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On the equation 1k + 2k + . . . + xk = yn

By K. GYŐRY (Debrecen) and Á. PINTÉR (Debrecen)

To Professor L. Tamássy on his 80th birthday

Abstract. In our paper a survey is given on the title equation. General
finiteness theorems, bounds on n and the number of solutions, complete solution
for small values of k, and some generalizations and analogues are presented. The
basic ideas of the most important proofs are also outlined. We note that in
the proofs of the recent results virtually every technique of modern Diophantine
analysis has been employed.

1. Introduction

A classical problem of Lucas [24], from 1875, was whether the dio-
phantine equation

12 + 22 + · · ·+ x2 = y2 (1)

has solutions in positive integers other than (x, y) = (1, 1) and (24, 70).
Putative solutions by Moret–Blanc [26] and Lucas [25] contained some
errors and it was not until 1918 that Watson [36] was able to completely
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solve equation (1), and to correctly answer the question, in the negative.
For more recent and elementary proofs we refer to [23] and [1], [15], re-
spectively. For a survey on this equation, see [4].

In 1956, Schäffer [29] considered the more general equation

Sk(x) = yn, (2)

where, here and subsequently, we write

Sk(x) = 1k + 2k + · · ·+ xk for positive integer k.

As is known, Sk(x) can be expressed as a polynomial of degree k + 1 with
rational coefficients. Hence, for n ≥ 2, (2) is in fact a special superellip-
tic equation; for general superelliptic equations, see [31] and the survey
paper [12].

For every k and n, (x, y) = (1, 1) is a solution of (2). Schäffer [29]
proved that if k ≥ 1 and n ≥ 2 are fixed, then apart from certain excep-
tions (k, n) (see (3) below), (2) has only finitely many solutions in integers
x, y ≥ 1. His proof was ineffective. In 1980, Győry, Tijdeman and
Voorhoeve [19] established, in an effective form, a more general finite-
ness theorem in which the exponent n is also unknown. Later, various
generalizations and analogues have been obtained by Győry, Tijdeman,
Voorhoeve, Brindza, Dilcher, Urbanowicz and others. These results will
be presented in Section 2.

In Section 3, some results of Pintér [28] as well as Brindza and
Pintér [11] are formulated, which furnish explicit upper bounds, in terms
of k, for n and for the number of solutions of (2) in integers x, y ≥ 1,
n ≥ 2, respectively.

Finally, Section 4 is concerned with a conjecture of Schäffer [29]
on the solvability of (2). First some partial results of Schäffer [29] are
presented. Then two recent theorems of Jacobson, Pintér and Walsh

[20] and Bennett, Győry and Pintér [5] are stated which provide the
complete solution of (2) for n = 2 and even k ≤ 58, and for k ≤ 11 and
arbitrary n ≥ 2, respectively.
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2. Finiteness results and various generalizations

Schäffer [29] proved the following.

Theorem A (Schäffer [29]). For fixed k ≥ 1 and n ≥ 2, (2) has at

most finitely many solutions in positive integers x and y, unless

(k, n) ∈ {(1, 2), (3, 2), (3, 4), (5, 2)}, (3)

where, in each case, there are infinitely many such solutions.

Schäffer [29] gave, for each (k, n) contained in the set (3), all the
solutions. Further, he showed that in all other cases the number of solu-
tions is bounded by a constant depending only on k. In Schäffer’s proof
the main line of attack is as follows. As is known,

Sk(x) =
1

k + 1
(Bk+1(x + 1)−Bk+1(0)),

where Bk+1(x) denotes the (k + 1)-th Bernoulli polynomial. This implies
that if k ≥ 2 is even, then 0,−1 and −1/2 are simple zeros of Sk(x), while
for odd k ≥ 3, 0 and −1 are double zeros of Sk(x). Hence it follows that

Sk(x) =

{
x2(x + 1)2Tk(x)/Ck if k > 1 is odd,

x(x + 1)(2x + 1)Tk(x)/Ck if k ≥ 2 is even.

