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Metrizable linear connections in vector bundles

By MIHAI ANASTASIEI (Iasi)

Dedicated to Professor Dr. Lajos Tamdssy
at his 80th anniversary

Abstract. A linear connection V in a vector bundle is said to be metrizable
if the vector bundle admits a Riemannian metric h with the property Vi = 0.
Sufficient conditions for the linear connection V to be metrizable are provided.

Introduction

The problem of the metrizability of a linear connection was treated by
many authors in various contexts (see the paper [7] by L. TAMASSY and
the references therein). When a linear connection V in a vector bundle
¢ = (E,p, M) is metrizable, its parallel translations are isometries with
respect to any Riemannian metric h in £ with VA = 0. Using a local
chart around a point = in M, the holonomy group ¢(z) may be identifed
with a subgroup of GL(m,R), where m is the dimension of fibre. With
this identification, a necessary condition for V to be metrizable is that
the holonomy group be contained in the orthogonal group O(m). We
prove two versions of the converse of this fact (Theorems 3.1 and 3.2).
Then we are dealing with the same problem when the vector bundle £
is endowed with a Finsler function. The linear connection V induces a
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nonlinear connection on F and a linear connection D in the vertical vector
bundle over E. The Finsler function F' defines a Riemannian metric g in
the vertical vector bundle over E. We show that if g is covariant constant
on horizontal directions, then V is metrizable (Theorem 4.2). When the
tangent bundle of a manifold M is endowed with a Finsler function F' one
says that (M, F) is a Finsler manifold. In this case our result is to be
compared with the one due to Z. SzaBO ([6]), regarding the metrizability
of the Berwald connection.

If the cotangent bundle of a manifold M is endowed with a Finsler
function K, then the pair (M, K) is called a Cartan space. This notion
was introduced and studied by R. MIRON in [3]. In this case Theorem 4.1
is to be compared with our previous results on the metrizability of the
Berwald-Cartan connection [1].

The first two sections of the paper are devoted to some preliminaries
from the theory of vector bundles and linear connections in vector bundles.

1. Vector bundles

Let £ = (E,p, M) be a vector bundle of rank m. Here E and M are
smooth i.e. C'"*° manifolds with dim M =n,dim EF =n+m,andp: E - M
is a smooth submersion. The fibres E, = p~!(x), € M are linear spaces
of dimension m which are isomorphic with the type fibre R™.

Let {(Ua,%a)}aca be an atlas on M. A vector bundle atlas is
{(Ua, 0o, R™)}aea with the bijections ¢, : p~H(Uy) — U, x R™ in the
form o = (p(u), Papw)(u)), where pq pw) @ Ep(u) — R™ is a bijec-
tion. The given atlas on M and a vector bundle atlas provide an atlas
(P (Us), da)aca on E. Here ¢ : p~ (Us) — ©0a(Us) x R™ is the bi-
jection given by ¢a(u) = (wa(p(u))‘, Pap)(u)). For z € M, we put
Ya(x) = (2') € R™ and we take (2',y®) as local coordinates on E. If
(Ug, 1) is such that € U, NUg # 0 and vg(z) = (%), then g o ¢t
has the form

7 =7 (2,...,2"), rank <g$ ) = n. (L.1)

]
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Let (eq) be the canonical basis of R™. Then ¢! (eq) = €4(x) is a basis of
E, and u € E, takes the form u = y%,(z). We put y* = Mg (x)y® with
rank(M(z)) = m. Then ¢z o ¢ ! has the form

; - o'
o A e | n _
T =z(x,...,2"), rank<8xj)—n

(1.2)
7' = M), rank(M{ (x)) = m.
The indices ¢, j,k, ..., a,b,c,.... will take the values 1,2,...,n and
1,2,...,m, respectively. The Einstein convention on summation will be

used.

