On weakly conformally symmetric Ricci-recurrent spaces

By U. C. DE (Kalyani)
Dedicated to Professor Lajos Tamássy on his 80th birthday

Abstract

The present paper is concerned with n-dimensional ($n>3$) Riemannian spaces are weakly conformally symmetric. It is proved that such a space satisfying the second Bianchi identity can be endowed with a uniquely determined semi-symmetric metric connection with respect to which the conformal curvature tensor is weakly symmetric. Finally we study weakly conformally symmetric Ricci-recurrent spaces.

1. Introduction

The notion of weakly symmetric and weakly projective symmetric spaces was introduced by Tamássy and Binh [1]. A non-flat Riemannian space $V_{n}(n>2)$ is called a weakly symmetric space if the curvature tensor $R_{h i j k}$ satisfies the condition:

$$
\begin{equation*}
R_{h i j k, l}=a_{l} R_{h i j k}+b_{h} R_{l i j k}+d_{i} R_{h l j k}+e_{j} R_{h i l k}+f_{k} R_{h i j l} \tag{1.1}
\end{equation*}
$$

where a, b, d, e, f are 1-forms (non-zero simultaneously) and the comma ', ' denotes covariant differentiation with respect to the metric tensor of the space.

Mathematics Subject Classification: 53.
Key words and phrases: weakly symmetric spaces.

The 1 -forms a, b, d, e, f are called the associated 1-forms of the space, and an n-dimensional space of this kind is denoted by $(W S)_{n}$. Such a space have been studied by M. Prvanović [2], T. Q. Binh [3], U. C. De and S. Bandhyopadhyay [4] and others. In [4] De and Bandhyaopadhyay proved that the associated 1 -forms d and f are identical with b and e respectively. Hence $(W S)_{n}$ is characterized by the condition

$$
\begin{equation*}
R_{h i j k, l}=a_{l} R_{h i j k}+b_{h} R_{l i j k}+b_{i} R_{h l j k}+e_{j} R_{h i l k}+e_{k} R_{h i j l} . \tag{1.2}
\end{equation*}
$$

In the same paper [4] De and Bandhyopadhyay proved the existence of a $(W S)_{n}$ by considering a metric. In a subsequent paper [5] DE and BANDHYOPADHYAY introduce the notion of weakly conformally symmetric spaces.

An n-dimensional $(n>3)$ non-conformally flat Riemannian space is called weakly conformally symmetric if its conformal curvature tensor $C_{h i j k}$ defined by

$$
\begin{align*}
C_{h i j k}= & R_{h i j k}-\frac{1}{n-2}\left(g_{h k} R_{i j}-g_{h j} R_{i k}+g_{i j} R_{h k}-g_{i k} R_{h j}\right) \\
& +\frac{R}{(n-1)(n-2)}\left(g_{h k} g_{i j}-g_{h j} g_{i k}\right) \tag{1.3}
\end{align*}
$$

satisfies the condition

$$
\begin{equation*}
C_{h i j k, l}=a_{l} C_{h i j k}+b_{h} C_{l i j k}+d_{i} C_{h l j k}+e_{j} C_{h i l k}+f_{k} C_{h i j l} \tag{1.4}
\end{equation*}
$$

where a, b, d, e, f are 1 -forms (non-zero simultaneously). Such a space is denoted by $(W C S)_{n}$. Since the conformal curvature tensor $C_{h i j k}$ satisfies the skew-symmetric property for the indices, h, i and j, k, like curvature tensor $R_{h i j k}$ also, the defining relation (1.4) can be expressed in the following form:

$$
\begin{equation*}
C_{h i j k, l}=a_{l} C_{h i j k}+b_{h} C_{l i j k}+b_{i} C_{h l j k}+e_{j} C_{h i l k}+e_{k} C_{h i j l} . \tag{1.5}
\end{equation*}
$$

It is well known that the conformal curvature tensor satisfies the conditions

$$
\begin{align*}
& C_{i j k}^{h}+C_{j k i}^{h}+C_{k i j}^{h}=0, \tag{1.6}\\
& C_{r j k}^{r}=C_{i r k}^{r}=C_{i j r}^{r}=0, \tag{1.7}
\end{align*}
$$

$$
\begin{equation*}
C_{h i j k}=-C_{h i k j}=-C_{i h j k}=C_{j k h i} \tag{1.8}
\end{equation*}
$$

An n-dimensional Riemannian space is said to be Ricci-recurrent [6] if its Ricci tensor is non-zero and satisfies the conditions

$$
\begin{equation*}
R_{i j, k}=\lambda_{k} R_{i j} \tag{1.9}
\end{equation*}
$$

where λ_{k} is a non-zero 1-form.
If the 1 -forms $a=b=e=o$ in (1.5), then the space is called conformally symmetric [7]. If the 1 -forms are all equal, the space is called conformally quasi-recurrent space introduced by M. Prvanović [8]. Confomally symmetric Ricci-recurrent spaces have been studied by W. Roter [9].

