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Submersions on nilmanifolds and their geodesics

By SZILVIA HOMOLYA (Miskolc) and PÉTER T. NAGY (Debrecen)

Dedicated to Professor Lajos Tamássy on his 80th birthday

Abstract. We describe the geodesics of two-step nilpotent Lie groups N
with respect to left invariant Riemannian metrics 〈. , .〉 using the Riemannian
submersion structure of the fiber bundle π : N → N/Z, where Z denotes the
center of N . We characterize two-step nilmanifolds (N, 〈. , .〉) which have the
property that the projections of geodesics of N onto the factor space N/Z are
Euclidean lines or circles.

1. Introduction

Geodesics of two-step nilpotent Lie groups with respect to left invari-
ant Riemannian metrics are investigated by many authors in the last 20
years. Their equations are determined for different classes of nilmanifolds
(cf. [5], [6], [1], [3], [7]) and applied to the spectral geometry of Riemannian
manifolds (e.g. [3], [9], [8], [2]). We intoduce a natural Riemannian sub-
mersion structure on a two-step nilpotent Lie group equipped with a left
invariant Riemannian metric and investigate the fundamantal equations of
this submersion (cf. [11]). The O’Neill’s differential equations of geodesics
of a Riemannian submersion (cf. [12], [10]) give the equations of geodesics
of two-step nilmanifolds in a form which is obtained by A. Kaplan for
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Heisenberg type groups ([5]) and by P. Eberlein for the general case ([3]).
Our paper is devoted to the characterization of modified H-type Riemann-
ian manifolds, introduced in [7], using the properties of their geodesics in
the Riemannian submersion representation of two-step nilpotent Riemann-
ian nilmanifolds.

Two-step nilpotent Lie groups. A connected Riemannian manifold
which admits a transitive nilpotent group N of isometries is called a nil-
manifold. The action of N is neccesarily simply transitive (cf. [13], Theo-
rem 2, pp. 341–342), thus the manifold may be identified with the group N
endowed with a left invariant metric. If the manifold is simply connected
then the exponential map exp : n → N , where n is the Lie algebra of N ,
is a diffeomorphism.

A Lie algebra n is said to be two-step nilpotent if [n, n] 6= {0} but
[[n, n], n] = {0}. If the Lie algebra n of the simply connected Lie group N

is two-step nilpotent, then from the Campbell–Hausdorff formula follows
that the multiplication can be expressed in the form:

exp(X) · exp(Y ) = exp
(

X + Y +
1
2
[X, Y ]

)
for all X, Y ∈ n.

Let N be a simply connected two-step nilpotent Lie group and n be its Lie
algebra. A left invariant Riemannian metric g on N is determined by an
inner product 〈. , .〉 on n. This two-step nilpotent Riemannian nilmanifold
on N will be denoted by (N, 〈. , .〉). We denote by z the center of n and
by a = z⊥ the orthogonal complement of z. Then we have the orthogonal
direct sum decomposition n = a⊕ z. We denote by so(a) and so(z) the
Lie algebras of skew-symmetric transformations of the Euclidean vector
subspaces (a, 〈. , .〉a) and (z, 〈. , .〉z) of (n, 〈. , .〉). For each element Z of z we
obtain a skew-symmetric transformation j(Z) : a → a defined by

〈j(Z)X, Y 〉 = 〈[X, Y ], Z〉 for all X,Y ∈ a. (1)

Then j : z → so(a) is a linear map.
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The geometry of (N, 〈. , .〉) can be expressed in terms of the maps j(Z)
with Z ∈ z. Namely, if there are given inner product spaces (a, 〈. , .〉a) and
(z, 〈. , .〉z) and a linear map j : z → so(a), we obtain a simply connected
Riemannian nilmanifold (N, 〈. , .〉) by letting (n, 〈. , .〉) be the orthogonal
direct sum of inner product spaces (a, 〈. , .〉a) and (z, 〈. , .〉z), defining a Lie
bracket on n by (1) together with the conditions:

[a, a] ⊂ z, and [n, z] = 0,

and then letting N be the associated simply connected Lie group with
the left invariant Riemannian metric g defined by the inner product 〈. , .〉.
Since [n, n] = [a, a] ⊂ z and [n, z] = 0 the Riemannian manifold N is a
two-step nilmanifold. If z is equal to the commutator of n, i.e. z = [n, n],
then j : z → so(a) is an injective linear map. Among two-step nilpotent
Lie groups with left invariant metric the Heisenberg-type Lie groups are of
particular significance. These spaces were introduced and studied seriously
by A. Kaplan in [6]. A two-step nilpotent Lie group (N, 〈. , .〉) with left
invariant metric is said to be an Heisenberg-type (H-type) Lie group if
[j(Z)]2 = −〈Z, Z〉 ida for any Z ∈ z.