We denote by F(M),F(FE) the ring of real functions on M and E
respectively, and by X' (M), resp. T'(E), X(E) the module of sections of
the tangent bundle of M, resp. of the bundle £ and of the tangent bundle
of E. On U,, the vector fields (8k = %) provide a local basis for X'(U,).
The sections 4 : Uy — p~* (Ua) given by e4(x) = ¢, % (e4) will be taken as
canonical basis for I'(p~!(U,)) and a section A : U, — p~(Uy,) will take
the form A(x) = A%(x)eq(x).

Let & = (E*,p*, M) be the dual of the vector bundle £&. We take as
local basis of T'(E*) on U, the sections §%: U, — p*~1(U,), © — 0%(z)EE}
such that 0(ep(x)) = ;.

Next, we may consider the tensor bundle of type (r,s), 7)(F) =
E® - --EQE*®---® E* over M and its sections. For g € T'(E* ® E*)

—_—— ———

T S

we have the local representation g = gap(2)0°®6°. As E*Q E* = Lo(E,R),
we may regard g as a smooth mapping x — g(x) : E; x E; — R with g(x)
a bilinear mapping given by ¢(z)(Sq, $p) = gap().

If the mapping g(x) is symmetric i.e. g = gpe and positive-definite
i.e. gap(2)C%C" > 0 for every 0 # (¢%) € R™, one says that g defines a
Riemannian metric in the vector bundle &.

The sets of sections I'(77 (E)) are F (M )-modules for any natural num-
bers r, s. On the sum P, , I'(T7(E)) a tensor product can be defined and
one gets a tensor algebra 7 (E). For the vector bundle (T'M, 7, M) this
reduces to the tensor algebra of the manifold M.
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2. Linear connections in a vector bundle

Definition 2.1. A linear connection in the vector bundle £ = (E,p, M)
is a mapping V : X(M) x I'(E) — T'(E), (X, A) — VxA which is F(M)-
linear in the first argument, additive in the second and

Vx(fA) = X(f)A+ fVxA, feF(M). (2.1)
For X = X*(2)0, and A = A%(z)e,(x), we get
VxA = XF(0, A + T4 () A%)e, (2), (2.2)
where the local coefficients I'}) (x) are defined by
Vo.eb = T'irea- (2.3)

If fflj are the local coefficients of V on Ug such that U, NUg # 0, then we
have

oMy ok

k
b0 b (2.4)

T (3(2)) = Mg(e) (M) () — S S ()

A section A of ¢ is called parallel if Vx A = 0 for every X € X(M).

The linear connection V induces operators of covariant derivative Vy,
in the tensor algebra 7 (F) taking Vi f = O f, ViBa = OkxBa — I, 8. and
requiring that Vi to satisfy the Newton—Leibniz rule with respect to the
tensor product and to commute with all contractions.

Let ¢ : [0,1] — M be a curve on M and A : t — A(t) := A(c(t)) a
section of £ along the curve c. Then VA =: %A is called the covariant
derivative of A along c.

On U, N ¢[0,1] if we put c(t) = (z(t)), we get

VA (dAT ot
Y= (G T e (25)

The section t — A(t) is said to be parallel on c if %4 = 0. This means
that the functions (A%(t)) have to be solutions of the following system of
ordinary linear differential equations:

dA® Ab@

o+ D) A"

= =0. (2.6)
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For given initial conditions A%(0) = (u®) € FE,q) the system (2.6) ad-
mits a unique solution that can be prolonged beyond U, providing a
parallel section A along c. If we associate to (u®) = A%(0) the element
(v*) = A%(1) € E,q) we get a linear isomorphism P : E.qy — E.q),
called the parallel translation of E ) to E.) along c. The parallel trans-
lations can be defined along any curve or segment of curve providing linear
isomorphisms between fibres in various points of curves on M. In partic-
ular, if one considers the loops with origin in x € M, the corresponding
parallel translations as linear isomorphisms F, — FE, can be composed
and a group ¢(z) called the holonomy group in x € M is obtained.

When M is connected, the holonomy groups ¢(x), x € M are isomor-
phic and one speaks about the holonomy group ¢ associated to or defined
by V.