2. Semi-symmetric metric connection

In general, the tensor $C_{i j k}^{h}$ does not satisfy the second Bianchi identity

$$
\begin{equation*}
C_{i j k, l}^{h}+C_{i k l, j}^{h}+C_{i l j, k}^{h}=0 \tag{2.1}
\end{equation*}
$$

In this section we suppose that condition (2.1) holds in the investigated $(W C S)_{n}$.

Transvecting (1.5) with $g^{s h}$ we obtain

$$
\begin{equation*}
C_{i j k, l}^{s}=a_{l} C_{i j k}^{s}+b^{s} C_{l i j k}+b_{i} C_{l j k}^{s}+e_{j} C_{i l k}^{s}+e_{k} C_{i j l}^{S} \tag{2.2}
\end{equation*}
$$

Using (1.6) and (1.8) from (2.1) and (2.2) it follows that

$$
\begin{equation*}
A_{l} C_{i j k}^{h}+A_{j} C_{i k l}^{h}+A_{k} C_{i l j}^{h}=0 \tag{2.3}
\end{equation*}
$$

where $A_{i}=a_{i}-2 e_{i}$.
Contracting h and l in (2.3) and using (1.7) we get

$$
\begin{equation*}
A_{h} C_{i j k}^{h}=0 \tag{2.4}
\end{equation*}
$$

Transvecting (2.3) with A^{l} and using (2.4) we obtain

$$
\begin{equation*}
A_{l} A^{l} C_{i j k}^{h}=0 \tag{2.5}
\end{equation*}
$$

Hence $A_{l} A^{l}=0$, since by assumption $C_{i j k}^{h} \neq 0$. Thus we can state the following

Theorem 1. The vector $A_{i}=a_{i}-2 e_{i}$ in a $(W C S)_{n}$ is a null vector.
Now we shall prove
Theorem 2. A weakly conformally symmetric space can be endowed with a uniquely determined semi-symmetric metric connection with respect to which the conformal curvature tensor is weakly conformally symmetric.

Proof. A connection of the form

$$
\tilde{\Gamma}_{j k}^{h}=\left\{\begin{array}{c}
i \\
j \\
\\
k
\end{array}\right\}+\delta_{j}^{h} S_{k}-g_{j k} S^{h}
$$

where S_{i} is a vector field, is a semi-symmetric metric connection. In fact, denoting the operator of covariant differention with respect to this connection by $\tilde{\nabla}$, we have

$$
\tilde{\nabla}_{k} g_{i j}=\frac{\partial g_{i j}}{\partial x^{k}}-\tilde{\Gamma}_{k l}^{r} g_{r j}-\tilde{\Gamma}_{k j}^{r} g_{i r}=0
$$

while the torsion tensor has the form

$$
T_{j k}^{i}=\tilde{\Gamma}_{j k}^{i}-\tilde{\Gamma}_{k j}^{i}=S_{k} \delta_{j}^{i}-S_{j} \delta_{k}^{i} .
$$

We shall denote the tensors determined with respect to $\tilde{\Gamma}$ by a tilde above. For example, $\tilde{R}_{i j k}^{h}$ is the curvature tensor of this connection, $\tilde{R}_{i j}$ is the Ricci tensor, R is the scalar curvature, while

$$
\begin{aligned}
\tilde{C}_{i j k}^{h}= & \tilde{R}_{i j k}^{h}-\frac{1}{n-2}\left(g_{i j} \tilde{R}_{k}^{h}-g_{i k} \tilde{R}_{j}^{h}+\delta_{k}^{h} \tilde{R}_{i j}-\delta_{j}^{h} \tilde{R}_{i k}\right) \\
& +\frac{\tilde{R}}{(n-1)(n-2)}\left(\delta_{k}^{h} g_{i j}-\delta_{j}^{h} g_{i k}\right) .
\end{aligned}
$$

It is known that [10]

$$
\begin{equation*}
\tilde{C}_{i j k}^{h}=C_{i j k}^{h} \tag{2.6}
\end{equation*}
$$