In [7] J. Lauret introduced the following generalization of the notion
of H-type Lie groups with left invariant metric by weakening the H-type
condition.

Definition 1. A two-step nilpotent Lie group (N, 〈. , .〉) with left invari-
ant metric is said to be a modified Heisenberg-type (modified H-type) Lie
group if [j(Z)]2 = λ(Z) ida for any Z ∈ z with some function λ(Z) < 0.

The modified H-type Lie groups with left invariant metric are classified
in [7], up to isometry, proving that they are given by pairs (N, 〈. , .〉S) of
an H-type nilmanifold (N, 〈. , .〉) and of a scalar product 〈. , .〉S of the form

〈X + A, Y + B〉S = 〈X,Y 〉+ 〈SA, B〉 for all X,Y ∈ a, A, B ∈ z,

where S is a symmetric positive definite transformation on (z, 〈. , .〉).
Riemannian submersions. Let M and B be Riemannian manifolds. A

Riemannian submersion π : M → B is a smooth mapping of M onto B,
which satisfies the following axioms:
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(i) π has maximal rank,

(ii) π∗ preserves lengths of horizontal tangent vectors to M .

The submanifolds π−1(b) are called fibers. A vector field on M (respec-
tively a tangent vector to M) is vertical if it is always tangent to fibers,
horizontal if it is always orthogonal to fibers.

For a submersion π : M → B, let H and V denote the projections of the
tangent spaces of M onto the subspaces of horizontal and vertical vectors.
The character of a submersion can be described by the fundamental tensors
of the submersion: T is determined by the second fundamental form of the
fibers π−1(b) and A is the integrability tensor of the horizontal distribution
H on M . They are expressed by

TEF = H∇VE(VF ) + V∇VE(HF ),

AEF = V∇HE(HF ) + H∇HE(VF )

for arbitrary vector fields E and F , where ∇ is the covariant derivative
of M . These tensors have the following properties:

TE and AE are skew-symmetric linear operators and they reverse the
horizontal and vertical subspaces of the tangent spaces of M ,

T is vertical (i.e. TE = TVE) and A is horizontal (i.e. AE = AHE),

T is symmetric: TV W = TW V for vertical V and W ,

A is skew-symmetric: AXY = −AY X for horizontal X and Y ,

AXY = 1
2V[X, Y ] for horizontal X and Y .

The relation between the fundamental tensors T and A and the covariant
derivative ∇ of M is given by the equations:

∇V W = TV W + V∇V W, ∇V X = H∇V X + TV X, (2)

∇XV = AXV + V∇XV, ∇XY = H∇XY + AXY (3)

for horizontal vector fields X and Y and for vertical vector fields V and W .

2. The submersion π : N → N/Z

Let N be a simply connected two-step nilpotent Lie group and let n

be its Lie algebra. Then we can identify the vector space n with N and the
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product space n× n with the tangent bundle TN via the diffeomorphism
exp : n → N . Let 〈. , .〉 be an inner product in n ∼= TeN which defines a left
invariant Riemannian metric gp(X, Y ) = 〈(λ−1

p )∗X, (λ−1
p )∗Y 〉 on N , where

λ denotes the left translation map. Let z be the center of the Lie algebra
n and Z be the corresponding Lie subgroup. The horizontal distribution
T h

x N is left invariant and orthogonal to (λx)∗TeZ. Using the orthogonal
direct sum decomposition n = a⊕ z, where a = z⊥, we have the identities

[X ⊕ U, Y ⊕ V ] = 0⊕ [X, Y ],

(X ⊕ U) ◦ (Y ⊕ V ) = (X + Y )⊕
(
U + V +

1
2
[X,Y ]

)

for all X,Y ∈ a and U, V ∈ z. Hence the tangent map of the left multipli-
cation map λX⊕U satisfies

(λX⊕U )∗|0⊕0(Y ⊕ V ) = Y ⊕
(
V +

1
2
[X,Y ]

)
. (4)

It follows that a left invariant vector field (λX⊕U )∗|0⊕0(Y ⊕ V ) can be
written as the map X ⊕ U 7→ Y ⊕ (V + 1

