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Multiple positive solutions for boundary value problems
on a measure chain

By CHEN-HUANG HONG (Chung-Li), HUEI-LIN HONG (Chung-Li)
and CHEH-CHIH YEH (Kueishan Taoyuan)

Abstract. Under some suitable conditions on a positive function f(t, u), we
get the boundary value problem of the form:





(E) u∆∆(t) + f(t, u(σ(t)) = 0, 0 < t < 1,

(BC)

{
αu(0)− βu∆(0) = 0,

γu(σ(1)) + δu∆(σ(1)) = 0,

(BVP)

has at least three positive solutions by using a fixed point theorem of Legget and
Williams.

1. Introduction

In this paper, we consider the existence of three positive solutions of
the following boundary value problem on measure chain of the form:





(E) u∆∆(t) + f(t, u(σ(t)) = 0, 0 < t < 1,

(BC)

{
αu(0)− βu∆(0) = 0,

γu(σ(1)) + δu∆(σ(1)) = 0,

(BVP)
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where α, β, γ, δ are nonnegative real numbers and f ∈ C
(
[0, σ(1)] × <)

.
Here < = (−∞,∞).

There has recently been increasing interest in studying the existence
of solutions for the following continuous-discrete boundary value problems





(E1) u′′(t) + λf(t, u((t)) = 0, 0 < t < 1,

(BC1)

{
αu(0)− βu′(0) = 0,

γu(1) + δu′(1) = 0,

(BVPA)

and





(E2) ∆2u(i) + λf(i, u(i) = 0, 0 < i < T,

(BC2)

{
αu(0)− β∆u(0) = 0,

γu(T + 1)) + δ∆u(T + 1) = 0

(BVPB)

in the last twenty-five years, see, for example, Agarwal and Wong [1],
[2], Erbe and Wong [6], Henderson and Thompson [8], Lian, Wong

and Yeh [14]. In 1990, S. Hilger [9] introduced the theory of measure
chain. Recently, some authors, see for example, Chyan and Henderson

[3], Erbe and Peterson [4], [5], Hong and Yeh [10], Lian, Chou, Liu

and Wong [13], dealt with the existence of one or two positive solutions
for the boundary value problem (BVP) on a measure chains.

In this paper, we study the existence of three solutions for the non-
linear boundary value problem (BVP) by using a fixed point theorem of
Leggett and Williams [12]. We will state this result and give some
definitions concerning measure chains and useful lemmas in Section 2.

2. Definitions and lemmas

In this section, we provide some background material from measure
chain and the theory of cones in Banach spaces. We also state a fixed point
theorem due to Leggett and Williams [12] for multiple fixed points of
a cone preserving operator.

First, we give definitions of a measure chain and a cone, see [7], [9],
[11].
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Definition 2.1. A measure chain T is a closed subset of the set < of all
real numbers. We assume throughout this paper that T has the topology
that it inherits from the standard topology on <. For t < sup T , define
the forward jump operator σ : T → T by

σ(t) := inf{τ ∈ T : τ > t}

and for t > inf T define the backward jump operator ρ : T → T by

ρ(t) := sup{τ ∈ T : τ < t}

for all t ∈ T .
If σ(t) > t, t ∈ T , we say t is right-scattered. If ρ(t) < t, t ∈ T , we say

t is left-scattered. If σ(t) = t, t ∈ T we say t is right-dense. If ρ(t) = t,
t ∈ T , we say t is left-dense.

Definition 2.2. If r, s ∈ T ∪ {+∞,−∞}, r < s, then an open interval
(r, s) in T is defined by

(r, s) := {t ∈ T : r < t < s}.

Other types of intervals are defined similarly.
Throughout this paper we make the assumption that [a, b] as [a, b]∩T

if a, b ∈ <, a ≤ b.

Definition 2.3. Assume that x : T → < and fix t ∈ T (if t = sup T ,
we assume t is not left-scattered). Then x is called differentiable at t ∈ T
if there exists a θ ∈ < such that for any given ε > 0, there is an open
neighborhood U of t such that

|x(σ(t))− x(s)− θ|σ(t)− s| | ≤ ε|σ(t)− s| for all s ∈ U.