Applying the operator $\tilde{\nabla}$ to (2.6) and using (2.2), we get

$$
\begin{align*}
\tilde{\nabla} \tilde{C}_{i j k}^{h}= & a_{s} C_{i j k}^{h}+b^{h} C_{s i j k}+b_{i} C_{s j k}^{h}+e_{j} C_{i s k}^{h}+e_{k} C_{i j s}^{h}-S^{h} C_{s i j k} \\
& -S_{i} C_{s j k}^{h}-S_{j} C_{i s k}^{h}-S_{k} C_{i j s}^{h}+\delta_{s}^{h} S_{r} C_{i j k}^{r}+g_{i s} S^{r} C_{r j k}^{h} \tag{2.7}\\
& +g_{j s} S^{r} C_{i r k}^{h}+g_{k s} S^{r} C_{i j r}^{h} .
\end{align*}
$$

Therefore, if $S_{i}=A_{i}$, i.e., if

$$
\tilde{\Gamma}_{j k}^{h}=\left\{\begin{array}{c}
i \\
j \\
k
\end{array}\right\}+\delta_{j}^{h} A_{k}-g_{j k} A^{h}
$$

and if we take into account (2.4) and (2.6), we find,

$$
\begin{align*}
\tilde{\nabla}_{s} C_{i j k}^{h}= & a_{s} C_{i j k}^{h}+\left(b^{h}-A^{h}\right) C_{s i j k}+\left(b_{i}-A_{i}\right) C_{s j k}^{h} \\
& +\left(e_{j}-A_{j}\right) C_{i s k}^{h}+\left(e_{k}-A_{k}\right) C_{i j s}^{h} \tag{2.8}
\end{align*}
$$

which implies that the conformal curvature tensor is weakly conformally symmetric with respect to the connection $\tilde{\nabla}$. This completes the proof of the theorem.

If, in particular, $A_{i}=b_{i}=e_{i}$, then (2.8) reduces to $\tilde{\nabla}_{s} C_{i j k}^{h}=a_{s} C_{i j k}^{h}$. Hence we can state the following

Corollary. A weakly conformally symmetric space can be endowed with a uniquely determined semi-symmetric metric connection with respect to which the conformal curvature tensor is recurrent if the associated vector S_{i} of the semi-symmetric connection is equal to the associated vectors b_{i} and e_{i} of a weakly conformally symmetric space.

3. Weakly conformally symmetric Ricci-recurrent space

A Ricci-recurrent space is defined by (1.6). Transvecting (1.6) with $g^{i j}$, we obtain

$$
\begin{equation*}
R_{, k}=\lambda_{k} R \tag{3.1}
\end{equation*}
$$

Hence if $R \neq 0$, the recurrence vector λ_{k} is gradient. W. Roter [9] proved that in a Ricci-recurrent space the following relations

$$
\begin{equation*}
R_{r i} R_{j l m}^{r}+R_{r j} R_{i l m}^{r}=0 \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{r i} R_{j}^{r}=\frac{1}{2} R R_{i j} \tag{3.3}
\end{equation*}
$$

hold.

In view of the known result $R_{j, s}^{s}=\frac{1}{2} R_{, j}$ (1.6) implies that

$$
\begin{equation*}
\lambda_{s} R_{j}^{s}=\frac{1}{2} R \lambda_{j} \tag{3.4}
\end{equation*}
$$

Transvecting (1.5) with $g^{s h}$ we obtain

$$
C_{i j k, l}^{s}=a_{l} C_{i j k}^{s}+b^{s} C_{l i j k}+b_{i} C_{l j k}^{s}+e_{j} C_{i l k}^{s}+e_{k} C_{i j l}^{s}
$$

Since $C_{s j k}^{s}=C_{j s k}^{s}=C_{j k s}^{s}=0$, the above equation reduces to

$$
\begin{equation*}
C_{i j k, s}^{s}=T_{s} C_{i j k}^{s} \tag{3.5}
\end{equation*}
$$

where $T_{s}=a_{s}+b_{s}$.
It is known that in a Riemannian space $[11, \mathrm{p} .91]$

$$
C_{i j k, s}^{s}=\frac{n-3}{n-2}\left[\left(R_{i j, k}-\frac{1}{2(n-1)} R_{, k} g_{i j}\right)-\left(R_{i k, j}-\frac{1}{2(n-1)} R_{, j} g_{i k}\right)\right]
$$

which in view of (1.6) and (3.4) yields,

$$
\begin{align*}
T_{s} C_{i j k}^{s}= & \frac{n-3}{n-2}\left[\left(R_{i j}-\frac{1}{2(n-1)} R g_{i j}\right) \lambda_{k}\right. \tag{3.6}\\
& \left.-\left(R_{i k}-\frac{1}{2(n-1)} R g_{i k}\right) \lambda_{j}\right]
\end{align*}
$$

