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On functional equations involving means
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Abstract. The main results of the paper concern functional equations of
the form

f(M(x, y))(g(y)− g(x)) = µ(f(x)g(y)− f(y)g(x)) (x, y ∈ I),

where f and g are continuous functions defined on an open interval I and M is
a strict two variable mean on I. As an application, a generalization of the so-
called Matkowski–Sutô problem for weighted two variable quasi-arithmetic means
is solved under first-order continuous differentiability assumptions.

1. Introduction

Let I ⊂ R be a nonvoid open interval. We say that a function M :
I2 → I is a pre-mean on I if

min{x, y} ≤ M(x, y) ≤ max{x, y} (1)
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for all x, y ∈ I. If M is a pre-mean on I and the inequalities in (1) are
strict for all x 6= y (x, y ∈ I) then M is called a strict pre-mean on I. If
M is a pre-mean on I and continuous on I2 then M is said to be a mean
on I. Finally, M is called a strict mean on I if M is a strict pre-mean on I

and continuous on I2.
In this paper we deal with functional equations of the form

f(M(x, y)) = N(f(x), f(y)) if f(x) 6= f(y) (x, y ∈ I) (2)

and

f(M(x, y))(g(y)− g(x)) = µ(f(x)g(y)− f(y)g(x)) (x, y ∈ I) (3)

under the following conditions:
(A) In (2) M is a strict mean on I, N is strict pre-mean on J(⊂ R is a

nonvoid open interval) and the unknown function f : I → J is continuous;
(B) In (3) M is a mean (or a strict mean) on I and the unknown

functions f, g : I → R+ are continuous (here and in the sequel R+ denotes
the set of positive real numbers).

As an application, we shall consider the Matkowski–Sutô type problem

λx + (1− λ)y = µM(x, y) + (1− µ)N(x, y) (x, y ∈ I) (4)

where 0 < λ < 1 µ 6= 0, 1 are constants, M and N are weighted quasi-
arithmetic means on I with weight λ. The case λ = µ = 1

2 is the original
Matkowski–Sutô problem (cf. [1], [2], [4], [3], [7], [13], [14]). In [5], the case
λ = µ was treated. The aim of this paper is to solve the above problem if
the generator functions of M and N are continuously differentiable with
nonvanishing derivatives on I. Our results offer the same set of solutions
that was found by G lazowska, Jarczyk, and Matkowski [8] under
twice continuous differentiability assumptions in the case λ = 1/2.

2. Injectivity Theorem

The following result, concerning the functional equation (2) is an in-
jectivity theorem of independent interest.
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Theorem 1. Let I, J ⊂ R be nonvoid open intervals and let a strict

mean M : I2 → I and a strict pre-mean N : J2 → J be given. If f : I → J

is a continuous and nonconstant solution of the (conditional) functional

equation

f(M(x, y)) = N(f(x), f(y)) if f(x) 6= f(y) (x, y ∈ I) (2)

then f is injective on I.

Proof. Suppose that f : I → J is a continuous solution of (2) which
is nonconstant on I and not injective. Since f is continuous, there exist
a < b (a, b ∈ I) such that f(a) = f(b) =: k ∈ J and f(x) 6= k if x ∈ ] a, b [ .
We show that there exist numbers A,B ∈ [a, b] such that

M(a,B) = A and M(A, b) = B (5)

hold. For, consider the function

ϕ(x, y) := (M(a, y),M(x, b)) (x, y ∈ [a, b]).

The function M being continuous, ϕ : [a, b]2 → [a, b]2 is a continuous self-
mapping of [a, b]2, hence, by Brouwer’s Fixed Point Theorem, it has a fixed
point (A,B) ∈ [a, b]2, that is,

ϕ(A,B) = (A,B).

This means that the equations (5) hold. Since M is a strict mean, we
necessarily have

a < A < B < b.

This implies k = f(a) 6= f(B) and k = f(b) 6= f(A), and by (5) and (2),

f(A) = f(M(a,B)) = N(f(a), f(B)) = N(k, f(B))

and

f(B) = f(M(A, b)) = N(f(A), f(b)) = N(f(A), k).