Here Ck is a positive integer and Tk(x) is a polynomial with integer coef-
ficients. Schäffer proved that for odd n ≥ 3 and for every solution x, y of
(2), the numbers x, x+1 and, if k is even, 2x+1 are all perfect nth powers
multiplied by bounded factors, the bound depending only on k. Thus (2)
leads to finitely many equations of the type

AXn −BY n = 1 in non-zero X, Y ∈ Z, (4)

with fixed non-zero integers A, B, and the number of the resulting equa-
tions (4) is bounded above by a constant depending only on k. However,
by theorems of Nagell ([27], case n = 3) and Domar ([17], case n ≥ 5)
each of the equations (4) has at most two solutions, whence, for odd n ≥ 3,
Theorem A follows. Since the results utilized from [27] and [17] are inef-
fective, Schäffer’s proof is also ineffective.
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On applying Baker’s method, Győry, Tijdeman and Voorhoeve

[19] proved a more general and effective result in which the exponent n is
also unknown.

Theorem B (Győry, Tijdeman and Voorhoeve [19]). Let k ≥ 2
and r be fixed integers with k /∈ {3, 5} if r = 0, and let s be a square-free

odd integer. Then the equation

sSk(x) + r = yn (5)

in positive integers x, y ≥ 2, n ≥ 2 has only finitely many solutions, and

all these can be effectively determined.

Of particular importance is the special case when s = 1 and r = 0.

Corollary (Győry, Tijdeman and Voorhoeve [19]). For given

k ≥ 2 with k /∈ {3, 5}, equation (2) has only finitely many solutions in

integers x, y ≥ 1, n ≥ 2, and all these can be effectively determined.

The following striking result is due to Voorhoeve, Győry and Tij-

deman [35].

Theorem C (Voorhoeve, Győry and Tijdeman [35]). Let R(x)
be a fixed polynomial with integer coefficients, and let k ≥ 2 be a fixed

integer such that k /∈ {3, 5}. Then the equation

Sk(x) + R(x) = yn (6)

in integers x, y ≥ 2, n ≥ 2 has only finitely many solutions, and an effective

upper bound can be given for n.

In their proofs, the authors in [19] and [35] showed that the polyno-
mials sSk(x) + r and Sk(x) + R(x) has at least two distinct zeros. Then
they applied a well-known theorem of Schinzel and Tijdeman [35] on
superelliptic equations to derive an effective upper bound for n. Further,
in [19], they proved that sSk(x) + r has at least three simple zeros, and
then an effective result of Baker [2] concerning superelliptic equations
completed the proof of Theorem B. In [35], a general statement was ob-
tained on the multiplicities of zeros of Sk(x) + R(x). This enabled the
authors to apply an ineffective finiteness criterion of LeVeque [22] on the
numbers of solutions of superelliptic equations to prove Theorem C.



On the equation 1k + 2k + . . . + xk = yn 407

Later, various generalizations and analogues of Theorems B and C
have been established in an effective form. Some of them will now be
presented.

Brindza [7] gave a common effective generalization of Theorems B
and C. Set A = Z[X], κ = (k + 1)

∏
p−1|(k+1)! p (p prime), and

F (y) = Qmym + · · ·+ Q1y + Q0 ∈ A[y].

Consider the equation

F (Sk(x)) = yn (7)

in integers x, y ≥ 2, n ≥ 2.

Theorem D (Brindza [7]). If Qi(x) ≡ 0 (mod κi) for i = 2, . . . , m;

Q1(x) ≡ ±1 (mod 4), and k /∈ {1, 2, 3, 5} then all solutions of (7) satisfy

max(x, y, n) < c1, where c1 is an effectively computable constant depend-

ing only on F and k.

The effective character of Theorem D is due to an effective version of
LeVeque’s theorem, established by Brindza [8] in 1984. In particular, if
k /∈ {1, 2, 3, 5} and Q2(x) = · · · = Qn(x) = 0 and Q1(x) = s, where s is an
odd integer, then, by Theorem D, all solutions of the equation

sSk(x) + Q0(x) = yn

in integers x, y, n ≥ 2 satisfy max(x, y, n) < c2, where c2 is an effectively
computable constant depending only on s and Q0(x). In case of k > 5, this
generalizes Theorem B and provides, in a more general form, an effective
version of Theorem C.

For k 6≡ 1 (mod 4), the assumption concerning s in Theorem B was
weakened by Kano [21]. For further results on (5) with s = 8 and n = 2,
we refer to [10] and [13].