In this case, θ is called the ∆-derivative of x at t ∈ T and denote it by
θ = x∆(t). It can be shown that if x : T → < is continuous at t ∈ T , then

x∆(t) =
x(σ(t))− x(t)

σ(t)− t
if t is right-scattered

and

x∆(t) = lim
s→t

x(t)− x(s)
t− s

if t is right-dense.
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Definition 2.4. Let P be a cone on a Banach space E. A map ψ ∈
C(P ; [0,∞)) is said to be a nonnegative continuous concave functional in
P if

ψ(λx + (1− λ)y) ≥ λψ(x) + (1− λ)ψ(y)

for all x, y ∈ P and 0 ≤ λ ≤ 1.

Definition 2.5. Let P be a cone on a Banach space E, r > 0, 0 < a < b

and ψ a nonnegative continuous concave functional on P . Define two cones
Pr and P (ψ, a, b) by

Pr := {y ∈ P : ‖y‖ < r}
and

P (ψ, a, b) := {y ∈ P : a ≤ ψ(y), | y| ≤ b},
respectively.

In order to abbreviate our discussion, throughout this paper, we sup-
pose that the following assumptions hold:
(C1) G(t, s) is the Green’s function of the differential equation

−u∆∆(t) = 0, t ∈ (0, 1)

subject to the boundary condition (BC).
(C2) f ∈ C([0, σ(1)]× [0,∞); [0,∞)).
(C3) ρ := γβ + αδ + αγσ(1) > 0.

(C4) ξ := min
{
t ∈ T : t ≥ σ(1)

4

}
and ω := max

{
t ∈ T : t ≤ 3σ(1)

4

}

both exist and satisfy

σ(1)
4

≤ ξ < ω ≤ 3σ(1)
4

.

(C5) M = min{M1,M2}, where

M1 := min
{

γσ(1) + 4δ
4(γσ(1) + δ)

,
ασ(1) + 4β

4(ασ(1) + β)

}
∈ (0, 1)

and

M2 = min
s∈[0,σ(1)]

G(σ(ω), s)
G(σ(s), s)

.
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(C6) D1 :=
(∫ σ(1)

0 G(σ(s), s)∆s
)−1

and D2 :=
(∫ σ(1)

0 G(θ, s)∆s
)−1

,

here θ ∈ [ξ, ω].

In order to prove our main result, we need the following two useful
lemmas. The first is due to Erbe and Peterson [5] and the second due
to Leggett and Williams [12].

Lemma 2.5 (Erbe and Peterson [5]). Suppose that G(t, s) is de-

fined as in (C2). Then G(t, s) can be written as

G(t, s) =





1
ρ
(β + αt)

[
δ + γ(σ(1)− σ(s))

]
, 0 ≤ t ≤ s ≤ σ(1),

1
ρ
(β + ασ(s))

[
δ + γ(σ(1)− t)

]
, 0 ≤ σ(s) ≤ t ≤ σ(1).

and satisfies

(i)
G(t, s)

G(σ(s), s)
≤ 1 for t ∈ [0, σ(1)] and s ∈ [0, 1];

(ii)
G(t, s)

G(σ(s), s)
≥ M for t ∈ [ξ, σ(ω)] and s ∈ [0, 1],

where M is defined as in condition (C3).

Lemma 2.6 (Leggett and Williams [12]). Suppose there exist 0 <

a < b < d ≤ c such that

(A1) {u ∈ P (ψ, a, b) : ψ(u) > b} is nonempty and ψ(Φu) > b

for u ∈ P (ψ, b, d),
(A2) ‖Φu‖ < a for ‖u‖ ≤ a,

(A3) ψ(Φu) > b for u ∈ P (ψ, b, c) with ‖Φu‖ > d,

where Φ : Pc → Pc be a completely continuous and ψ be a nonnegative

continuous concave functional on P such that ψ(u) ≤ ‖u‖ for all y ∈ Pc.

Then Φ has at least three fixed points u1, u2 and u3 satisfying

‖u1‖ < a, b < ψ(u2) and ‖u3‖ > a with ψ(u3) < b.
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3. Main results

The set E = C([0, σ(1)],<) is a Banach space with the supremum
norm ‖u‖ = sup0≤t≤σ(1) |u(t)|, where u ∈ E. Let u, v ∈ E, then the
ordering u ≤ v means u(t) ≤ v(t) for all t ∈ [0, σ(1)]. Define

P = {u ∈ E : u(t) ≥ 0, t ∈ [0, σ(1)]}.

Clearly, P is a cone of E. Finally, define a function ψ : P → [0,∞) by

ψ(u) = min
t∈[ξ,σ(ω)]

u(t), u ∈ P. (1)

Then ψ is a nonnegative continuous concave functional and

ψ(u) ≤ ‖u‖.