Since N is a strict pre-mean, the previous equations yield that f(A) belongs
to the open interval joining k and f(B), and similarly, f(B) belongs to the
open interval joining f(A) and k. Since f(x) 6= k if x ∈ ] a, b [ , we have
reached a contradiction. Therefore, if f is a continuous and nonconstant
solution of (2) then f is injective on I. ¤
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3. Equation (3)

The following result is of basic importance.

Theorem 2. Let M : I2 → I be a mean on I and let µ 6= 0, 1 be a

real constant. If f, g : I → R+ are continuous solutions of the functional

equation

f(M(x, y))(g(y)− g(x)) = µ(f(x)g(y)− f(y)g(x)) (x, y ∈ I) (3)

then there exists c ∈ R+ such that

f(x)µg(x)1−µ = c (6)

for all x ∈ I.

Proof. If g(x) = g(y) (> 0) then (3) implies f(x) = f(y), thus there
exists a function F : g(I) → R+ such that

f(x) = F (g(x)) (x ∈ I). (7)

If g is constant on I then f is constant on I, too, and clearly (6) holds.
Therefore we can assume that g is nonconstant on I. Since g is continuous,
then J := g(I) is a proper interval and J ⊂ R+.

In what follows, we intend to show that the function

F : J → R+

is differentiable on J .
Let u ∈ J and let {un | n ∈ N} ⊂ J be a sequence such that un → u

from the left (un < u) (or from the right un > u). It is sufficient to show
that

F (un)− F (u)
un − u

tends to the same limit (n →∞) depending only on u.
Let

u0 := inf{un | n ∈ N} = min{un | n ∈ N}.

Then there exist x0, x
∗ ∈ I such that g(x0) = u0 and g(x∗) = u. We may

assume that x0 < x∗, the other case can be handled similarly.
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Let

H := {t ∈ I | x0 ≤ t ≤ x∗ and g(t) = u}.

Then H is a closed set, and since x∗ ∈ H, H is not empty. Denote

x := inf H,

then we clearly have that x0 < x. Since g is continuous, g(x) = u and if
x0 ≤ t < x then g(t) 6= u. The function g takes each value between u0 and
u on the closed interval [x0, x], therefore there exists a sequence xn ∈ [x0, x[
such that g(xn) = un (n ∈ N). We show that xn → x as n → ∞. If this
were not so then there would be a subsequence (xnk

) (n1 < n2 < n3 < . . . )
converging to x̄ 6= x, and from this we would have x̄ < x. Since g is
continuous, g(xnk

) → g(x̄) (k → ∞) and g(xnk
) = unk

→ u = g(x)
(k → ∞). These would imply g(x̄) = g(x), contradicting the definition
of x. Therefore xn → x as n →∞ indeed.

The previous and equation (3) imply

f(M(xn, x)) = µ
f(xn)g(x)− f(x)g(xn)

g(x)− g(xn)

= µ
F (un)u− F (u)un

u− un
= µ

(
−u

F (un)− F (u)
un − u

+ F (u)
)

.

Since f is continuous and M is a mean, we have that

lim
n→∞ f(M(xn, x)) = f(x) = F (g(x)) = F (u).

Thus, by the previous equation, the limit

lim
n→∞

F (un)− F (u)
un − u

= F ′(u)

exists, too, and

F (u) = µ(−uF ′(u) + F (u))

holds for all u ∈ J . Since µ 6= 0, 1, from this we obtain
(

ln F (u)− µ− 1
µ

ln u

)′
= 0
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for all u ∈ J , that is, there exists a constant q > 0 satisfying

F (u) = qu
µ−1

µ (u ∈ J).

By (7), this implies the assertion of the theorem. ¤

In view of Theorem 2, the investigation of the functional equation (3)
reduces to the discussion of a functional equation involving only one un-
known function. The following results deal with this reduced problem.