The covariant derivative along ¢ can be recovered from parallel trans-
lations according to the following known

Lemma 2.1. Let A be a section of § along a curve on M, ¢ : t — ¢(t),
t € R, starting from x = ¢(0). Then

where P : E ;) — Ey is the parallel translation along c.

3. A sufficient condition for V to be metrizable

Let V be a linear connection in the vector bundle ¢ = (E,p, M).
Assume that the manifold M is connected. One says that V is metrizable
if there exists a Riemannian metric g in ¢ such that Vg = 0. When V
is metrizable, then all parallel translations P, : (Ey,g.) — (Ey,gy) for
any points x, y and for any curve c joining them in M are isometries. In
particular, the holonomy group ¢(x) is a subgroup of the orthogonal group
of (Ey, gz). These facts follow from
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Lemma 3.1. Let g be any Riemannian metric in the vector bundle &£
and c:t — c(t), t € R, a curve in M with ¢(0) = x. Then

o1
(VC(O)Q) (A> B) = %E}% E(gc(t) (PcAa PCB) - g:l:(Aa B))? (31)
where A, B € E; and P, : E; — E, ;) is the parallel translation along c.

ProoF. Let g, B be sections of & which are parallel on ¢, such that
A(0) = A, B(0) = B. Then P.A = A(t) and P,(B) = B(t). By the Taylor
theorem and using the condition that A and B are parallel sections on c,
in the natural basis (g,) we get (P.A)* = A%(t) = A® + %(T)t = A% —
ng(x(T))gc(T)%t and a similar formula for (P.B)", a,b = 1,2,...,m.
Then, using again the Taylor theorem, omitting the terms which contain
2, we may write:

9ab(t)(PeA) (PeB)" — gap(a) A*B” = <gab($) + dgab(e)t) (PA)(P.B)"

dt
a dgap . dzF o dzF\ L
_gab(x)A Bb = < dt — gaCFbkﬁ — gcbrak% A Bbt, (32)

where the terms in the last paranthesis are computed for 7,7',60 € (0, ).

Dividing in (3.2) by ¢ and taking ¢ — 0, one obtains (3.1).

By Lemma 3.1 we have also that if all parallel translations of V are
isometries with respect to g, then Vg = 0. Thus, in order to prove that V
is metrizable we need to find a Riemannian metric g such that all parallel
translations of V are isometries with respect to g. Taking an arbitrary
bundle chart (Uy, ¢q,R™), using the linear isomorphism ¢q 4 : £y — R™,
we may identify ¢(z), x € U,, with a subgroup of GL(R™). When V
is metrizable, by Lemma 3.1 it follows that this subgroup is contained in
the orthogonal group O(m). Therefore, a necessary condition for V to be
metrizable is that its holonomy group is contained in O(m). We show two
versions of the converse. ]

Theorem 3.1. Let V be a linear connection in the vector bundle
¢ = (E,p, M) with M connected. Assume that there exists a point xy € M
such that the holonomy group ¢(x) is contained in the orthogonal group
of E;, when E, is regarded as being isomorphic with the Euclidean space
(R™,(,)) via a fixed bundle chart. Then V is metrizable.
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PROOF. Let hy be the inner product on E,, induced by (, ) via the
bundle chart (Uy, ¢a, R™), xo € Uy, that is,

ho(u,v) = (‘Poc,xou790a7$ov>' (+)

By hypothesis this inner product is invariant under the group ¢(x). Let
x be any point of M. We join x with xy using a curve ¢ : [0,1] — M,
c(0) = z, ¢(1) = zo, consider the parallel translation P, : E; — E;, and
define an inner product h, in E, by

hz(A,B) = ho(P.A,P.B), A,B¢€ E,. (3.3)
Lemma 3.2. The inner product h, does not depend on the curve c.