2 [X,Y ]). The tangent space
TX⊕UN is the orthogonal direct sum

TX⊕UN =
{

Y ⊕ 1
2
[X, Y ]; Y ∈ a

}
⊕ {0⊕ Z; Z ∈ z}

of the horizontal subspace T
(h)
X⊕UN = {Y ⊕ 1

2 [X,Y ]; Y ∈ a} and of the ver-

tical subspace T
(v)
X⊕UN = {0⊕Z; Z ∈ z}. The horizontal subspace T

(h)
X⊕UN

is independent of the center Z of N and hence the horizontal distribution
determines a connection τ in the principal fiber bundle π : N → N/Z.
Now, we want to describe the corresponding parallel translation of the
fibers along the curves of the base space N/Z. Using the identification
exp : n → N we see that the cosets of the factor space N/Z concide with
the cosets of the factor space n/z with respect to the additive structure
of n. Hence we can identify the points of the base space N/Z with the
vectors of the space a.

Lemma 2. Let X(t) be a differentiable curve in the factor space N/Z.

We denote by τt0, t : π−1(X(t0) ⊕ 0) → π−1(X(t) ⊕ 0) the map which is

determined by the horizontal lifts to N of the base curve X(t). Then we
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have

τt0, t(X(t0)⊕ Z) = X(t)⊕
(

Z +
1
2

∫ t

t0

[X(u), X ′(u)]du

)
. (5)

Proof. The shape of the horizontal distribution means that a curve
X(t)⊕ Z(t) is a horizontal lift of the curve X(t) if and only if its tangent
vector satisfies

X ′(t)⊕ Z ′(t) = X ′(t)⊕ 1
2
[X(t), X ′(t)].

This is equivalent to the equation Z ′(t) = 1
2 [X(t), X ′(t)] from which follows

the assertion. ¤

Now we show that we can introduce a unique Euclidean metric ḡ on the
factor space N/Z such that the principal fiber bundle π : N → N/Z will be
a Riemannian submersion with respect to the Riemannian metrics g and ḡ.
Indeed, the horizontal distribution is independent from U ∈ z, hence the
left invariant Riemannian scalar product gp(X,Y ) = 〈(λ−1

p )∗X, (λ−1
p )∗Y 〉,

restricted to the horizontal distribution T
(h)
X⊕UN , can be projected to the

tangent bundle T (N/Z). This means that π : N → N/Z is a Riemannian
submersion.

Since {t(X ⊕ 0); t ∈ R} is a 1-parameter subgroup in exp(a) for any
X ∈ a, one has exp(a) = a. The factor space N/Z can be identified with
a via the map N/Z → a defined by

(X ⊕ 0) ◦ Z = {(X ⊕ 0) ◦ (0⊕ V ) = X ⊕ V ; V ∈ z} 7→ X.

Let ḡX denote the Riemannian metric in a, at X ∈ a, which corresponds
to the Riemannian metric of the factor space N/Z. Let Y1, Y2 ∈ a. The
lifts of Yi to T

(h)
X⊕0N are {Yi ⊕ 1

2 [X, Yi]}, i = 1, 2, from which follows
(λ−1

X⊕0)∗(Yi ⊕ 1
2 [X,Yi]) = Yi ⊕ 0. Thus we get

ḡX(Y1, Y2) =
〈
(λ−1

X⊕0)∗
(
Y1 ⊕ 1

2
[X,Y1]

)
, (λ−1

X⊕0)∗
(
Y2 ⊕ 1

2
[X,Y2]

)〉

= 〈Y1 ⊕ 0, Y2 ⊕ 0〉 = 〈Y1, Y2〉a.

It follows, that the Riemannian scalar product on the factor space N/Z is
constant and hence N/Z is an Euclidean space.
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The covariant derivative ∇XY of the Lie group (N, 〈. , .〉) with left
invariant metric has the following form:

∇XY =
1
2
[X, Y ], ∇XZ = ∇ZX = −1

2
j(Z)X, ∇ZZ∗ = 0, (6)

where X, Y ∈ a and Z,Z∗ ∈ z regarded as left invariant vector fields on N

(cf. [3], p. 630).

Lemma 3. The fundamental tensors T |e and A|e of the Riemannian

submersion π : N → N/Z at the identity element e ∈ N satisfy

T |e = 0 and (A|e)X+U (Y + V ) = −1
2
j(V )X ⊕ 1

2
[X, Y ]

for all X,Y ∈ T
(h)
e N ∼= a and U, V ∈ T

(v)
e N ∼= z.