Corollary 1. Let M : I2 → I be a mean on I and let µ 6= 0, 1 be a

real constant. If f, g : I → R+ are continuous solutions of the functional

equation (3) then f : I → R+ is a continuous solution of the functional

equation

f(M(x, y))
(
f(x)

µ
1−µ − f(y)

µ
1−µ

)
= µ

(
f(x)

µ
1−µ

+1−f(y)
µ

1−µ
+1

)

(x, y ∈ I).
(8)

Theorem 3. Let M : I2 → I be a strict mean and µ 6= 0, 1. If

f : I → R+ is a continuous solution of the functional equation (8) then

either there exists c > 0 such that

f(x) = c if x ∈ I, (9)

or, f is injective on I and

f(M(f−1(u), f−1(v))) = S µ
1−µ

+1, µ
1−µ

(u, v) (10)

for all u 6= v, u, v ∈ f(I) =: J ⊂ R+. Here Sa,b : R2
+ → R+ is the Stolarsky

mean on R+ of parameters a, b defined in the case ab(a− b) 6= 0 by

Sa,b(u, v) :=





(
b(ua − va)
a(ub − vb)

) 1
a−b

if u 6= v

u if u = v

(u, v ∈ R+). (11)

(cf. [11], [12]).

Proof. Under these conditions (9) always solves (8), thus we can
suppose that f is a nonconstant continuous solution of (8). Then if f(x) 6=
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f(y) x, y ∈ I, (8) yields

f(M(x, y)) = µ
f(x)

µ
1−µ

+1 − f(y)
µ

1−µ
+1

f(x)
µ

1−µ − f(y)
µ

1−µ

= S µ
1−µ

+1, µ
1−µ

(f(x), f(y)). (12)

Since the Stolarsky means defined by (11) are strict, it follows from The-
orem 1 that f is injective. Thus, for all u, v ∈ f(I) =: J with u 6= v, (12)
implies (10). ¤

In the sequel we shall need the following lemma.

Lemma 1. Let K ⊂ R+ be a nonvoid open interval. The Stolarsky

mean Sa,b of parameters a, b (ab(a− b) 6= 0) is a quasi-arithmetic mean on

K if and only if either a = 2b or 2a = b or a + b = 0.

Proof. Let ϕ be a continuous strictly monotonic function such that

Sa,b(u, v) = ϕ−1

(
ϕ(u) + ϕ(v)

2

)
=: Aϕ(u, v) (u, v ∈ K).

Then for all t > 0 and u, v ∈ K with tu, tv ∈ K, Sa,b(tu, tv) = tSa,b(u, v)
holds, which yields

Aϕ(tu, tv) = tAϕ(u, v).

Thus, the quasi-arithmetic mean Aϕ is homogeneous on the interval K.
Now, by [10, Corollary 2],

Aϕ(u, v) = Hp(u, v) (u, v ∈ K)

for some parameter p, where

Hp(u, v) :=





(
up + vp

2

) 1
p

if p 6= 0

√
uv if p = 0

(u, v ∈ K)

is the pth Hölder (or power) mean. On the other hand, by the comparison
theorem of Stolarsky means (see [9] and also [6]) Sa,b = Hp = S2p,p if and
only if a = 2b or 2a = b or a + b = 0. ¤
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4. The generalization of the Matkowski–Sutô problem

Let CM(I) denote the class of strictly monotonic and continuous func-
tions defined on I. A mean M : I2 → I is called a weighted quasi-arithmetic
mean on I if there exist a constant 0 < λ < 1 and ϕ ∈ CM(I) such that

M(x, y) = ϕ−1(λϕ(x) + (1− λ)ϕ(y)) =: Aϕ(x, y;λ) (13)

for all x, y ∈ I. If ϕ(x) =id(x) := x then we write

Aϕ(x, y; λ) = A(x, y;λ) = λx + (1− λ)y (x, y ∈ I).

The number 0 < λ < 1 is called a weight and the function ϕ ∈ CM(I) is
called a generator function.

A possible generalization of the Matkowski–Sutô problem can be for-
mulated in the following way: Determine the constants 0 < λ < 1 and
µ 6= 0, 1 and the functions ϕ,ψ ∈ CM(I) such that

λx + (1− λ)y = µAϕ(x, y; λ) + (1− µ)Aψ(x, y;λ) (14)

holds for all x, y ∈ I. The case λ = µ = 1
2 is the original Matkowski–Sutô

problem whose solution with analitycity assumptions was determined to
Sutô [13], [14]. Matkowski [7] found the same set of solutions under
twice continuous differentiability assumptions. The unnatural regularity
assumptions were step by step eliminated in a sequence of papers [1], [2],
[4] by the authors and Gy. Maksa. Finally, the complete solution was
found in [3].