Indeed, if ¢ is another curve joining x with xg, then we consider the
reverse c_ of ¢ and the loop coc_ in z¢. It follows that ho(Psoe_t, Proe_v) =
ho(u,v), u,v € Ey,. Inserting here w = P.A and v = P.B and taking into
account (3.3), the lemma follows.

The mapping * — h, is smooth since P. smoothly depends on =z
according to the general theory of differential equations. Thus we obtain
a Riemannian metric h in £&. The parallel translations of V are isometries
with respect to h. Indeed, for a point y of M different from x, any parallel
translation from E, to E, has the form P, .. = FP,_ o P, for o_ the
reverse of a curve ¢ joining y with xg. As a product of isometries this is
an isometry. Therefore, using Lemma 3.1 we may conclude that Vh = 0.

O

The following version of Theorem 3.1 extends to the vector bundle
setting a result of B. G. ScHMIDT [5].

Theorem 3.2. Let V be a linear connection in the vector bundle
¢ = (E,p, M) with M connected. Assume that for a fixed xog € M, the
holonomy group ¢(z¢) leaves invariant a given positive-definite quadratic
form hg on E,,. Then there exists a Riemannian metric h in £ such that
Vh =0.

PROOF. Let us denote by the same letter hy the inner product in E,,
defined by the quadratic form hg. This inner product could be obtained by
transferring one from R™ using a bundle chart. By hypothesis the inner
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product hg is invariant under ¢(zp). From now on the reasoning proving
Theorem 3.1 can be repeated in its entirety in order to find h such that
Vh =0. O

Remark 3.1. The Riemannian metric A found in Theorem 3.1 is not
unique and is not canonical in any way. The same applies for h found in
Theorem 3.2.

4. Another condition for V to be metrizable

We are to deal with the problem of the metrizability of a linear con-
nection V in a vector bundle endowed with a Finsler function.

Definition 4.1. Let & = (E,p, M) be a vector bundle of rank m. A
Finsler function on E is a nonnegative real function F' on E with the
properties

1) F is smooth on E \ {(z,0),x € M},

2) F(x,\y) = AF(z,y) for all A > 0,

3) The matrix with the entries gqp(z,y) = 3 % is positive definite.
On the manifold 2 we have the vertical distribution v — V, E = ker p, ,,
where p, denotes the differential of p. This is spanned by Oy 1= a%a. A
distribution v — H, F which is supplementary to the vertical distribution
is called a horizontal distribution or a nonlinear connection on E. This
is usually taken as spanned by §; = 9; — N{(z, y)@a, where the functions
(N#(z,y)) are called the coefficients of the given nonlinear connection.
Under a change of coordinates they behave as follows:

ATa 85"7 a b aMl;I b
Nj 9k My (z) Ny (z,y) — Ok Yy, (4.1)
a fact which is equivalent to
0Tk ~
0; = —0k. 4.1
o5 (1)

Introducing the horizontal distribution we have

T.,E=H,E®V,E, ucE. (4.2)
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It is convenient to decompose the geometrical objects on E according
to (4.2) using the adapted basis (J;,0,) and its dual (da,dy® = dy® +
N&(z,y)dz?).

The linear connection V in £ defines a nonlinear connection on F if we
take N2(z,y) = I'&,(z)y. Indeed, using (2.4) it is easy to check that these
functions satisfy (4.1). From now on we shall use only the decomposition
(4.2) provided by these functions. Furthermore, the linear connection V
induces a linear connection D in the vertical bundle over E as follows:
D:X(E)xT(VE) - T(VE), (X,Z) — DxZ is given for Z = Z%9, by

Ds5,00 = T33,(2)8a, D3, 00 = 0. (4.3)

We call D the vertical lift of V and we use Ds, for defining a horizontal
covariant derivative operator in the tensor algebra of the vertical bundle,
denoted by |k, setting

Jik = 0rf for any function on E,
(4.4)
X, = X" + Ty () X°.

For a fixed x € F, the pair (E,, F;) is a Minkowski space. Here F,
denotes the restriction of F' to E, and it is obvious that this is a Minkowski
norm on F,.