Proof. We extend the vectors X, Y ∈T
(h)
e N ∼= a and U, V ∈T

(v)
e N ∼= z

to left invariant vector fields on N , which will be denoted by the same let-
ter. Then we obtain from the relation (2) between the fundamental tensors
T and the covariant derivative ∇ of (N, 〈. , .〉) and from the equations (6)
that

TV W = −H∇V W = 0, TV Y = −V∇V Y =
1
2
Vj(V )Y = 0

for all left invariant vector fields Y ∈ a and V, W ∈ z. Since the tensor T

is vertical, it follows TX+V (Y + W ) = TV (Y + W ) = TV (Y ) + TV (W ) = 0
for all X,Y ∈ a and V, W ∈ z.

The identity AX+U (Y + V ) = AX(Y + V ) holds for all X, Y ∈ a and
U, V ∈ z since A is horizontal. Similarly as in the previous case we obtain
the equations

AXV = −H∇XV =
1
2
j(V )X, AXY = −V∇XY = −1

2
[X, Y ]

from the relations (2) and (6) for left invariant horizontal vector fields X,Y

and vertical vector field V , which proves the assertion. ¤

Since the tensorfield T is left invariant, it follows from the last lemma
that T vanishes identically. The tensorfield A is also left invariant, hence
one can express (A|X⊕U )Y1⊕Z1(Y2⊕Z2) at an arbitrary point X⊕U using
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the relation (4):

(A|X⊕U )Y1⊕Z1(Y2 ⊕ Z2)

= (λX⊕U )∗(A|0⊕0)(λX⊕U )−1∗ (Y1⊕Z1)(λX⊕U )−1
∗ (Y2 ⊕ Z2).

An easy computation gives:

Lemma 4. The Riemannian submersion π : N → N/Z has totally

geodesic fibers, i.e. the tensorfield T vanishes identically. The tensorfield

A has the following expression

(A|X⊕U )Y1⊕Z1(Y2 ⊕ Z2) =
(
− 1

2
j(Z2)Y1 +

1
4
j([X,Y2])Y1

)

⊕
(1

2
[Y1, Y2]− 1

4
[X, j(Z2)Y1]+

1
8
[X, j([X,Y2])Y1]

)

for all X,Y1, Y2 ∈ a and U,Z1, Z2 ∈ z.

3. Characterization of the geodesics

We can apply the results of O’Neill on the differential equations of
geodesics of the total space N of π : N → N/Z (cf. Theorem 1 in [12],
p. 364) and we obtain a Riemannian submersion setting of the equations
of geodesics of two-step nilmanifolds (cf. [5], [3]). Since the tensorfield T

vanishes identically, a differentiable curve α(s) is a geodesic of N if and
only if it satisfies the differential equations

α′′∗ = −2AHα′Vα′ and V(Vα′)′ = 0, (7)

where α′′∗ denotes the horizontal lift to α of the acceleration (π ◦ α)′′ of
the projected curve π ◦ α in the Euclidean space N/Z. We identify the
manifold N with its Lie algebra n and the tangent bundle TN with the
product vector space n × n as before. We write the geodesic α(s) in the
form α(s) = X(s) ⊕ U(s), where X(s) ∈ a, U(s) ∈ z for any s ∈ R. Then
α′(s) = X ′(s)⊕ U ′(s) and we have

Hα′(s) = X ′(s)⊕ 1
2
[X(s), X ′(s)],
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Vα′(s) = 0⊕ U ′(s)− 1
2
[X(s), X ′(s)].

Moreover, the horizontal lift of (π ◦ α)′′ has the expression

α′′∗ = X ′′(s)⊕ 1
2
[X(s), X ′′(s)].

Now, using the shape of the tensor A given in Lemma 4, the equations (7)
give the system

X ′′(s)⊕ 1
2
[X(s), X ′′(s)]

(
j(U ′(s)− 1

2
[X(s), X ′(s)]

)
X ′(s)

⊕ 1
2

[
X, j(U ′(s)− 1

2
[X(s), X ′(s)])X ′(s)

]
,

U ′′(s)− 1
2
[X(s), X ′′(s)] = 0.

The second equation means that U ′(s) − 1
2 [X(s), X ′(s)] is constant. We

denote this constant vector by W0.
The first equation can be written in the equivalent form

(X ′′(s)− (j(W0)X ′(s))⊕ 1
2
[X(s), (X ′′(s)− j(W0)X ′(s))] = 0⊕ 0.