Now we consider the equation (14) under the following assumptions:
ϕ and ψ are continuously differentiable and ϕ′(x) 6= 0, ψ′(x) 6= 0 if x ∈ I.

Theorem 4. Let 0 < λ < 1 and µ 6= 0, 1. If ϕ,ψ ∈ CM(I) solve (14)
and ϕ and ψ are continuously differentiable and ϕ′(x) > 0, ψ′(x) > 0 for

x ∈ I then, with the notations

J := ϕ(I), f := ϕ′ ◦ ϕ−1, g := ψ′ ◦ ϕ−1, (15)

the continuous functions f, g : J → R+ satisfy the functional equation

f(λu + (1− λ)v)(g(v)− g(u)) = µ(f(u)g(v)− f(v)g(u)) (16)

for all u, v ∈ J .
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Proof. Differentiate (14) with respect to x and y. (The assumptions
of the theorem make this possible.) Then

λ = µ
λϕ′(x)

ϕ′(Aϕ(x, y; λ))
+ (1− µ)

λψ′(x)
ψ′(Aψ(x, y;λ))

and

1− λ = µ
(1− λ)ϕ′(y)

ϕ′(Aϕ(x, y; λ))
+ (1− µ)

(1− λ)ψ′(y)
ψ′(Aψ(x, y; λ))

for all x, y ∈ I. Multiplying the first equation by (1 − λ)ψ′(y) and the
second one by λψ′(x), then subtracting the equations, we obtain

ψ′(y)− ψ′(x) =
µ(ϕ′(x)ψ′(y)− ϕ′(y)ψ′(x))

ϕ′(Aϕ(x, y; λ))

for all x, y ∈ I. Let u = ϕ(x) and v = ϕ(y) (u, v ∈ J) be arbitrary. Then,
with the notations (15), we get that (16) holds. ¤

In what follows, without loss of generality µ > 0 (µ 6= 1) can be
assumed. Since in (14) either µ or µ − 1 is positive, interchanging ϕ and
ψ if necessary, we may examine only the case when µ > 0 (µ 6= 1). In this
case, the roles of ϕ and ψ are not interchangeable.

Theorem 5. Let 0 < λ < 1 and µ > 0, (µ 6= 1). If the continuous

functions f, g : J → R+ satisfy the functional equation (16) then the

following cases are possible:

(i) If λ 6= 1
2 then there exists c ∈ R+ such that f(u) = c for all u ∈ J ;

(ii) If λ = 1
2 and µ /∈ {1

2 , 2} then there exists c ∈ R+ such that f(u) = c

for all u ∈ J ;

(iii) If λ = 1
2 and µ = 1

2 then there exist a, b ∈ R such that

f(u) = au + b > 0 if u ∈ J ;

(iv) If λ = 1
2 and µ = 2 then there exist a, b ∈ R such that

f(u) =
1

au + b
> 0 if u ∈ J.
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Proof. With the strict mean M(u, v) := λu+(1−λ)v the functional
equation (16) has the form (3). Then, by Theorem 2, there exists c > 0
such that f(u)µg(u)1−µ = c for all u ∈ J . This implies that the continuous
function f : J → R+ satisfies the functional equation

f(λu + (1− λ)v)
(
f(u)

µ
1−µ − f(v)

µ
1−µ

)
= µ

(
f(u)

µ
1−µ

+1 − f(v)
µ

1−µ
+1

)

for all u, v ∈ J . By Theorem 3, then either f(u) = c (u ∈ J) for some
c ∈ R+, or f is injective on J , and thus, for all x = f(u), y = f(v)
(x, y ∈ f(J) =: K ⊂ R+) x 6= y

f(λf−1(x) + (1− λ)f−1(y)) = S µ
1−µ

+1, µ
1−µ

(x, y) (17)

holds. The following cases are possible:
(i) If λ 6= 1

2 then f cannot be injective. Indeed, if it were so, then from
the symmetry of the right-hand side of (17),

f(λf−1(x) + (1− λ)f−1(y)) = f(λf−1(y) + (1− λ)f−1(x))

would follow, i.e., x = y, which is a contradiction. Thus in this case f is
constant on J .