Now we show that under certain conditions the parallel translations
of V are isometries of Minkowski spaces.

Theorem 4.1. Let { = (E,p, M) be a vector bundle of rank m with M
connected, endowed with a Finsler function F' and with a linear connection
V as well. Let |k be the horizontal covariant derivative operator defined
by the vertical lift D of V. If F = 0, then the parallel translation defined
by V, P.: (Ey, Fy) — (Ey, F,) is an isometry of Minkowski spaces for any
points x,y € M and any curve ¢ : [0,1] — M joining them.

PROOF. Let be u € E,, and t — A(t), t € [0,1] a section of £ which
is parallel along ¢, and A(0) = u. Its local components A% are solutions of
the system of differential equations (2.6), and P.(u) = A(1) :=v.

We know already that P, is a linear isomorphism. Let us write out
the condition F};, = 0 for the points (x(t), A(t)) of E' where ¢ — z(t) is the
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local representation of the curve c. We obtain:

0 < OF  bra 8F> dz* (2.6) OF da* = OF dA®  dF(x(t), A(t))

oF “oyr ) dt T 0xF dt oy dt it

Thus the function F(z(t), A(t)) is constant. It follows F'(z,u) = F(y, P.u),
that is, F(u) = Fy(Psu). In other words, P, is an isometry of Minkowski
spaces (Fy, Fy) and (Ey, Fy). O

Corollary 4.1. Under the hypothesis of Theorem 4.1, the holonomy
group ¢(x) consists of isometries of the Minkowski space (E, Fy,).

The functions g,s(x, y) define a Riemannian metric in the vertical bun-
dle over E by g = gap(, y)dy® @ 6y°. We call (gqp(x,y)) the Finsler metric
associated with F'.

The condition Fj, = 0 from the hypothesis of Theorem 4.1 can be
replaced by g, = 0, because of

Lemma 4.1. Fj;, = 0 is equivalent to gapz = 0.

PROOF. The homogeneity of F implies F2(z,y) = gap(, y)y*y®. Then
Fjy = 2FFy, = gappy™y” + 29ay39° = Japry”y” since yfi, = 0. Thus if
Japlk = 0, then Fjz = 0. In order to prove the converse, we notice that
Ou(H)i) = (0aH)), for any function H on E. This follows by a direct
calculation taking into account that d,H is a vertical 1-form. Using this
“commutation” formula we get g, = %&L@b(F@) = aaéb(Fﬂk) =0. O

Now we are ready to prove the main result of this section.

Theorem 4.2. Let V be a linear connection in the vector bundle
¢ = (E,p,M) with M connected. Suppose that E is endowed with a
Finsler function F' having the associated Finsler metric g.(x,y). Let |k be
the h-covariant derivative operator induced by V. If gqp = 0, then V is
metrizable.

PROOF. For a fixed xop € M we have the Minkowski space (Eq,, Fy,)-
Let G be the group of all linear isomorphisms of E,, which preserve the
set Sy, = {u € Eyy, Fyy(u) = 1}. This G is a compact Lie group since Sy,
is compact. In our hypothesis, according to Lemma 4.1 and Corollary 4.1,
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the holonomy group ¢(zg) is a Lie subgroup of G. Let (, ) be any inner
product on E,,. Define a new inner product on E,, by

hao (w,v) = Voll(G) /G<gu,gv),ug, (4.5)

for u,v € E,,, g € G and pg the bi-invariant Haar measure on G.

It follows that for every a € G we have
hao (@, av) = hy(u,v), u,v € Ey,. (4.6)

In particular, (4.6) holds for any element of ¢(xg) C G. Thus ¢(z) leaves
invariant the inner product hy, in E;,. The inner product hy, is extended
by parallel translations to a Riemannian metric h in . Furthermore, this
metric verifies Vh = 0 since all parallel translations of V become isometries
with respect to h. Thus V is metrizable. ]

Remark 4.1. The Riemannian metric h is not unique and it is not
canonical in any way.
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