+1×
S2q+1 is immersed minimally in Sn+2, which is not the case in this pa-
per. Moreover, let us remark that for MC

p,q

(
1/
√

2, 1/
√

2
)

the Gauss–

Kronecker curvature, i.e. div A, is zero and that, in a class of MC
p,q, only

MC
p,q

(
1/
√

2, 1/
√

2
)

has the vanishing Gauss–Kronecker curvature.

3. An integral formula and its application

To proceed our discussions, in this section we use the following integral
formula established by Yano [13], [14]:

∫

M
{div(∇XX)− div(div X)X} ∗1

=
∫

M

{
Ric(X,X) +

1
2
|L(X)g|2 − |∇X|2 − (div X)2

}
∗1 = 0,

(3.1)

where X is an arbitrary tangent vector field on M , ∗1 is the volume element
of M , |Y | denotes the length with respect to the Riemannian metric of a
vector field Y on M and L(X) is the operator of Lie derivative with respect
to X.

Now we prove the following lemma.

Lemma 3.1. Let M be an n-dimensional compact CR submanifold

of CR dimension n−1
2 in P

n+k
2 (C). If the normal vector field ξ1 of M is

parallel with respect to the normal connection and the inequality

Ric(U1, U1) + %− n2|µ|2 ≥ (n + 3)(n− 1)

is satisfied on M , then F and A1 commute, Aα = 0, (α = 2, . . . , k) and

A1U1 = 0.

Proof. First, since ξ1 is parallel with respect to the normal connec-
tion D, using (1.16) and (1.17), we get

AαU1 = 0, α = 2, . . . , k. (3.2)
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Now, applying (3.1) to the vector field U1, we obtain
∫

M

{
Ric(U1, U1) +

1
2
|L(U1)g|2 − |∇U1|2 − (div U1)2

}
∗1 = 0. (3.3)

Further, from (1.15) it follows

div U1 = tr(FA1) = 0 (3.4)

and
(L(U1)g)(X, Y ) = g(∇XU1, Y ) + g(∇Y U1, X)

= g((FA1 −A1F )X,Y ).
(3.5)

Now, using (1.4) and (1.15), we derive

|∇U1|2 = trA2
1 − |A1U1|2. (3.6)

Moreover, using (1.10) and (1.14), we calculate

tr A2
1 = −ρ + (n + 3)(n− 1) + n2|µ|2 −

k∑

α=2

trA2
α. (3.7)

Finally, using (3.3), (3.4), (3.6) and (3.7), we obtain
∫

M

{
Ric(U1, U1) +

1
2
|L(U1)g|2 + ρ− (n + 3)(n− 1)

− n2|µ|2 +
k∑

α=2

trA2
α + |A1U1|2

}
∗1 = 0.

(3.8)

Applying the hypothesis of the lemma, we get

Ric(U1, U1) + ρ− n2|µ|2 = (n + 3)(n− 1), (3.9)

|L(U1)g|2 = 0, (3.10)

k∑

α=2

trA2
α = 0, (3.11)

A1U1 = 0. (3.12)

Finally, we conclude from (3.5) and (3.10) that FA1 = A1F , and from
(3.11) that Aα = 0, for α = 2, . . . , k. ¤
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4. One characterization of MC
p,q

(
1/
√

2, 1/
√

2
)

Let N0(x) = {ξ ∈ T⊥x (M) : Aξ = 0}, where we use the notation
ḡ(h(X,Y ), ξ) = g(AξX, Y ), for ξ ∈ T⊥x (M), and let H0(x) be the maximal
J-invariant subspace of N0(x), that is, H0(x) = JN0(x) ∩ N0(x). Then
we have the following theorem, proved in [9] by the second author of this
paper.

Theorem. Let M be a real n-dimensional submanifold of the real

(n + k)-dimensional complex projective space P
n+k

2 (C). If the orthogo-

nal complement H1(x) of H0(x) in T⊥(M) is invariant under the parallel

translation with respect to the normal connection and l is the constant

dimension of H1(x), then there exists a real (n + l)-dimensional totally

geodesic complex projective space P
n+l
2 (C) such that M ⊂ P

n+l
2 (C).

In our case, N0(x) = span{ξ2(x), . . . , ξk(x)}. In fact, as a consequence
of Lemma 3.1, Aα=0, for α=2, . . . , k and we have span{ξ2(x), . . . , ξk(x)}⊂
N0(x). On the other hand, for any ξ ∈ N0(x), we put ξ =

∑k
α=1 bαξα.