(ii) If λ = 1
2 and f is injective then from (17) we have

f

(
f−1(x) + f−1(y)

2

)
= S µ

1−µ
+1, µ

1−µ
(x, y) (18)

for all x, y ∈ K ⊂ R+. By Lemma 1, (18) holds if and only if either µ = 1
2

or µ = 2. Thus if µ /∈ {1
2 , 2}, f is constant on J .

(iii) If λ = 1
2 and µ = 1

2 then we may suppose that f is injective. From
(18) we have

f

(
f−1(x) + f−1(y)

2

)
=

x + y

2
(x 6= y; x, y ∈ K),

which implies the existence of a, b ∈ R with a 6= 0 such that

f(u) = au + b > 0 if u ∈ J.

If a = 0 then f(u) = b > 0 gives the constant solutions.
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(iv) If λ = 1
2 and µ = 2 one can easily see that there exist a, b ∈ R+

for which

f(u) =
1

au + b
> 0 if u ∈ J

because in this case the function 1
f satisfies the Jensen equation.

Thus, the proof of the theorem is complete. ¤

Returning to the generalized Matkowski–Sutô problem, we need the
following definitions.

Definition 1. Let ϕ, ψ ∈ CM(I). If there exist a 6= 0 and b such that

ψ(x) = aϕ(x) + b if x ∈ I

then we say that ϕ is equivalent to ψ on I and denote it by ϕ(x) ∼ ψ(x)
if x ∈ I or in short ϕ ∼ ψ on I. If (ϕ,ψ) ∈ CM(I)2, (Φ,Ψ) ∈ CM(I)2 and
ϕ ∼ Φ and ψ ∼ Ψ on I then we say that the pair (ϕ,ψ) is equivalent to
the pair (Φ, Ψ) on I and this fact is denoted by (ϕ,ψ) ∼ (Φ,Ψ) on I.

The statement of the following lemma is well know, therefore its proof
will be omitted.

Lemma 2. Let 0 < λ < 1 and ϕ,ψ ∈ CM(I). Then Aϕ(x, y; λ) =
Aψ(x, y; λ) for all x, y ∈ I if and only if ϕ ∼ ψ on I.

Definition 2. Let I ⊂ R be a nonvoid open interval. Define the one
parameter family of functions χp : I → R (p ∈ R) as follows

χp(x) =

{
x if p = 0

epx if p 6= 0
(x ∈ I).

We also define the following sets

P+(I) := {p ∈ R | I + p ⊂ R+}
P−(I) := {p ∈ R | −I + p ⊂ R+}.

With the help of these notations, set

γ+
p (x) :=

√
x + p if p ∈ P+(I) (x ∈ I)

γ−p (x) :=
√−x + p if p ∈ P−(I) (x ∈ I).
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Finally, we introduce the following notations

S(I) := {(χp, χ−p) | p ∈ R},

T(I) := {(χ0, χ0)} ∪ {(γ+
p , log ◦γ+

p ) | p ∈ P+(I)}
∪ {(γ−p , log ◦γ−p ) | p ∈ P−(I)}.

Theorem 6. Let 0 < λ < 1 and µ > 0, (µ 6= 1). If ϕ,ψ ∈ CM(I) solve

the generalized Matkowski–Sutô problem (14) and ϕ,ψ are continuously

differentiable with nonvanishing derivatives on I then the following cases

are possible:

(i) If λ 6= 1
2 then (ϕ,ψ) ∼ (χ0, χ0) on I;

(ii) If λ = 1
2 and µ 6∈ {1

2 , 2} then (ϕ,ψ) ∼ (χ0, χ0) on I;

(iii) If λ = 1
2 and µ = 1

2 then there exists (s1, s2) ∈ S(I) such that

(ϕ,ψ) ∼ (s1, s2) on I;

(iv) If λ = 1
2 and µ = 2 then then there exists (t1, t2) ∈ T(I) such that

(ϕ,ψ) ∼ (t1, t2) on I.

The pairs (ϕ, ψ) given in the cases (i), (ii), (iii), and (iv) are solutions of

equation (14).