Since $T_{s} T^{i} C_{i j k}^{s}=0$, equation (3.6) implies

$$
\begin{equation*}
\left(T_{s} R_{j}^{s}-\frac{1}{2(n-1)} R T_{j}\right) \lambda_{k}=\left(T_{s} R_{k,}^{s}-\frac{1}{2(n-1)} R T_{k}\right) \lambda_{j} \tag{3.7}
\end{equation*}
$$

Transvecting (3.7) with R_{p}^{k}, using (3.3) and (3.4), and then comparing it with (3.7) we get

$$
\begin{equation*}
T_{s} R_{j}^{s}=\frac{1}{2} R T_{j} \tag{3.8}
\end{equation*}
$$

Transvecting (1.5) with T^{h} and by virtue of (3.6) and (3.8) we get

$$
\begin{gather*}
\frac{n-3}{n-2}\left[\left(R_{i j}-\frac{1}{2(n-1)} R g_{i j}\right) \lambda_{k}-\left(R_{i k}-\frac{2}{2(n-1)} R g_{i k}\right) \lambda_{j}\right] \\
=T_{s} R_{i j k}^{s}-\frac{1}{n-2}\left(T_{k} R_{i j}-T_{j} R_{i k}\right) \tag{3.9}
\end{gather*}
$$

$$
+\frac{3-n}{2(n-1)(n-2)} R\left(T_{k} g_{i j}-T_{j} R_{i k}\right) .
$$

Now

$$
\begin{aligned}
T_{s} R_{i j k}^{s} R_{p}^{i} & =T^{s} R_{p}^{i} R_{s i j k}=-T^{s} R_{p}^{i} R_{i s j k} \\
& =-T^{s} R_{i p} R_{s j k}^{i}=T^{s} R_{i s} R_{p j k}^{i}, \quad \text { by (3.2) } \\
& =\frac{1}{2} R T_{i} T_{p j k}^{i} \quad \text { by (3.8). }
\end{aligned}
$$

Transvecting (3.9) with R_{p}^{i} and using the above relation and (3.3) we obtain

$$
\frac{n-3}{n-1}\left(\lambda_{k} R_{j p}-\lambda_{j} R_{k p}\right)=T_{s} R_{p j k}^{s}-\frac{2}{n-1}\left(T_{k} R_{j p}-T_{j} R_{k p}\right)
$$

which, by contraction with $g^{p j}$ yields

$$
\frac{n-3}{n-1}\left(R \lambda_{k}-\lambda_{j} R_{k}^{j}\right)=T_{s} R_{k}^{s}-\frac{2}{n-1}\left(T_{k} R-T_{j} R_{k}^{j}\right) .
$$

Now using (3.4) and (3.8) we obtain $T_{k}=\lambda_{k}$.
Thus we can state the following
Theorem 3. In a weakly conformally symmetric Ricci-recurrent space with $R \neq 0$, the relation $\lambda_{k}=a_{k}+b_{k}$ holds.

References

[1] L. Tamássy and T. Q. Binh, On weakly symmetric and weakly projective symmetric Riemannian manifolds, Coll. Math. Soc. J. Bolyai 56 (1992), 663-670.
[2] M. Prvanović, On weakly symmetric Riemannian manifolds, Publ. Math. Debrecen 46 (1995), 19-25.
[3] T. Q. Binh, On weakly symmetric Riemannian spaces, Publ. Math. Debrecen 42 (1993), 103-107.
[4] U. C. De and S. Bandyopadhyay, On weakly symmetric Riemannian spaces, Publ. Math. Debrecen 54 (1999), 377-381.
[5] U. C. De and S. Bandyopadhyay, On weakly conformally symmetric spaces, Publ. Math. Debrecen 57 (2000), 71-78.
[6] E. M. Paterson, Some theorems on Ricci recurrent spaces, J. London Math. Soc. 27 (1952), 287-295.
[7] M. C. Chaki and B. Gupta, On conformally symmetric spaces, Indian J. Math. 5 (1963), 113-122.
[8] M. Prvanović, Conformally quasi-recurrent manifolds, Finsler and Lagrange spaces, Proceedings of the $5^{\text {th }}$ National Seminar on Finsler space, Feb. 10-15 (1988), Brasov, Romania, 321-328.
[9] W. Roter, On conformally symmetric Ricci-recurrent spaces, Colloquium Mathematicum 31 (1974), 87-96.
[10] M. Prvanović, Some tersors of metric semi-symmetric connection, Atti. Acead. Sci. Torino 107 (1972-1973), 303-316.
[11] L. P. Eisenhart, Riemannian Geometry, Princeton University Press, 1949.
U. C. DE
department of mathematics
UNIVERSITY OF KALYANI
KALYANi - NADIA, WEST BENGAL 741235
indiA
E-mail: ucde@klyuniv.ernet.in
(Received December 13, 2002; revised March 7, 2003)