Clearly, u ∈ E is a solution of (BVP) if and only if

u(t) =
∫ σ(1)

0
G(t, s)f(s, u(σ(s)))∆s, t ∈ [0, σ(1)].

Now, we can state and prove our main result.

Theorem 3.1. Let a, b, c ∈ < with 0 < a < b < Mc, where M is

defined as in (C4). Suppose f satisfies

(i) f(t, u) < D1a for (t, u) ∈ [0, σ(1)]× [0, a],

(ii) f(t, u) ≥ D2
M b for (t, u) ∈ [ξ, ω]× [b, b

M ],

(iii) f(t, u) ≤ D1c for (t, u) ∈ [0, σ(1)]× [0, c].

Then the boundary value problem (BVP) has at least three solutions u1,

u2 and u3 satisfying

‖u1‖ < a, b < ψ(u2) and ‖u3‖ > a with ψ(u3) < b,

where ψ is defined as in (1).

Proof. It is clear that (BVP) has a solution u = u(t) if, and only if,
u(t) is a solution of the operator equation

Φu(t) :=
∫ σ(1)

0
G(t, s)f(s, u(σ(s)))∆s = u(t).
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We note that for u ∈ P , ψ(u) ≤ ‖u‖. Now choose u ∈ Pc, that is ||u|| ≤ c.
Then f(t, u) ≤ D1c for t ∈ [0, σ(1)] by condition (iii). It follows from (i)
of Lemma 2.5 that

Φu(t) =
∫ σ(1)

0
G(t, s)f(s, u(σ(s)))∆s ≤

∫ σ(1)

0
G(σ(s), s)f(s, u(σ(s)))∆s

≤
∫ σ(1)

0
G(σ(s), s)D1c∆s = c, t ∈ (0, 1).

Thus, ‖Φu‖ ≤ c for u ∈ Pc. Hence, Φ(Pc) ⊆ Pc. And Φ satisfies the
condition (A2) of Lemma 2.B. That is, if u ∈ Pa, then f(t, u) < D1a for
t ∈ [0, σ(1)] by condition (i). Thus, Φ(Pa) ⊆ Pa.

To fulfill property (A1) of Lemma 2.6, we note that x(t) = b
M ∈

P (ψ, b, b
M ) for t ∈ [0, σ(1)]. Then

ψ(x)= ψ

(
b

M

)
=

b

M
> b and

{
u ∈ P

(
ψ, b,

b

M

)
:ψ(u) > b

}
is nonempty.

In addition, if u ∈ P (ψ, b, b
M ), then

ψ(u) = min
t∈[ξ,σ(ω)]

u(t) ≥ b

and hence

b ≤ u(σ(t)) ≤ b

M
, for t ∈ [ξ, ω].

Thus, for any u ∈ P (ψ, b, b
M ), it follows from condition (ii) that

f(t, u) ≥ D2

M
b for t ∈ [ξ, σ(ω)],

and it follows from (ii) of Lemma 2.5 that

ψ(Φu) = min
t∈[ξ,σ(ω)]

Φu(t) = min
t∈[ξ,σ(ω)]

∫ σ(1)

0
G(t, s)f(s, u(σ(s)))∆s

≥ M

∫ σ(1)

0
G(σ(s), s)f(s, u(σ(s)))∆s > M

∫ σ(1)

0
G(θ, s)

D2

M
b∆s = b.

Hence, condition (A1) of Lemma 2.6 is satisfied. We finally claim that (A3)
of Lemma 2.6 is also satisfied. Clearly, it is enough to show that ψ(Φu) > b
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if u ∈ P (ψ, b, c) and ‖Φu‖ > b
M . In fact, if we choose u ∈ P (ψ, b, c)

satisfying ‖Φu‖ > b
M , then

ψ(Φu) = min
t∈[ξ,σ(ω)]

∫ σ(1)

0
G(t, s)f(s, u(σ(s)))∆s

≥ M

∫ σ(1)

0
G(σ(s), s)f(s, u(σ(s)))∆s

≥ M

∫ σ(1)

0
G(t, s)f(s, u(σ(s)))∆s = MΦu(t) for t ∈ [0, σ(1)].

Thus,

ψ(Φu) ≥ M‖Φu‖ > b,

and (A3) of Lemma 2.6 is satisfied. Hence, an application of Lemma 2.6
completes the proof. ¤
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