Proof. By Lemma 2, it is enough solve the functional equation (14)
up to the equivalence of the functions ϕ and ψ. Thus we may assume
that ϕ′(x) > 0 and ψ′(x) > 0 if x ∈ I. Then, with the notations (15),
Theorem 4 implies that (16) holds. Now using Theorem 5, we have that
the cases (i)–(iv) are possible for f := ϕ′ ◦ϕ−1. Due to the definition of f ,
we obtain the differential equation for the function ϕ:

ϕ′(x) = f(ϕ(x)) (x ∈ I). (19)

In the cases (i) and (ii) (19) yields ϕ(x) = cx + b (x ∈ I), that is, ϕ ∼ χ0

on I. Furthermore, equation (14) results that ψ ∼ χ0 on I.
In the case (iii), (19) reduces to the differential equation

ϕ′(x) = aϕ(x) + b > 0 (x ∈ I),

whence we get that there exists p ∈ R such that ϕ ∼ χp on I. Now
applying (14), we simply obtain that ψ ∼ χ−p, i.e., (ϕ,ψ) ∼ (s1, s2) for
some pair (s1, s2) ∈ S(I).
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Finally, in the case (iv), (19) simplifies to the differential equation

ϕ′(x) =
1

aϕ(x) + b
> 0 (x ∈ I)

from which we deduce that either ϕ ∼ χ0 on I, or there exists p ∈ P+(I)
such that ϕ ∼ γ+

p on I or there exists p ∈ P−(I) such that ϕ ∼ γ−p on I.
Now applying (14), we get (ϕ,ψ) ∼ (t1, t2) for some pair (t1, t2) ∈ T(I). ¤

The result of Theorem 6 can be restated in a different but equivalent
form, too. For, we introduce the following notations.

If I ⊂ R is a nonvoid open interval then we define the following means:
If p ∈ R then set

Tp(x, y) :=





x + y

2
if p = 0

1
p

log
(

epx + epy

2

)
if p 6= 0

(x, y ∈ I). (20)

For p ∈ P+(I) define

Γ+
p (x, y) :=

(√
x + p +

√
y + p

2

)2

− p and

G+
p (x, y) :=

√
(x + p)(y + p)− p (x, y ∈ I)

(21)

Finally, for p ∈ P−(I) define

Γ−p (x, y) := −
(√−x + p +

√−y + p

2

)2

+ p and

G−
p (x, y) := −

√
(−x + p)(−y + p) + p (x, y ∈ I).

(22)

One can easily check that the expressions given by (20), (21) and (22)
are the quasi-arithmetic means on I generated by the functions χp in (20),
γ+

p and log γ+
p in (21) and γ−p and log γ−p in (22), respectively.

Theorem 7. Let 0 < λ < 1 and µ > 0 (µ 6= 1). Suppose that

the quasi-arithmetic means M, N : I2 → I weighted by λ satisfy the

generalized Matkowski–Sutô equation

λx + (1− λ)y = µM(x, y) + (1− µ)N(x, y) (4)
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for all x, y ∈ I. If the generator functions of M and N are continuously

differentiable with nonvanishing derivatives on I then the following cases

are possible:

(i) If λ 6= 1
2 then

M(x, y) = N(x, y) = A(x, y; λ) (x, y ∈ I);

(ii) If λ = 1
2 and µ 6∈ {1

2 , 2} then

M(x, y) = N(x, y) = A(x, y; 1/2) = A(x, y) (x, y ∈ I);

(iii) If λ = 1
2 and µ = 1

2 then

M(x, y) = Tp(x, y) and N(x, y) = T−p(x, y) (x, y ∈ I)

for some p ∈ R;

(iv) If λ = 1
2 and µ = 2 then either

M(x, y) = N(x, y) = A(x, y) (x, y ∈ I),

or

M(x, y) = Γ+
p (x, y) and N(x, y) = G+

p (x, y) (x, y ∈ I)

for some p ∈ P+(I), or

M(x, y) = Γ−p (x, y) and N(x, y) = G−
p (x, y) (x, y ∈ I)

for some p ∈ P−(I).

Conversely, all the means M and N listed in the above cases are solutions

of (4).

Proof. Theorem 6 immediately implies the statements. ¤
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