Dilcher [16] proved character analogues of the results concerning
equation (2). Let χ be a primitive quadratic residue class character with
conductor f = fχ.

Theorem E (Dilcher [16]). Let χ be a primitive quadratic char-

acter, and k a fixed positive integer. If k is sufficiently large, then the

equation

χ(1)1k + χ(2)2k + . . . + χ(xf)(xf)k = yn (8)
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has only finitely many solutions in integers x, y ≥ 1 and n ≥ 2, with

effective upper bounds for x, y, n.

As an interesting special case (f = 4) we mention that for any integer
k ≥ 3 with k /∈ {4, 5}, Theorem E gives effectively computable upper
bounds for the solutions of the equation

1k − 3k + 5k − · · ·+ (4x− 3)k − (4x− 1)k = ±yn

in integers x, y ≥ 2 and n ≥ 2. For further generalizations of the character
case, we refer to [32], [33] and [34].

In [32], Urbanowicz dealt with the general equation

f(1)1k + f(2)2k + · · ·+ f(x)xk + R(x) = yn, (9)

where f : N0 → Z is a periodic function. For f = 1, this is just equa-
tion (6), while for f a quadratic character, (9) reduces to (8). In [32], the
author gave some natural subclasses of all periodic functions f such that
if k ≥ 4 with k 6= 5, then for f from this subclass and for any R(x) ∈ Z[x],
(9) possesses only finitely many solutions in integers x ≥ 1, y, n ≥ 2 for f

from this subclass and for any R(x) ∈ Z[x]. For example, all periodic func-
tions f : N0 → {±1} with period not divisible by 4 belong to the above
mentioned subclass.

The proofs of the results of Brindza [7], Kano [21], Dilcher [16] and
Urbanowicz [32], [33] and [34] are in fact based upon the classical ap-
proach of Schäffer, certain properties of generalized Bernoulli polynomials,
some arguments of [19] and [35], and results of Schinzel and Tijdeman

[30] and Brindza [8] on superelliptic equations.

3. Explicit upper bounds for n and
for the number of solutions

In Theorems B to E, the upper bounds on n are not given explicitly.
Using Baker’s method, Pintér [28] obtained a rather sharp explicit upper
bound for the exponent n.
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Theorem F (Pintér [28]). All the solutions x, y, n to equation (2)
with x > 103(k/2)k+5/2 = c(k), y > 1 and n ≥ 2 satisfy

n < c3k log 2k, (10)

where c3 is an effectively computable absolute constant.

In the case x ≤ c(k) we have 2n ≤ yn ≤ c(k)k+1 and so, if k > 2, we
get

n < 6(k + 1)2 log
k

2
. (11)

In [29], Schäffer’s bound on the number of solutions of (2) was not
given explicitly. Applying a general result of Evertse and Silverman

[18] concerning superelliptic equations, one may derive the explicit bound
17kn2k for the number of solutions to (2), provided that this number is
finite. Brindza [9] derived a better estimate, by showing that for any
given n ≥ 3 with n 6= 4, equation (2) has at most e7k solutions. Further,
for k ≤ 60, he proved that (2) has at most e33 solutions.

Recently, Brindza and Pintér [11] proved that for even k and n=2,
(2) has at most max{c4, 9k} solutions, where c4 denotes an effectively com-
putable absolute constant. Moreover, in the case when in (2) the expo-
nent n is also unknown, they established the following

Theorem G (Brindza and Pintér [11]). Apart from the case

(k, n) = (3, 4), equation (2) possesses at most max{c5, e
3k} solutions in

positive integers x, y > 1, and n > 2, where c5 is an effectively computable

absolute constant.

To prove Theorem G, the authors use among other things (10), (11)
and a refined version of Schäffer’s approach [29], and reduce (2) to a
“small” number of equations of the form (4). Then they apply a recent
estimate of Bennett [3] on the number of solutions of (4).
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4. On the resolution of equation (2)

The solution (x, y) = (1, 1) of (2) is called trivial . As was seen above,
for (k, n) = (2, 2) the only non-trivial solution of (2) is (x, y) = (24, 70).
In 1956, Schäffer [29] was able to prove that equation (2) has only the
trivial solution in each of the following cases: k ∈ {1, 5} and n = 4,
k = 3 and n = 8, k ∈ {4, 6, 8, 9, 10} and n = 2, k ≤ 11 and n ∈ {3, 5},
k ≤ 11 with k 6= 10 and n ∈ {29, 41, 53, 113, 173, 281, 509, 641}. Further,
he formulated the following

Conjecture (Schäffer [29]). For k ≥ 1 and n ≥ 2 with (k, n)
not in the set (3), equation (2) has only one non-trivial solution, namely

(k, n, x, y) = (2, 2, 24, 70).