Hence we obtain the system of equations of geodesics in the form:

X ′′(s) = j(W0)X ′(s), (8)

U ′(s)− 1
2
[X(s), X ′(s)] = W0, (9)

where W0 ∈ z is a constant vector. These equations are proved by A. Ka-

plan ([5] p. 133) for H-type nilmanifolds and are generalized by P. Eber-

lein ([3], (3.1) Proposition, p. 625) for arbitrary two-step nilmanifolds.
The equation (9) means that the vertical component of the tangent vector
field Vα′(s) = 0 ⊕ (U ′(s) − 1

2 [X(s), X ′(s)]) along the geodesic α(s) of N

is represented by a constant vector 0⊕W0, where we identify N with its
Lie algebra n and the tangent bundle TN with the product vector space
n × n. The constant W0 can be an arbitrary vector contained in z, which
is determined by the vertical part of the initial value of the tangent vector
of the geodesic.



424 Szilvia Homolya and Péter T. Nagy

Since the fibers of the submersion π : N → N/Z are totally geodesic
submanifolds of N the maps τs0,s : π−1(π(α(s0))) → π−1(π(α(s))) from
π−1(π(α(s0))) onto π−1(π(α(s))), where s ∈ R, are isometries. It follows
that the map

ψ : R× π−1(π(α(s0))) →
⋃

s∈R
π−1(π(α(s))),

defined by

ψ(s, z) = τs0,sz; where s ∈ R, z ∈ π−1(π(α(s0))),

is an isometry from the Euclidean product R × π−1(π(α(s0))) of the Eu-
clidean spaces R and π−1(π(α(s0))) ⊂ N onto the Riemannian submanifold⋃

s∈R π−1(π(α(s))) ⊂ N .
We can give now an interpretation of the equation (9).

Lemma 5. If the curve X(s)⊕ U(s) is a geodesic of the Riemannian

two-step nilmanifold N then it is the image

{ψ(s, sW0); s ∈ R} = {τs0,ssW0; s ∈ R}

in the submanifold
⋃

s∈R π−1(X(s) ⊕ 0) ⊂ N of a line {(s, sW0); s ∈ R}
of the Euclidean space R× π−1(π−1(X(s0)⊕ 0)).

Proof. Using the identification exp : n → N we obtain from Lemma 2
that the point ψ(s, sW0) = τs0,ssW0 ∈ π−1(X(s) ⊕ 0) of the image of the
line {(s, sW0); s ∈ R} has the form

X(s)⊕ U(s) = X(s)⊕
(
sW0 +

1
2

∫ s

s0

[X(u), X ′(u)]du
)
.

The tangent vector of this curve is expressed by

X ′(s)⊕ U ′(s) = X ′(s)⊕
(
W0 +

1
2
[X(s), X ′(s)]

)
,

which is equivalent to the equation (9). ¤

Now, we investigate the equation (8). As we have seen, the constant
vector W0 is and arbitrary element of z which determinates the vertical
part of the initial value of the tangent vector of the geodesic α(s). The
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projection π ◦ α(s) of the geodesic α(s) is describeded by the vector field
X(s) satisfying the equation (8), where X(s) ∈ a for all s ∈ R.

Proposition 6. The projection π ◦ α(s) of any geodesic α(s) has

constant curvatures in the Euclidean space N/Z.

Proof. Let X(s) be an a-valued vector field cooresponding to the pro-
jection π◦α(s) of a geodesic α(s). We denote by X(n)(s) = j(W0)n−1X ′(s)
the n-th derivative of X(s) if n ≥ 1, but we use also X ′ and X ′′ for the
first and second derivative. Then according to the equation (8) we have
1
2〈X(n)(s), X(n)(s)〉′ = 〈X(n+1)(s), X(n)(s)〉= 〈j(W0)X(n)(s), X(n)(s)〉=0,
since the operator j(W0) is skew-symmetric. Hence we can parametrize
the geodesic α by the arc-length t of π ◦ α. We denote e1(t) = X ′(t).
Then the first curvature κ1 of π ◦ α(t) is the constant 〈X ′′t), X ′′(t)〉 1