Then, using Lemma 3.1, we obtain Aξ =
∑k

α=1 bαAα = b1A1 = 0. Hence,
b1 = 0 and

ξ =
k∑

α=2

bαξα ∈ span{ξ2(x), . . . , ξk(x)}.

Moreover, by the second equation of (1.6), JN0(x) = N0(x) and conse-
quently H0(x) = span{ξ2(x), . . . , ξk(x)}. Therefore, the orthogonal com-
plement H1(x) of H0(x) in T⊥(M) is spanned by the normal vector field
ξ1. Since, from the assumption of this paper, H1(x) is invariant under
parallel translation with respect to the normal connection, we can apply
the codimension reduction theorem which is stated above and obtain the
following theorem.

Theorem 4.1. Let M be an n-dimensional compact CR-submanifold

of CR-dimension n−1
2 in P

n+k
2 (C). If the normal vector field ξ1 is parallel

with respect to the normal connection and

Ric(U1, U1) + %− n2|µ|2 ≥ (n + 3)(n− 1)

holds, then there exists a real (n+1)-dimensional totally geodesic complex

projective subspace P
n+1

2 (C) such that M ⊂ P
n+1

2 (C).
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Using Theorem 4.1, the submanifold M can be regarded as a real hy-

persurface of P
n+1

2 (C) which is a totally geodesic submanifold in P
n+k

2 (C).

In what follows we denote P
n+1

2 (C) by M ′, the immersion of M into M ′

by ı1 and the totally geodesic immersion of M ′ into P
n+k

2 (C) by ı2. Then,
from the Gauss equation (1.8), it follows that

∇′ı1X ı1Y = ı1∇XY + h′(X, Y ) = ı1∇XY + g(A′X,Y )ξ′, (4.1)

for any tangent vector fields X, Y to M , where ∇′ is the Levi Civita
connection on M ′, h′ is the second fundamental form on M in M ′, A′ is
the corresponding shape operator and ξ′ is a unit normal vector field to
M in M ′.

Similarly, since ı = ı2 ·ı1 and using the Gauss equation (1.8), we obtain

∇̄ı2ı1X ı2 · ı1Y = ı2∇′ı1X ı1Y + h̄(ı1X, ı1Y ), (4.2)

where h̄ is the second fundamental form on M ′ in P
n+k

2 (C). Therefore, it
follows

∇̄ı2ı1X ı2 · ı1Y = ı2(ı1∇XY + g(A′X, Y )ξ′), (4.3)

since M ′ is totally geodesic in P
n+k

2 (C). Comparison of (1.8) and (4.3)
yields

ξ1 = ı2ξ
′, A1 = A′. (4.4)

Since M ′ is a complex submanifold of P
n+k

2 (C), the expression

Jı2X
′ = ı2J

′X ′ (4.5)

is valid for any X ′ ∈ T (M ′), where J ′ is the induced complex structure of

M ′ = P
n+1

2 (C). Consequently, using the relation (1.1), it follows that

JıX = Jı2 · ı1X = ı2J
′ı1X = ı2(ı1F ′X + v′(X)ξ′)

= ıF ′X + v′(X)ı2ξ′ = ıF ′X + v′(X)ξ1.

Now, comparing the last equation with relation (1.1), we conclude

F = F ′, V ′ = U1, v′ = u1. (4.6)

Furthermore, by Theorem 4.1, we know that M is a real hypersurface of
M ′ = P

n+1
2 (C) whose fundamental tensor F ′ of the submersion and shape
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operator A′ commute. Therefore, applying the theorem proved in [10]
(p. 363, Theorem 4.4) by the second author of this paper, we may conclude
that M = MC

p,q, for some p, q, that is, M is a tube over a totally geodesic
subspace P p(C). Moreover, A′V ′ = A1U1 = 0 implies that the radius of
the tube is π

4 . Thus M is locally isometric to MC
p,q

(
1/
√

2, 1/
√

2
)
.

Theorem 4.2. Let M be an n-dimensional compact CR submanifold

of CR dimension n−1
2 of a complex projective space P

n+k
2 (C). If the normal

vector field ξ1 is parallel with respect to the normal connection and if the

inequality

Ric(U1, U1) + %− n2|µ|2 ≥ (n− 1)(n + 3)

holds, then the equality Ric(U1, U1)+%−n2|µ|2 = (n−1)(n+3) also holds

and, up to isometries of P
n+k

2 (C), M is MC
p,q

(
1/
√

2, 1/
√

2
)
, for some p, q

satisfying 2p + 2q = n− 1.
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