Theorem B makes it possible, at least in principle, to determine all
solutions of (2). However, the bounds provided by Theorem B are not given
explicitly. On the other hand, even explicit values of the bounds which
could be derived by Baker’s method, would be too large for practical use.
In general, for any fixed k, it seems to be hopeless to find all solutions of
(2) by the present methods.

Recently, a considerable progress has been made concerning Schäffer’s
conjecture. The next theorem, achieved by Jacobson, Pintér and Walsh

[20], confirms the conjecture for n = 2 and for even k with k ≤ 58.

Theorem H (Jacobson, Pintér and Walsh [20]). For n = 2 and

even values of k with k ≤ 58, equation (2) has only the trivial solution

except in the case k = 2, when there is the anomalous solution (x, y) =
(24, 70).

In [20], the authors used a computational approach for finding all
integral solutions of (2) for n = 2 and for even values of k. After reducing
this problem to that of finding integral solutions of a certain class of quartic
equations of the form

b2X4 − dY 2 = 1, (12)

they combined some recent results of Cohn [14] and Bennett and Walsh

[6] on equations (12) with the powerful computational machinery related
to quadratic number fields. Using their approach, they found all integral
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solutions for k ≤ 70 assuming the Extended Riemann Hypothesis, and for
k ≤ 58, unconditionally.

It is an even more difficult problem to find all solutions of (2) when
the exponent n is not fixed. By means of deep tools Bennett, Győry

and Pintér [5] proved completely Schäffer’s conjecture for k ≤ 11 (which
includes all the values considered by Schäffer) and, most importantly, for
arbitrary n.

Theorem I (Bennett, Győry and Pintér [5]). For 1 ≤ k ≤ 11 and

(k, n) not in the set (3), equation (2) has only the trivial solution, unless

k = 2, in which case there is the additional solution (n, x, y) = (2, 24, 70).

Our method of proof, which may, with a modicum of effort, be ex-
tended to higher values of k, combines a wide variety of techniques, clas-
sical and modern, in Diophantine analysis.

To illustrate the basic idea of our proof, assume that (2) has a non-
trivial solution with k ≤ 11 and (k, n) not in (3). For n a power of 2, it
suffices to prove Theorem I for k ∈ {7, 11} in view of the previous results.
In this case, equation (2) was reduced to elliptic curves, whose integral
points were provided by the computational package MAGMA.

For odd prime n, equation (2) was reduced to equations of the form
(4), where A,B are relatively prime positive integers with B > A + 1 and

AB ∈
{

11, 14, 22, 30, 42, 66, 2 · 5n−1, 6 · 5n−1, 22 · 5n−1,

66 · 5n−1, 2 · 5(n±1)/2, 2 · 3(n∓1)/2 · 5(n±1)/2
}

.

Using a sharp lower bound for linear forms in logarithms of two algebraic
numbers, we proved that n < 4000 in each of the equations (4) involved.
It remained to treat the equations (4) considered above with n < 4000
prime.

For small values of n, this is readily accomplished via known compu-
tational techniques. For n ≤ 19, we resolved the corresponding equations
via MAGMA. For values of n greater than 100 or so, this is well out of
range of current techniques, based on Baker’s method and lattice basis re-
duction. For A > 1, we used a local method for solving the corresponding
equations (4). Finally, for A = 1, a new technique was applied for handling
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such equations, based upon classical work on Fermat-type equations and
the theory of Frey curves, Galois representations and modular forms.

Remark. We note that it is a rare situation where one can explicitly
solve superelliptic equations of as high degree as we encountered in [5].
Furthermore, this was accomplished by solving certain high degree Thue
equations, itself being a notoriously difficult problem.

Acknowledgement. The authors are indebted to the referee for
pointing out some typist’s errors in the manuscript.
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