2 =
〈e′1(t), e′1(t)〉

1
2 . If κ1 6= 0 we define e2(t) by e′1(t) = κ1e2(t). In this way we

define the Frenet frame κ1, κ2, . . . , κn recursively by e′i(t) = −κi−1ei−1(t)+
κiei+1(t), i = 2, . . . , n − 1, and e′n(t) = −κn−1en−1(t). By induction
we assume that κi−1 is constant and ei(t) is a linear combination of
X ′(t), . . . , X(i)(t) with constant coefficients and hence the length of e′i(t) =
j(W0)ei(t) is constant. Using e′i(t) = −κi−1ei−1(t) + κiei+1(t) we obtain
that κi is constant and ei+1(t) is a linear combination of X ′(t), . . . , X(i+1)(t)
with constant coefficients. ¤

Corollary 7. The projection π ◦ α(s) of a geodesic α = (X(t), U(t))
into the Euclidean space N/Z is an Euclidean line if and only if

j(U(t0))X(t0) = 0 is satisfied in a point t0.

4. Geodesics of modified H-type groups

Now we characterize the two-step nilmanifolds, the projection of geo-
desics of which are points, Euclidean lines or circles.

Proposition 8. Let (N, 〈. , .〉) be a two-step nilpotent Lie group.

Then the projections of geodesics are points, lines or circles in the Eu-

clidean space N/Z if and only if j(U)2 = −q(U) ida, where q(U) is a

positive semidefinite quadratic form on z.
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Proof. Let (N, 〈. , .〉) be a two-step nilpotent Lie group. Denote n =
a⊕ z the corresponding Lie algebra. The projected curves are contained in
two-dimensional subspaces of N/Z if and only if κ2 = 0 for all these curves.
It is the case if and only if X ′′(t) = e′1(t) = j(W0)ei(t) = κ1e2(t) and
X ′′′(t) = e′′1(t) = j(W0)2e1(t) = κ1e′2(t) = −κ2

1e1(t) is satisfied. It follows
that for any U ∈ z and X ∈ a we have j(U)2X = λX with a suitable
coefficient λ. Since the linear operator j is skew-symmetric, we obtain
that 〈j(U)2X, X〉 = −〈j(U)X, j(U)X〉, or equivalently λ = − |j(U)X|2

|X|2 .

Since all vectors X ∈ a are eigenvectors of j(U)2 the operator j2(U) has
only one eigenvalue for any U ∈ z. Hence λ = − ||j(U)X||2

||X||2 is independent

from X. Then one obtains λ = − |j(U)X|2
|X|2 = −q(U), where q(U) is a

positive semidefinite quadratic form on z. ¤

The following result follows from the previous proposition and from
the fact that one may always split off an abelian factor from a two-step
nilpotent Lie algebra.

Theorem 9. Let n be a two-step nilpotent Lie algebra and let N be

the simply connected nilpotent Lie group with Lie algebra n. Let Z denote

the center of N . All projections of the geodesics of N onto the Euclidean

space N/Z are planar curves if and only if N is direct sum of a modified

H-type group with the Euclidean de Rahm factor of N . In this case the

projections of geodesics are points, lines or circles.

Proof. Let n be a two-step nilpotent Lie algebra with center z. Then
n = n∗ ⊕ ξ and z = [n, n] ⊕ ξ, where the ideals n∗ (nonabelian factor)
and ξ (abelian factor) of n are uniquely determined and n∗ is a two-step
nilpotent Lie algebra such that the commutator subalgebra [n, n] = [n∗, n∗]
is the center of n∗.

Let 〈. , .〉 denote an inner product on n and also the corresponding
left invariant metric on N . If ξ has dimension p ≥ 0, then the kernel of
the linear map j defined by (1) has dimension p. Hence the Euclidean de
Rahm factor of {N, 〈. , .〉} has the dimension of the abelian factor n∗ of n,
too. (See for further details [4].)

In Lemma 6 we have seen that the projected curves are planar curves
in the Euclidean space N/Z if and only if j(U)2 = −q(U) ida, where q(U)
is a positive semidefinite quadratic form on z. If q(U) is a positive definite
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quadratic form on z, then we obtain the class of modified H-type groups
(cf. [7]). If there exists U 6= 0 ∈ z, which satisfies q(U) = 0, then j is not
injective and in this case U is orthogonal to [n, n]. It follows from this fact
that N is direct product of a modified H-type group with the Euclidean
de Rahm factor of N .

Conversely if N is direct product of a modified H-type group with
the Euclidean de Rahm factor of N , then it follows from the definition of
modified H-type groups that j(U)2 = −q(U) ida, where q(U) is a positive
semidefinite quadratic form on z. This proves that the canonical projection
onto the quotient group N/Z maps every geodesic in N to a planar curve
in N/Z. ¤
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